电气电子设备的冲击耐受特性

电气电子设备的冲击耐受特性
电气电子设备的冲击耐受特性

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =

实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附 加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公 式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=a R R =a R pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=

电机特性曲线

? ? ? ? ? ? 电气控制与PLC网络教学资源当前位置: 电气控制与PLC网络教学资源> 学习情境> 项目一货物升降机的继电-接触器控制> 正 文 1.1.3三相异步电动机的工作特性 作者: Admin | 来源:| 点击: 517 | 发布时间: 2007-10-07 异步电动机的转矩特性动画演示 一、三相异步电动机的转矩特性 异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。 式中U1——定子绕组相电压有效值,单位是伏特(V); f1——定子电源频率,单位是赫兹(Hz); s——电动机的转差率;

R2——转子绕组一相电阻,单位是欧姆(Ω); X20——转子不动时一相感抗,单位是欧姆(Ω); C——与电机结构有关的比例常数。 为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2 由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。 图1-13异步电动机的转矩特性曲线

二、异步电动机的机械特性 1.电动机的额定转矩的实用计算式 旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有 P2=T2Ω(1-4) 当电动机的输出转矩T2用牛·米(N·m)作单位,旋转角速度Ω用弧度/秒(rad/s)作单位时,输出功率P2的单位是瓦特。 在电动机中计算转矩时输出功率P2的单位是千瓦(kW),转速n的单位是转/分(r/min),所以可以将计算公式简化,如在额定状态下转矩公式为 式中T N——电动机的额定转矩,单位是牛·米(N·m); P N——电动机的额定功率,单位是千瓦(kW); n N——电动机的额定转速,单位是转/分(r/min).

电气化铁道供电系统复习题及答案

《电气化铁道供电系统》复习题及答案-(电气学院吴命利) 1、用一句话来描述电气化铁路牵引负荷的特点 答:波动剧烈的大功率单相不平衡非线性负荷。 2、交直交动车组同传动交直传动电力机车相比电气负荷有何特点 答:(1)负荷功率大; (2)功率因数高; (3)谐波含量低; (4)能全功率范围再生制动。 3、干线铁路有哪几种供电制式 (1)直流制(DC3kV,DC1500V);(2)低频单相交流制(15kV,);(3)工频单相交流制(50/60Hz,25kV) 4、我国干线电气化铁路采用何种制式 25kV工频(50Hz)单相交流制 5、电气化铁道从可靠性要求看是电力系统的几级负荷 一级负荷 6、电气化铁道从供电系统角度如何保证供电可靠性 (1)牵引变电所采用两回独立进线;(2)牵引变电所采用2台主变压器,固定备用;(3)分区所可以实现越区供电。 7、交流牵引网有哪几种供电方式 (1)直接供电方式;(2)带回流线的直接供电方式;(3)吸流变压器供电方式;(4)自耦变压器供电方式;(5)同轴电缆供电方式 8、高铁牵引网采用何种供电方式它有何好处 答:全并联AT供电方式。 牵引网阻抗低,输送功率大,供电臂距离长,能有效降低对外界电磁干扰。 9、牵引网额定电压是多少正常工作范围是多少 25kV,20~。 10、我国高铁牵引变电所间距是多少 50~60km。 11、我国高铁牵引变电所进线电压等级是多少

多为220kV,郑西客专有2个所采用330kV。 12、我国高铁主要采用哪种接线的牵引变压器 答:单相(单相三绕组)接线和单相组合式V/X接线。 13、牵引变电所二次设备额定电压为什么比牵引网额定电压高10% 答:变压器二次侧额定电压是空载时的电压,之所以高10%是为了保证在有负荷电流时,抵消阻抗产生的电压损失,使列车能获得接近额定值的平均电压。 14、变电所防雷设备有哪些 答:避雷器,避雷针,抗雷圈 15、变电所如何补偿机车的无功功率 答:在牵引母线上安装并联补偿电容器组。 16、并联补偿电容支路为何要串联一定电感值的电抗器 答:(1)抑制合闸冲击;(2)防止谐波放大。 17、高铁接触悬挂有哪几种型式 答:(1)简单链型悬挂;(2)弹性链型悬挂;(3)复链型悬挂。 18、我国高铁主要采用何种接触网选挂型式 答:弹性链型悬挂。 19、接触线补偿下锚的目的何在 答:给接触线施加恒定张力,自动补偿线索的热胀冷缩,保持接触线弹性均匀。 20、我国高铁接触线采用何种型号张力施加多大 答:CuMg150,27kN。 21、我国新建高速铁路在车网电气匹配方面出现了哪些新问题如何有效解决 答:(1)车网高次谐波谐振; (2)车网电压振荡、牵引封锁。 改进机车车辆的控制,改善其电气负荷特性,地面采取适当抑制措施。 22、目前有哪几种自动过分相技术。 答:(1)车载断电自动过分相; (2)柱上开关自动过分相; (3)地面自动过分相。

