高考物理动量定理机械能守恒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理机械能守恒定律
题型一:应用动能定理时的过程选取问题
解决这类问题需要注意:对多过程问题可采用分段法和整段法 处理,解题时可灵活处理,通常用整段法解题往往比较简洁.
[例1]如图4-1所示,一质量m=2Kg 的铅球从离地面H=2m 高处自由下落,陷入沙坑h=2cm 深处,求沙子对铅球的平均阻力.(g 取10m/s 2) [解析]方法一:分段法列式
设小球自由下落到沙面时的速度为v,则mgH=mv 2/2-0 设铅球在沙坑中受到的阻力为F,则mgh-Fh=0- mv 2/2 代入数据,解得F=2020N 方法二:整段法列式
全过程重力做功mg(H+h),进入沙坑中阻力阻力做功-Fh, 从全过程来看动能变化为0,得 mg(H+h)-Fh=0,代入数值 得F=2020N.
[变式训练1]一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图4-2,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.
题型二:运用动能定理求解变力做功问题
解决这类问题需要注意:恒力做功可用功的定义式直接求解,变力做功可借助动能定理并利用其它的恒力做功进行间接求解.
[例2]如图4-3所示,AB 为1/4圆弧轨道,BC 为水平轨道, 圆弧的半径为R, BC 的长度也是R.一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( ) A.μmgR/2 B. mgR/2 C. mgR D.(1-μ) mgR
[解析]设物体在AB 段克服摩擦力所做的功为W AB ,物体由A 到C 全过程,由动能定理,有
mgR-W AB -μmgR=0 所以. W AB = mgR-μmgR=(1-μ) mgR 答案为D [变式训练2]质量为m 的小球用长为L 的轻绳悬于O 点,如右图4-4所示,小球在水平力F 作用下由最低点P 缓慢地移到Q 点,在此过程中F 做的功为( )
h H
图4-1 图4-2
A C
B
图4-3
A.FL sin θ
B.mgL cos θ
C.mgL (1-cos θ)
D.FL tan θ
题型三:动能定理与图象的结合问题
解决这类问题需要注意:挖掘图象信息,重点分析图象的坐标、切线斜率、包围面积的物理意义.
[例3]静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图4-5所示,图线为半圆.则小物块运动到x 0处时的动能为( ) A .0
B .
021x F m C .04x F m π D .2
04
x π [解析]由于水平面光滑,所以拉力F 即为合外力,F 随位移X 的变化图象包围的面积即为F 做的功, 设x 0处的动能为E K 由动能定理得: E K -0=
04
x F m π
=
208x π=2
2
m F π 答案:C [变式训练3]在平直公路上,汽车由静止开始作匀加速运 动,当速度达到v m 后立即关闭发动机直到停止,v-t 图像如图4-6所示。设汽车的牵引力为F ,摩擦力为f ,全过程中牵引力做功W 1,克服摩擦力做功W 2,则( ) A .F :f=1:3 B .F :f=4:1 C .W 1:W 2 =1:1 D .W 1:W 2=l :3
题型四:机械能守恒定律的灵活运用
解决这类问题需要注意:灵活运用机械能守恒定律的三种表达方式:1.初态机械能等于末态机械能,2.动能增加量等于势能减少量,3.一个物体机械能增加量等于另一个物体机械能减少量.后两种方法不需要选取零势能面.
[例4]如图4-7所示,粗细均匀的U 形管内装有总长为4L 的水。开始时阀门K 闭合,左右支管内水面高度差为L 。打开阀门K 后,左右水面刚好相平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计)
[解析]由于不考虑摩擦阻力,故整个水柱的机械能守恒。从初始状态到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管。系统的重力势能减少,动能增加。该过程中,整个水柱势能的减少量等效于高L /2的水柱降低L /2重力势能的减少。不妨设
图4-6
图4-7
K
F/
x/m
x 0
O
F
x
F
•
O
x 0
图4-4
图4-5
水柱总质量为8m ,则282
1
2v m L mg ⋅⋅=⋅
,得8
gL v =。 [变式训练4]如图4-8所示,游乐列车由许多节车厢组成。列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L >2πR ).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。试问:在没有任何动力的情况下,列车在水平轨道上应具有多
大初速度v 0,才能使列车通过圆形轨道而运动到右边的水平轨道上?
变式训练参考答案
[变式训练1]h/s [变式训练2]B [变式训练3]BC
[变式训练4]L
g
R v π20>