三极管知识及极性判别方法
如何利用万用表区分三极管的极性和管脚
如何利用万用表区分三极管的极性和管脚1. 用万用表分辨三极管极性利用万用表的欧姆挡可以分辨是NPN型还是PNP型三极管,具体方法是:万用表Rx1k挡,用黑表棒按一根引脚,红表棒分别接另两根引脚,如图1所示是接线示意图。
测量两个电阻值真1R1,1R2。
黑表棒换一根引脚,红表棒接另两根引脚,测量两个电阻值2R1,2R2;黑表棒接第三根引脚,红表棒接另两引脚,测量两个电阻值3R1,3R2.将测量的三组电阻值进行比较,当某一组中的两个电阻值基本相等时,黑表棒所接的引脚为该三极管基极。
如果该组两个阻值为三组中的最小值,说明是NPN型三极管;如果该组两个阻值为最大值,说明是PNP三极管。
图1 分辨三极管极性接线示意图2.检测原理如图2所示是NPN型三极管.它有两正极相连的PN结,当黑表棒接基极、红表棒分别接另两个引脚后,因为表内电池的正极与黑表棒相连,这样给集电结和发射结加正向偏置电压,所以测量电阻值基本相等.而且为最小值,其他两种检测状态下均不可能有两个相等且为最小的阳值,这样可以确定是NPN型三极管。
图2 三极管极性检测原理示意图如图2(b)所示是PNP型三极管.两个PN结负极相连,黑表棒接基极、红表棒分别接其他两个引脚后,表内电压给两个PN加反向偏置电压,两个PN反向电阻大小一样,这样可以确定三极管是PNP型.3.1分辨NPN型三极管集电极和发射极方法前面分辨NPN型还是PNP型三极管时已经确定基极,如图3所示是分辨NPN型三极管集电极和发射极时接线示意图。
红、黑表棒任意接基极之外的另两根引脚,然后用嘴唇去同时接触黑表棒和基极.图中集电极和发射极之间电阻R是嘴唇接触时的人体电阻。
如果表针向右偏转一个角度(阻值在减小许多),说明黑表棒所接引脚为集电极,另一个为发射极。
如果嘴唇接触时表针没有偏转,将红.黑表棒互换一次接线,再用同样方法测量一次,只要三极管是好的,必有衷针偏转现象,可以确定集电极和发射极。
图 3 分辨NPN型三极管集电极和发射极接线示意图4.分辨PNP型三极管集电极和发射极的方法如图4 所示是分辨PNP型三极管集电极和发射极接线示意图,用嘴唇取接触基极和红表棒(不是黑表棒),如表针向右偏转说明红表棒所接为集电极,另一个为发射极。
三极管知识及极性判别方法
三极管知识及极性判别方法一晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区''发射''的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区''发射''的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
二三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
三晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
四晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
三极管PNP、NPN及极性测量方法
万用表测判三极管三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。
二、 PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce 和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
三极管极性及特性的测量方法
三极管极性及特性的测量方法三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。
具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。
如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。
如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。
这样最多没量12次,总可以找到基极。
三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。
判别时只要知道基极是P型材料还N型材料即可。
当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。
如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。
硅管、锗管的判别硅管和锗管在特性上有很大不同,使用时应加以区别。
我们知道,硅管和锗管的PN结正向电阻是不一样的,即硅管的正向电阻大,锗管的小。
利用这一特性就可以用万用表来判别一只晶体管是硅管还是锗管。
判别方法如下:将万用表拨到R*100挡或R*1K挡。
