隐藏终端和暴露终端问题及解决方案
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于定向天线的方法 由于全向发送接收模式对天
线覆盖范围内的其他节点产生了不同程度的干扰, 而定向天线由于天线的导向功能、自适应波束形 成、零陷形成等优势,能把发送接收波束限制在 一定宽度(不同于全向天线的360度覆盖),使主波 束直接对准通信节点,在其他方向则形成零陷, 因此增大节点之间的连通度,使得干扰范围变小, 隐藏终端和暴露终端问题也得以大大减轻。但是 由于天线的定向性。也带来了定向隐藏终端和聋 节点等新的问题.而且会大大增加系统的复杂性 及成本。
对于单信道无线自组织网络,其MAC协议需要考虑的 是如何充分利用信道,避免冲突。载波侦听多路访问/冲 突检测(CSMA/CA)机制是目前应用非常广泛的协议,节点 通过物理信道侦听(CCA)与虚拟网络侦听(NAV)结合的方 式进行载波侦听,采用基于长帧间隙、中帧间隙和短帧间 隙等不同时隙的退避机制和冲突避免策略,竞争信道进行 发送。时分多址(TDMA)机制可以将信道按照时间片划分 为多个时隙,节点按照静态或者动态分配方式占用其中的 一个或者几个时隙。但是对于无线自组织网络来说,静态 分配方式不能适应节点的移动和拓扑的变化;而在一个分 布式多跳系统内,进行动态分配也还有很多问题需要解决, 目前的研究多是针对基于某些假设或者某种应用背景的无 线自组织网络,还没有普遍适用的方法提出。将 CSMA/CA和TDMA结合,提高信道分配效率,减少冲突 也是一种值得研究的内容。
隐藏终端和暴露终端问题 以及解决办法
Leabharlann Baidu么是隐藏终端和暴露终端
“隐藏终端”(Hidden Stations):在通信领域,基站A向基站B发送 信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引 起信号冲突,最终导致发送至B的信号都丢失了。“隐藏终端”多发 生在大型单元中(一般在室外环境),这将带来效率损失,并且需要 错误恢复机制。当需要传送大容量文件时,尤其需要杜绝“隐藏终端” 现象的发生。(在接收节点的范围覆盖范围内,而在发送节点的覆盖 范围外的节点。
隐藏终端和暴露终端问题 对ad hoc网络的影响
隐藏终端”和“暴露终端”的存在,会造成 ad hoc网络时隙资源的无 序争用和浪费,增加数据碰撞的概率,严重影响网络的吞吐量、容量 和数据传输时延。在ad hoc网络中,当终端在某一时隙内传送信息时, 若其隐藏终端在此时隙发生的同时传送信息,就会产生时隙争用冲突。 受隐藏终端的影响,接收端将因为数据碰撞而不能正确的接收信息, 造成发送端的有效信息的丢失和大量的时间浪费(数据帧较长时尤为 严重),从而降低了网络的吞吐量。当某个终端成为暴露终端后,由 于它侦听到另外的终端对某一时隙的占用信息,从而放弃了预约该时 隙进行信息传送。其实,因为源终端节点和目的终端节点都不一样, 暴露终端是可以占用这个时隙来传送信息的。这样就造成了时隙资源 的浪费。
多信道无线自组织网络,则需要关注如何在节点间分配
信道,以提高网络吞吐量,避免冲突,实现信道上的负载 均衡。目前较多的做法是,将信道分为控制信道和数据信 道,节点在控制信道中协商数据交换采用的数据信道,然 后在相应的数据信道上进行数据通信。控制信道和数据信 道的划分可能是时间上的,也可能是空间上的。比如,一 个信道在某个时刻可能用作控制信道,协商好数据信道后, 切换到相应的数据信道进行通信。也可能一个节点拥有几 个接口,其中的一个接口固定工作在某个控制信道上,其 他接口固定或者动态实用某个数据信道。不管是哪种方式, 都需要占用一定的资源用于信道协商。这种占用是值得的, 目前 在多信道的理论分析结果说明,在合理设计的多信
什么是隐藏终端和暴露终端
暴露终端是指在发送节点的覆盖范围内而在接收节点的覆盖范围外的 节点,暴露终端因听到发送节点的发送而可能延迟发送。但是,它其 实是在接收节点的通信范围之外,它的发送不会造成冲突。这就引入 了不必要的延时
隐藏终端和暴露终端问题产生的原因
