变压器在正常工作电压下的绝缘事故(2021新版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器在正常工作电压下的绝缘事故(2021新版)
Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.
( 安全管理 )
单位:______________________
姓名:______________________
日期:______________________
编号:AQ-SN-0905
变压器在正常工作电压下的绝缘事故
(2021新版)
1绝缘事故概述
1.1变压器的绝缘事故的分类
变压器的绝缘事故一般分为以下4类:①绕组绝缘事故。指主绝缘、匝绝缘、段间绝缘、引线绝缘以及端绝缘等放电、烧损引起的绝缘事故。②套管绝缘事故。指套管内部绝缘放电引起绝缘损坏,甚至瓷套爆炸。还包括套管外绝缘的沿面放电和空气间隙击穿。③分接开关绝缘事故。主要是指由于切换开关油室内油的绝缘强度严重下降,在切换分接时不能灭弧,引起有载分接开关烧毁。另外还有无励磁分接开关和有载分接开关裸露的导体之间放电,引起相间、相对地或级间短路的事故。④铁心绝缘事故。一是指铁心的硅钢片对地绝缘损坏,引起铁心多点接地。另一是指铁心的框架连接点间的
绝缘损坏,产生环流引起局部过热故障。
上述4类事故中,绕组绝缘事故的危害最大。
1.2变压器绝缘事故的根本原因
为分析变压器绝缘事故的根本原因,把作用在绝缘上的电场强度分为作用电场强度(简称作用场强)和耐受电场强度(简称耐受场强)。作用场强又可分为雷电冲击作用场强、操作冲击作用场强和工频作用场强。这三种类型作用场强绝缘成分不同,各自的耐受场强也不同。但其共同点是当作用场强大于耐受场强时,就会发生绝缘事故。按作用场强和耐受场强的抗衡关系可分为3种形势:①作用场强过高。例如110kV和220kV降压变压器的第三绕组(10kV或35kV绕组)在雷击时出现作用场强高于变压器本身的正常耐受场强,引起雷击损坏的绝缘事故。此类事故每年都有发生,约占总的绕组绝缘事故比率的百分之几。②作用场强过高加上耐受场强下降。例如变器在操作时绝缘损坏,解体检查发现绝缘有受潮现象。对油纸绝缘中的水分,操作冲击比雷电冲击敏感,所以此类事故不多,约占总的绕组绝缘事故的比率的千分之几。③耐受场强下降。例如变
压器正常运行中耐受场强下降,导致在正常工作电压下突然发生绝缘事故。这类绝缘事故频繁出现,占总的绕组绝缘事故的比率已超过90%。
1.3正常工作电压下绝缘事故的方式
正常工作电压下出现的绝缘事故有2种方式:①一种称作突发式事故,其特点是按现行的预防性规程进行的预防性试验合格,其他在线的监测也未发现事故的预兆。但在正常运行条件下,变压器内部突发绝缘击穿事故,继电保护动作跳闸。由于故障能量有大有小,或继电保护动作的时间有快有慢,因此变压器损坏的严重程度大不相同。②另一种称作垂危式故障。这种事故的特点是预防性试验的绝缘性能试验合格,但从油中溶解气体的色谱分析中发现乙炔。经分析确认与在绝缘部分存在放电有关。于是停电进行测量局部放电量的试验。试验结果表明放电状况异常,甚至在试验中就发生贯穿性击穿。将局放试验和其他试验结果进行综合分析,可以作出正确诊断,解体后可以找到绝缘发生不可逆损坏的故障点。
1.4正常工作电压下的绝缘事故实例
国内外变压器都存在各种绝缘事故。在此列举10个有结论的代表性事例:
①沿绝缘纸板树枝状放电,引起的主绝缘事故;②沿角环夹层放电,引起的主绝缘事故;③沿撑条爬电,引起的纵绝缘事故;④沿垫块表面爬电,引起段间绝缘事故;⑤垫块与导线间的油角放电,引起匝绝缘事故;⑥沿铜排导线支架爬电,引起的相间短路事故;
⑦匝绝缘直接击穿,引起匝绝缘或段间绝缘事故;⑧绕组出线纸包绝缘击穿,引起出线绝缘事故;⑨分接引线纸包绝缘击穿,引起分接引线绝缘事故;⑩套管的下瓷套沿面放电,引起瓷套崩裂事故。
仅就以上列举的事例可以看出,变压器的每种绝缘结构都曾经发生过绝缘事故,而且其中大多数是在正常工作电压下发生。
2正常工作电压下的绝缘事故的原因分析
2.1正常工作电压下发生绝缘事故时的绝缘实际耐受强度
变压器的绝缘配合使用惯用法。绝缘耐受场强与其实际承受场强的比值称为配合系数,或简称裕度。变压器在正常状态下绝缘的设计裕度是足够大的,例如匝绝缘在工作电压下的裕度大于10,但
事故时却再无裕度可言。举例说明如下:
(1)220kV变压器使用1.95mm匝绝缘,正常状态下的平均工频击穿电压为60kV,正常工作电压下加在匝绝缘上的电压小于4kV。但在正常工作电压下却频繁发生匝绝缘击穿事故。
(2)220kV变压器,感应试验电压为395kV,雷电冲击波为950kV,都能在留有潜在裕度的条件下顺利通过试验,在正常运行条件下,工作电压仅为127kV。但是有多台变压器正是在127kV电压下发生沿围屏树枝状爬电,发展成贯穿性击穿后形成主绝缘事故。
(3)某调压变压器在额定分接运行,调压绕组有电压却无电流,温度较低。在正常工作电压下调压绕组发生事故,事故点的油道(垫块厚度)为8mm,导线的匝绝缘为1.95mm。正常情况下工频1min平均击穿电压大于85kV,事故时垫块两侧的电压为5560V,沿垫块爬电,引起调压绕组发生级间绝缘事故。
类似例子不胜枚举,总之变压器在正常工作电压下发生绝缘事故,并非设计裕度不足,而是因为绝缘的耐受强度异乎寻常的降低。这在分析绝缘事故时,必须首先予以关注。
2.2正常工作电压下绝缘事故原因的几种说法
(1)制造缺陷说。绝缘事故的制造缺陷说,又分“尖角手刺”说、“金属异物”说、“颗粒含量”说以及“绝缘缺陷”说等。所有这些说法集中到一点是对放电机理有共识,即认为先发生局部放电,然后在正常工作电压下引起绝缘击穿事故。早先的老旧变压器,确实有过上述种种原因引起正常工作电压下的绝缘事故。但就大型电力变压器而言,这类变压器已运行20多年,有问题早应暴露。如果至今尚未暴露,说明实际上已不再存在这类缺陷。20世纪80年代起,220kV及以上电压等级的变压器都进行了局放试验。经验表明,局放试验对发现上述种种缺陷是特别有效的。因此对于出厂时局放试验合格的变压器,尤其是安装或检修后还进行过局放试验的变压器,一般不会存在正常工作电压下引起绝缘事故的制造缺陷。
(2)绝缘老化说。我国曾经有几台变压器,由于油道堵塞,匝绝缘局部过热,引起在正常工作电压下的匝绝缘事故。实际上这是局部过热事故。油中气体色谱分析对这类事故是能鉴定的。
值得注意的事实是我国的大型电力变压器都是全密封结构,运