测量二极管时,万用表的正端接二极管的负极,负端接二极管的正极;测量NPN型的三极管时,万用表的— 1 —负端接基极,正端接集电极或发射极;测量PNP型的三极管时,万用表的正端接基极,负端接集电极或发射极。
按上述方法接好后,如果万用表的表针指示在表盘的右端或靠近满刻度的位置上(即阻值较小),那么所测的管子是锗管;如果万用表的表针在表盘的中间或偏右一点的位置上(即阻值较大),那么所测的管子是硅管。
— 2 —。
三极管的判别方法
三极管的判别方法一、引言三极管是电子工程中常用的一种器件,它具有放大、开关等多种功能。
在电路设计和维修中,正确判别三极管的类型和工作状态是非常重要的。
本文将介绍三极管的判别方法。
二、三极管类型三极管根据其结构和材料不同,可以分为NPN型和PNP型两种。
其中NPN型的正极接在负电源上,负极接在负载上;PNP型的正极接在正电源上,负极接在负载上。
三、三极管引脚标号对于普通的TO-92封装的三极管来说,它有3个引脚:发射极(E)、基极(B)和集电极(C)。
其中基极位于另外两个引脚之间。
四、测试工具准备判别三极管需要使用万用表或者二极管测试笔等测试工具。
如果使用万用表,则需要将其设置为二级直流电压测量模式。
五、判别方法1. 测量发射结与集电结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。
将黑色探针连接到集电结上,红色探针连接到发射结上。
如果万用表显示接近于0的电阻值,或者二极管测试笔亮起,则说明三极管是正常导通的。
2. 测量基极与发射结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。
将黑色探针连接到发射结上,红色探针连接到基极上。
如果万用表显示接近于0的电阻值,或者二极管测试笔亮起,则说明三极管是正常导通的。
3. 测量基极与集电结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。
将黑色探针连接到集电结上,红色探针连接到基极上。
如果万用表显示接近于0的电阻值,或者二极管测试笔不亮,则说明三极管是正常截止状态。
4. 判断三极管类型将万用表或者二极管测试笔设置为二级直流电压测量模式。
将黑色探针连接到三极管的负级(如NPN型的发射结),红色探针连接到正级(如NPN型的集电结)。
如果显示正向偏置电压,则说明是NPN型;如果显示反向偏置电压,则说明是PNP型。
六、注意事项1. 判别三极管时需要先确定三极管的引脚标号和类型,否则会导致误判。
2. 在测试三极管时,要注意保持测试笔与引脚的良好接触,并且避免短路或者反接。
三极管的识别和检测方法
三极管的识别和检测方法三极管是一种重要的电子元件,广泛应用于各种电子设备中。
然而,在实际应用中,我们经常需要识别和检测三极管的好坏。
本文将介绍三极管的识别和检测方法。
一、三极管的识别1.标识识别:三极管的标识通常印在管子的外壳上。
标识包括型号、规格、生产厂家等信息。
通过查看标识,我们可以了解三极管的基本参数和使用范围。
2.管脚识别:三极管有三个管脚,分别是基极、发射极和集电极。
在识别管脚时,我们可以根据标识或者使用万用表进行测量。
通常,标识会标明管脚的排列顺序。
如果没有标识,我们可以通过万用表测量每个管脚之间的电阻值,从而确定管脚的排列顺序。
二、三极管的检测1.电阻法检测:使用万用表测量三极管的各个管脚之间的电阻值,可以判断三极管的好坏。
正常情况下,基极与集电极之间的电阻值应比发射极与集电极之间的电阻值大得多,同时基极与发射极之间的电阻值应比基极与集电极之间的电阻值小得多。
如果测量的电阻值不符合这些规律,则说明三极管可能存在故障。
2.放大倍数检测:使用示波器或信号发生器等设备,可以测量三极管的放大倍数。
将信号发生器产生的信号输入到基极,观察集电极的输出信号幅度,可以计算出三极管的放大倍数。
如果放大倍数正常,则说明三极管工作正常。
3.温度稳定性检测:将三极管放置在恒温箱中,观察在不同温度下的放大倍数变化情况。
如果放大倍数变化较大,则说明三极管的温度稳定性较差,可能存在故障。
4.稳定性检测:使用示波器观察三极管的输入和输出信号波形,可以判断三极管的稳定性。
如果输入和输出信号波形存在较大差异或不稳定,则说明三极管可能存在故障。
总之,识别和检测三极管是电子设备维修和调试的重要环节。
通过掌握正确的识别和检测方法,我们可以快速准确地判断三极管的好坏,为电子设备的正常运行提供保障。
三极管的检测及其管脚的判别讲解学习
三极管的检测及其管脚的判别使用数字万用表判断三极管管脚(图解教程)现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。
但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。
我倒认为数字万用表在测量三极管时更加的方便。
以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。
大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。