由于ad hoc网络具有动态变化的网络拓扑结构, 且工作在无线环境中,采用异步通信技术,各个 移动节点共享同一个通信信道,存在信道分配和 竞争问题:为了提高信道利用率,移动节点电台 的频率和发射功率都比较低;并且信号受无线信 道中的噪声、信道衰落和障碍物的影响,因此移 动节点中的通信距离受到限制,一个节点发出的 信号,网络中的其他节点不一定都能收到,从而 会出现“隐藏终端”和“暴露终端“问题。
道条件下,不仅可以提高整体网络容量,还可以提高每个 信道的实际吞吐量。但是这些研究多是基于静态的。开发 一种基于拓扑结构的算法,对信道资源进行动态分配,也 是一个值得研究的问题。
功率控制方法 基于功率控制的方法是根据通信双方的距离、能量损失 因子等因素,决定最佳发送功率,控制发送范围,使受干扰范围减到 最小程度,从而消除部分隐藏终端和暴露终端问题的一种策略。在通 信过程中,发送节点的发送功率经过传输过程中的种种损耗,到达接 收节点时,如果接收节点的接收功率不小于信干比 SINR (Signal to Interference plus Noise Ratio).则正确接收数据, 否则丢弃。一种基于802.11的功率控制MAC协议,数据发送者在 RTS包中包含自己的发送功率和容许接收功率,接收者通过计算接收 到的RTS包的功率,参照自己的剩余功率,将信息反馈给发送节点。 通过两个通信节点之间的控制信息的交换来决定数据包的实际发送功 率和限制其他邻节点的发送功率,这样邻节点可以使用低于正在通信 节点对之间能忍受的功率进行数据收发,达到与正在通信节点对之间 的并行通信,有效地降低隐藏终端和暴露终端问题。 功率控制方法有 效地节省了发送能量,但控制帧必须携带功率信息,增加了帧长度, 功率的计算也增加了计算量。
隐藏终端和暴露终端问题的解决办法
IEEE802.11提供了如下解决方案。在参数配置中,若使用 RTS/CTS协议,同时设置传送上限字节数,一旦待传送的 数据大于此上限值时,即启动RTS/CTS握手协议:当A要 向B发送数据时,先发送一个控制报文RTS(Request to send,请求发送);V接收到RTS后,以CTS(Clear to send,清除发送)控制报文回应;A收到CTS后才向B发 送报文,如果A没收到CYS,A认为发生了冲突,重发 RTS,这样隐发终端C能听到B发送的CTS,知道A要向B 发送报文,C延迟发送,解决了隐发送终端的问题。最后, B接收完数据后,即向所有基站广播ACK(Acknowledge Character,确认字符)即确认帧,这样,所有基站又可 重新可以平等侦听、竞争信道了。
当B向A发送数据时,C只听到RTS控制报文,知道自己是暴露终端, 认为自己可以向D发送数据。C向D发送RTS控制报文。如果是单信道, 来自D的RTS会与B发送的数据报文冲突,C和D无法成功握手,它不 能向D发送报文。因此,在单信道条件下,暴露终端问题根本无法得 到解决。
在单信道条件下使用控制分组的方法只能解决隐发送终端,无法解决 隐接收端和暴露终端问题。为此,必须采用双信道方法,即用数据新 到收发数据,利用控制信道收发控制信号。
QoS路由
自组网QoS路由的目标是满足QoS连接请求的一条或多条 路由,同时提供足够的路由资源信息,为管理控制机制提 供支持,完成全网资源的有效利用。目前自组网的QoS路 由问题还处在起步阶段。无线自组织网络的QoS研究主要 集中在QoS模型、具有资源预约功能的信令、QoS路由协 议和QoS媒体接入协议以及接纳控制和调度等方 面。 由于无线自组织网络具有无中心结构,拓扑动态 变化,节点资源受限,无线节点间相互干扰等特性,使得 自组织网络中的QoS路由设计面临新的挑战。这主要体现 在: 拓扑结构的动态变化使节点间链路状态信息的获 取和管理维护困难。 由于相邻节点间存在“隐蔽终 端”、“暴露终端”、“侵入终端”等相互干扰,使得无 线链路状态难以确定,例如带宽、时延、时延抖动等链路 参数都很难及时获取和更新维护。 随时存在的单向信 道的存在使得QoS路由协议设计困难,主要体现在:认知 的单向性、路由的单向性和汇点不可达。 每个节点资