手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。
图1三极管我们知道三极管的内部就像二个二极管组合而成的。
其形式就像下图。
中间的是基极(B极)。
图2三极管的内部形式首先我们要先找到基极并判断是PNP还是NPN管。
看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。
这时我们可以用数字万用表的二极管档去测基极,看图3。
对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。
对于NPN表来说则是红表笔(连表内电池正极)连在基极上。
从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。
图3万用表的二极管测量档图4判断BC337的B极和管型(1)图4判断BC337的B极和管型(2)找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。
如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。
而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。
把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。
读数,再把它的另二脚反转,再读数。
读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。
如何判断三极管是PNP型还是NPN型
如何判断三极管是PNP型还是NPN型三极管的管型(PNP型三极管还是NPN型三极管)以及三极管引脚的判别是电子初学者的一项基本功。
有人总结了四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴”。
我们来逐句开展解释分析。
一、三颠倒,找基极我们知道,三极管内部有两个PN结,三极管是PNP 型还是NPN型的区别就是两个PN结的连接方式不同。
如下列图所示是三极管及等效电路。
测量三极管是要使用万用表的欧姆档,档位的选择可以是Rx100档位,也可以是Rx1k档位。
我们知道,万用表在欧姆档时红表笔在万用表内接的是电池的负极,黑表笔连接着表内电池的正极。
(下面的测量都是基于三极管没有损坏的情况下测试的,如果三极管已损坏,下面的测试方法就不合适了。
)在我们不知道被测三极管是什么类型的时候(PNP型还是NPN型),这个时候一般也不会知道各管脚是什么电极。
测试的第一步是先找出来这个三极管的基极。
我们先任取三极管三个引脚中的两个(例如取1脚和2脚),用万用表两只表笔测量一下这两脚之间的电阻(正向电阻),然后将表笔翻转再测量一下两脚之间的电阻(反向电阻);接下来一次次测量1脚、3脚之间的正、反向电阻,以及2、3脚之间的正、反向电阻。
比较这三次测量出来的正、反向电阻,一定有两次的测量结果接近:即两次测量的正向电阻接近、负向电阻也接近;那么剩下的一次必然是正、反向电阻都较大,于是,可以得出结论,正、反向电阻都偏大的那一次,未测量的哪个引脚就是这只三极管的基极。
二、PN结,定管型找出这只三极管的基极引脚之后,就可以根据基极与另外两个电极之间PN结的方向来确定该只三极管是PNP型还是NPN型。
将万用表的黑表笔连接到该只三极管的基极,红表笔连接到另外两个电极中的任何一个,如果表头指针偏转角度很大,则说明这只三极管是NPN型三极管,如果表头指针偏转角度很小,说明这只三极管为PNP型三极管。
三、顺箭头,偏转大从上面两个步骤我们已经找出了这只三极管的基极,以及这只三极管是那种类型的三极管,接下来就要判断哪个引脚是集电极,哪个引脚是发射极了。
如何判断三极管的极性?
如何判断三极管的极性?
三极管极性的判断其实很简单,方法也有多种,有比较经典的极性判断口诀,如“三颠倒找基极,PN结,定管型,顺箭头,偏转大,测不出,动嘴巴”,这是利用指针式万用表来判断三极管极性的办法,虽然方法老了些,但确实是个好方法,我们也可以利用数字万用表来进行测量三极管的极性,具体方法如下。
三极管极性判断方法
见上图,三极管内部有发射结和集电结两个PN结,PNP类型的箭头都朝内,犹如两个二极管负极接负极,NPN箭头都朝外,犹如二极管正极接正极,基极就是两个PN结公共的地方,我们只要使用万用表分别测量两个二极管的导通压降,就可以判断出三极管的基极了。
一,找出基极和判断管型。
万用表拨至二极管档位,将红黑表笔依次轮流接三极管的任意两脚,如果红表笔固定接一脚,黑表笔分别
接另外两脚都有数值显示,表示红表笔所接为基极,且管型为NPN;如果黑表笔固定接一脚,红表笔分别接另外两脚都有数值显示,则表示黑表笔所接为基极,且管型为PNP。
表笔接错,会显示0,表示没有数值。
二,找出发射极和集电极。
找出基极和管型之后,就可以使用万用表的hFE档位找出集电极和发射极了,将万用表拨至三极管的hFE 档位,将三极管的基极对应插孔中的B,正反两次插入hFE孔中,读数大的一次为正确的β值,此时根据孔上标注的字母对应三极管各极,C孔对应集电极,E孔对应发射极。
总结:在这个信息发达的社会,人人都有手机可以上网,直接根据三极管型号查找资料要方便的多,所以上面方法有点不符合实际,大家看看就算了,没必要深究。
别忘了点赞 !。
如何检测三极管的三个极
如何检测三极管的三个极三极管是一种常用的电子器件,它有三个极,包括基极、发射极和集电极。
在电子电路中,正确检测和判断三极管的极性是非常重要的,因为不同极性的连接会导致不同的工作状态。
下面将介绍一些常用的方法来检测三极管的三个极。
1.外观检测法外观检测法是一种简单直观的方法,可以通过观察器件的外观来初步判断其极性。
一般来说,三极管的封装有标有标志的一侧,比如有一个凸点或一个凹槽。
在这种情况下,凸点或凹槽一般对应于三极管的发射极。
通过对封装的观察,可以初步确定三极管的极性。
2.万用表法万用表是一种常用的工具,可以用来测量电压、电流和电阻等参数。
利用万用表可以检测三极管的极性。
首先,将万用表的旋钮拨到电阻档位,然后将红表笔连接到三极管的基极,黑表笔连接到集电极,此时万用表的指针应该显示一个较大的电阻值。
接着,将黑表笔连接到三极管的发射极,此时万用表的指针应该显示一个较小的电阻值。
最后,将黑表笔连接到基极,红表笔连接到发射极,此时万用表的指针应该显示一个非常小的电阻值。
通过对电阻的测量,可以初步判断三极管的极性。
3.钳形表法钳形表是一种专用的电子测试工具,既可以测量电流和电压,也可以检测三极管的极性。
用钳形表检测三极管需要将钳形表夹在三极管的引线上,然后读取钳形表上的数值和符号。
当钳形表读数为正时,表示引线从基极流向发射极,从而可以判断基极、发射极和集电极的对应关系。
如果钳形表读数为负,则表示引线从基极流向集电极。
4.对比法利用对比法也可以判断三极管的极性。
对比法是指将待检测的三极管与已知极性的三极管进行比较。
首先,将待检测的三极管与已知极性的三极管封装一致地放在同样的位置上。
接着,通过测量两个三极管的电压和电流,并比较它们的差异,就可以初步判断待检测三极管的极性。
以上是一些常用的方法来检测三极管的三个极。
这些方法各有优劣,可以根据实际情况来选择合适的方法。
无论使用哪种方法,都需要谨慎操作,以防止对三极管产生损坏。
三极管的状态和判别方法
三极管的状态和判别方法三极管是一种半导体器件,广泛应用于电子电路中。
它由三个掺杂不同类型的半导体材料构成,包括一个基区、一个发射区和一个集电区。
三极管的状态分为饱和状态、截止状态和放大状态。
下面将详细介绍三极管的状态以及判别方法。
1.饱和状态:饱和状态指三极管发射极-基极间的电压小于它的基极-集电极间的电压,同时基极处于正向偏置。
在这种状态下,三极管的电流放大因子β会被充分运用,并且集电极电流增加,输出电流大于输入电流。
饱和状态下,三极管一般被用作开关或放大器的输入级。
2.截止状态:截止状态指三极管的集电极电流为零,基极电流也几乎为零。
在这种状态下,三极管基极-发射极电压为负值,基极电流为接近于零。
截止状态下,三极管不进行放大作用,并且将输入信号截断。
截止状态下,三极管一般被用作开关或放大器的输出级。
3.放大状态:放大状态指三极管的集电极电流增加,同时基极电流也增加。
在这种状态下,三极管可以将小的输入信号放大成较大的输出信号。
放大状态下,如何选择工作点能够提供更稳定的放大效果是非常重要的,通常使用静态工作点来判定。
静态工作点是指在一些电压和电流点上,三极管处于放大状态。
三极管的状态可以根据输入信号和工作电压来判断。
根据输入信号的大小,可以判断三极管是否工作在放大状态。
若输入信号太小,则三极管可能工作在截止状态。
若输入信号太大,则三极管可能工作在饱和状态。
另外,根据工作电压的大小,也可以判断三极管的状态。
若发射极-基极电压小于基极-集电极电压,则三极管可能工作在饱和状态。
若发射极-基极电压大于基极-集电极电压,则三极管可能工作在截止状态。
除了以上方法,还可以通过特殊的电路连接实现对三极管状态的判断。
例如,可以通过将三极管作为开关使用,根据输入信号来控制输出信号的开闭状态判断三极管的状态。
另外,还可以通过测量三极管的电流和电压来判断。
通过测量基极电流、发射极电流和集电极电流的大小,可以推断三极管的状态。
判断三极管类型及引脚极性的经典口诀
判断三极管类型及引脚极性的判别口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
图2绘出了万用电表欧姆挡的等效电路。
由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN 型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
三极管的主要参数及极性判断
三极管的主要参数及极性判断Z304三极管的主要参数及极性判别1.常用小功率三极管的主要参数常用小功率三极管的主要参数,参见表B311。
2.三极管电极和管型的判别(1) 目测法① 管型的判别一般,管型是NPN还是PNP应从管壳上标注的型号来辨别。
依照部颁标准,三极管型号的第二位(字母),A、C表示PNP管,B、D表示NPN管,例如:3AX 为PNP型低频小功率管3BX 为NPN型低频小功率管3CG 为PNP型高频小功率管 3DG 为NPN型高频小功率管3AD 为PNP型低频大功率管 3DD 为NPN型低频大功率管3CA 为PNP型高频大功率管 3DA 为NPN型高频大功率管此外有国际流行的9011~9018系列高频小功率管,除9012和9015为PNP管外,其余均为NP N型管。
② 管极的判别常用中小功率三极管有金属圆壳和塑料封装(半柱型)等外型,图T305介绍了三种典型的外形和管极排列方式。
(2) 用万用表电阻档判别三极管内部有两个PN结,可用万用表电阻档分辨e、b、c三个极。
在型号标注模糊的情况下,也可用此法判别管型。
① 基极的判别判别管极时应首先确认基极。
对于NPN管,用黑表笔接假定的基极,用红表笔分别接触另外两个极,若测得电阻都小,约为几百欧~几千欧;而将黑、红两表笔对调,测得电阻均较大,在几百千欧以上,此时黑表笔接的就是基极。
PNP管,情况正相反,测量时两个PN结都正偏的情况下,红表笔接基极。
实际上,小功率管的基极一般排列在三个管脚的中间,可用上述方法,分别将黑、红表笔接基极,既可测定三极管的两个PN结是否完好(与二极管PN结的测量方法一样),又可确认管型。
② 集电极和发射极的判别确定基极后,假设余下管脚之一为集电极c,另一为发射极e,用手指分别捏住c极与b极(即用手指代替基极电阻R b)。
同时,将万用表两表笔分别与c、e接触,若被测管为NPN,则用黑表笔接触c 极、用红表笔接e极(PNP管相反),观察指针偏转角度;然后再设另一管脚为c极,重复以上过程,比较两次测量指针的偏转角度,大的一次表明I C大,管子处于放大状态,相应假设的c、e极正确。
三极管集电极判别方法
三极管集电极判别方法三极管是一种常用的电子元件,广泛应用于各种电路中。
在使用三极管时,我们常常需要判断其集电极的正负极性,以确保电路的正常工作。
下面将介绍几种常见的判别方法。
第一种方法是通过观察三极管引脚标记。
在三极管的外壳上,通常会标注有三个引脚,分别是基极、发射极和集电极。
其中,集电极一般标记为C,发射极标记为E,基极标记为B。
通过观察引脚标记,我们可以轻松地判断出集电极的位置。
第二种方法是通过查阅三极管的规格手册。
每个型号的三极管都有对应的规格手册,其中详细说明了各个引脚的功能和特性。
通过查阅手册,我们可以找到集电极的位置和电压极性。
一般来说,集电极的电压较高,为正极性。
第三种方法是通过测量三极管的电压。
在测量之前,我们需要将三极管从电路中取出,并将万用表调至电压测量档位。
然后,将万用表的红表笔接到三极管的集电极上,黑表笔接到三极管的发射极上。
如果测量结果显示正电压,说明集电极是正极性;如果显示负电压,说明集电极是负极性。
第四种方法是通过测试三极管的工作状态。
在使用三极管时,我们可以将其接入一个简单的电路中,并通过观察其工作状态来判断集电极的极性。
例如,我们可以将三极管作为开关使用,当集电极处于正极性时,电路将通路;当集电极处于负极性时,电路将断路。
通过观察电路的表现,我们可以得出集电极的极性信息。
除了以上几种方法,还有一些其他的判别方法,例如通过测量三极管的电阻值、通过观察三极管的器件结构等。
不同的方法适用于不同的情况,我们可以根据具体的需求选择合适的方法。
总结起来,判别三极管集电极的方法有很多种,包括观察引脚标记、查阅规格手册、测量电压、测试工作状态等。
通过合理选择和应用这些方法,我们可以准确地判断三极管集电极的极性,从而保证电路的正常工作。
在实际应用中,我们应当根据具体情况选择合适的方法,并注意避免歧义或错误信息的出现。
通过不断学习和实践,我们可以更加熟练地掌握三极管集电极的判别方法,提高自己的电子技术水平。
晶体三极管极性和类型的判别
NPN、手指、C-------黑,简称P黑(PK)
三、 定c
若已确定类型PNP和基极B,可用“顺箭头,动手指”的 方法确定集电极C。 ( 2 )对于 PNP 型三极管,用万用表 红笔 手指
Байду номын сангаас
的黑、红笔颠倒测量三极管另两极, 并用手指短接基极和红笔(手指起到 直流偏置电阻的作用) ,两次测量中 万用表指针偏转角度大(电阻小)的, 黑笔 此时电流的流向一定是:黑笔→e极 →b极(出)→c极→红笔,电流流向正 好与三极管符号中的箭头方向一致 (“顺箭头”),此时红笔所接的一 定是集电极c。
假定一极为基极,用黑笔接假定基极,红 笔分别接另外两极,①若测量结果阻值一大一 小,假定不成立;②若测量结果阻值都大(或 都小),假定可能成立;③交换表笔(用红笔接 假定基极,黑笔分别接另外两极)后测量结果阻 值都小(或都大),假定基极成立。
二、 定管型
当基极b确定后,黑笔接基极,红笔接其 他两极中的一极,若测得电阻值很小,则为 NPN型,如测得电阻值非常大,则为PNP型。
三、 定c
若已确定类型NPN和基极B,可用“顺箭头,动手指”的 方法确定集电极C。 (1)对于NPN型三极管,用万用表 黑笔 手指
的黑、红笔颠倒测量三极管另两极, 并用手指短接基极和黑笔(手指起到 直流偏置电阻的作用),两次测量中 万用表指针偏转角度大(电阻小)的, 红笔 此时电流的流向一定是:黑笔→c极 →b极(入)→e极→红笔,电流流向正 好与三极管符号中的箭头方向一致 (“顺箭头”),此时黑笔所接的一 定是集电极c。
PNP 、手指、C-------红,简称N红
晶体三极管极性和类型的判别
由于三极管的基本结构是两个背靠背的 PN结,根据PN结的单向导电性,可用万用表 的电阻档(R×100或R×1k挡)来判别三极管 的极性(基极b、集电极c、发射极e)或类型 (NPN型和PNP型)。 被测三极管的类型和极性都未知,测试的 第一步是判断哪个管脚是基极。
三极管之PNP与NPN详解及如何用万用表判断基极
三极管之——PNP与NPN一.PNP与NPN 晶体管的检测方法NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。
方法一:鉴别基极B将数字万用表拨至二极管档,红表笔固定任接某个引脚,用黑表笔依次接触另外两个引脚,如果两次显示值均小于1V或都显示溢出符号“1”,则红表笔所接的引脚就是基极B。
如果在两次测试中,一次显示值小于1V,另一次显示溢出符号“1”,表明红表笔接的引脚不是基极B,此时应改换其他引脚重新测量,直到找出基极B为止。
区分NPN管与PNP管使用数字万用表的二极管档。
按上述操作确认基极B之后,将红表笔接基极B,用黑表笔先后接触其他两个引脚。
如果都显示0.500~0.800V,则被测管属于NPN型;若两次都显示溢出符号“1”,则表明被测管属于PNP管。
方法二:判定基极。
用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。
当第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。
这时,要注意万用表表笔的极性,如果红表笔接的是基极b。
黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN 型管如9013,9014,9018。
小注:使用数字万用表的二极管档测量二极管的正向压降,这时读数的单位是mV。
例如,用该档检测2AP3型二极管的正向压降,显示为“352”,即表示352mV或0.352V(此管为锗管)。
用该档检测IN4007型二极管时,正向显示为“509”,即表示正向压降为509mV或0.509V(此管为硅管)。
数字万用表的二极管档,还可以用来检测电路是否短路。
二、常见三极管之——9013 、90129013三极管9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以及各种放大电路中经常看到它,应用范围很广,它是NPN型小功率三极管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管知识及极性判别方法
三极管知识及极性判别方法
晶体三极管的结构和类型
晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别
常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右
依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用
晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态
截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极
电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。
三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
1 中、小功率三极管的检测
A 已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏
(a) 测量极间电阻。
将万用表置于R×100或R×1K挡,按照红、黑表笔的六种不同接法进行测试。
其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。
但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。
(b) 三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。
ICBO随着环境温度的升高而增长很快,ICBO的增加必然造
成ICEO的增大。
而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。
通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:
万用表电阻的量程一般选用R×100或R×1K挡,对于PNP管,黑表管接e 极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。
要求测得的电阻越大越好。
e-c间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。
一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。
(c) 测量放大能力(β)。
目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。
先将万用表功能开关拨至 挡,量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。
另外:有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。
B 检测判别电极
(a) 判定基极。
用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间的正、反向电阻值。
当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。
这时,要注意万用表表笔的极性,如果红表笔接的是基极b。
黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管。
(b) 判定集电极c和发射极e。
(以PNP为例)将万用表置于R×100或R×1K 挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。
在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。
C 判别高频管与低频管
高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换的。
D 在路电压检测判断法
在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测三极管各引脚的电压值,来推断其工作是否正常,进而判断其好坏。
2 大功率晶体三极管的检测
利用万用表检测中、小功率三极管的极性、管型及性能的各种方法,对检测大功率三极管来说基本上适用。
但是,由于大功率三极管的工作电流比较大,因而其PN结的面积也较大。
PN结较大,其反向饱和电流也必然增大。
所以,若像测量中、小功率三极管极间电阻那样,使用万用表的R×1k挡测量,必然测得的电阻值很小,好像极间短路一样,所以通常使用R×10或R×1挡检测大功率三极管。
3 普通达林顿管的检测
用万用表对普通达林顿管的检测包括识别电极、区分PNP和NPN类型、估测放大能力等项内容。
因为达林顿管的E-B极之间包含多个发射结,所以应该使用万用表能提供较高电压的R×10K挡进行测量。
4 大功率达林顿管的检测
检测大功率达林顿管的方法与检测普通达林顿管基本相同。
但由于大功率达林顿管内部设置了V3、R1、R2等保护和泄放漏电流元件,所以在检测量应将这些元件对测量数据的影响加以区分,以免造成误判。
具体可按下述几个步骤进行:
A 用万用表R×10K挡测量B、C之间PN结电阻值,应明显测出具有单向导电性能。
正、反向电阻值应有较大差异。
B 在大功率达林顿管B-E之间有两个PN结,并且接有电阻R1和R2。
用万用表电阻挡检测时,当正向测量时,测到的阻值是B-E结正向电阻与R1、R2
阻值并联的结果;当反向测量时,发射结截止,测出的则是(R1+R2)电阻之和,大约为几百欧,且阻值固定,不随电阻挡位的变换而改变。
但需要注意的是,有些大功率达林顿管在R1、R2、上还并有二极管,此时所测得的则不是(R1+R2)之和,而是(R1+R2)与两只二极管正向电阻之和的并联电阻值。
5 带阻尼行输出三极管的检测
将万用表置于R×1挡,通过单独测量带阻尼行输出三极管各电极之间的电阻值,即可判断其是否正常。
具体测试原理,方法及步骤如下:
A 将红表笔接E,黑表笔接B,此时相当于测量大功率管B-E结的等效二极管与保护电阻R并联后的阻值,由于等效二极管的正向电阻较小,而保护电阻R 的阻值一般也仅有20~50 ,所以,二者并联后的阻值也较小;反之,将表笔对调,即红表笔接B,黑表笔接E,则测得的是大功率管B-E结等效二极管的反向电阻值与保护电阻R的并联阻值,由于等效二极管反向电阻值较大,所以,此时测得的阻值即是保护电阻R的值,此值仍然较小。
B 将红表笔接C,黑表笔接B,此时相当于测量管内大功率管B-C结等效二极管的正向电阻,一般测得的阻值也较小;将红、黑表笔对调,即将红表笔接B,黑表笔接C,则相当于测量管内大功率管B-C结等效二极管的反向电阻,测得的阻值通常为无穷大。
C 将红表笔接E,黑表笔接C,相当于测量管内阻尼二极管的反向电阻,测得的阻值一般都较大,约300~∞;将红、黑表笔对调,即红表笔接
D 黑表笔接E,则相当于测量管内阻尼二极管的正向电阻,测得的阻值一般都较小,约几欧至几十欧。