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论 (一)气体电介质的击穿过程 气体放电可以分非自持放电和自持放电两种。20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。 1、汤逊放电理论的适用范围: 汤逊理论的核心是: (1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离; (2)自持放电是气体间隙击穿的必要条件。 汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。在高气压、长气隙中的放电现象 无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面: (1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。 低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。但在大气压下气体击穿时出现的却是带有分支的明亮细通道。 (2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。完成击穿需要一定的时间。但实测到的在大气压下气体的放电时间要短得多。 (3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。 (4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。

由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。 2、流注理论 利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。 (1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。 因此流注出现后,将减弱其周围空间内的电场,加强了流注前方的电场,并且这一作用伴随着其向前发展而更为增强。因而电子崩形成流注后,当某个流注由于偶然原因发展更快时,它就将抑制其它流注的形成和发展,这种作用随着流注向; 前推进将越来越强,开始时流注很短可能有三个,随后减为两个,最后只剩下一个流注贯通整个间隙了,所以放电是具有通道形式的。 (2) 放电时间 根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小的多。 (3) 阴极材料的影响 根据流注理论,大气条件下气体放电的发展不是依靠芷离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。 在Pd值较小的情况下,起始电子不可能在穿越极间距离后完成足够多的碰撞电离次数,因而难 e≥108所要求的电子数,这样就不可能出现流注,放电的自持只能依靠阴极上的 过程。以聚积到ad 因此汤逊理论和流注理论适用于一定条件下的放电过程,不能用一种理论来取代另一种理论,它们互相补充,可以说明广阔的Pd范围内的放电现象。 ‘ 3、不均匀电场中气体的击穿 稍不均匀电场中放电达到自持条件时发生击穿现象,此时气隙中平均电场强度比均匀电场气隙的要小,因此在同样极间距离时稍不均匀场气隙的击穿电压比均匀气隙的要低,在极不均匀场气隙中自持放电条件即是电晕起始条件,由发生电晕至击穿的过程还必须增高电压才能完成。 极不均匀电场有如下特征: (1) 极不均匀电场的击穿电压比均匀电场低;

电力机车负荷特性研究

电力机车负荷特性研究 发表时间:2018-04-13T16:43:39.307Z 来源:《电力设备》2017年第31期作者:王书征[导读] 摘要:为掌握电气化铁路供电电能质量情况,本文对电力机车运行中产生的谐波给电网带来的影响进行了分析。 (南京工程学院电力工程学院江苏省南京市 211167)摘要:为掌握电气化铁路供电电能质量情况,本文对电力机车运行中产生的谐波给电网带来的影响进行了分析。根据电气化铁路牵引供电系统的工作原理,利用PSCAD/EMTDC建立了电气化铁路外部供电电源、牵引变压器、牵引网和电力机车的仿真模型,并得到与实测数据基本相符的仿真结果,仿真和实测结果表明,电气化铁路牵引供电系统含有大量的谐波和负序分量,劣化了电网电能质量,应引起高 度重视并积极解决。 关键词:电力机车;牵引供电系统;电能质量;PSCAD/EMTDC 1 引言 由于电力机车采用单相整流供电方式,机车运行时从电网吸收工频功率的同时,向电网注入谐波和负序电流。随着列车速度的提高,列车取用功率成倍增加,使得电气化铁路对电网的影响日益突出[1-3]。 电力机车运行时对电网的具体影响包括:a.电能质量下降;b.负序分量使发电机中产生负序同步转矩,导致附加震动;使电动机中产生制动转矩,影响出力;增加变压器能量损耗和铁芯磁路的发热。c.增加系统功率损耗,干扰通讯设备的正常运行;d.造成继电保护装置的负序参量启动元件频繁启动,也可能造成相差高频保护和发电机负序电流保护故障[5-6];e.谐波可能引起电感、电容谐振,并放大共振,威胁电网安全。 电气化铁路存在的这些电能质量问题与电力机车的负荷特性密切相关,本文利用电磁暂态仿真软件PSCAD/EMTDC建立了包括外部供电电源、牵引变压器、牵引网和电力机车在内的牵引供电系统的仿真模型。并结合电气化铁路现场实测数据,对牵引供电系统的电能质量问题进行了仿真研究,得到与实测数据基本相符的仿真结果,掌握了目前电网和用户负荷受电气化铁路影响的基本状况,为采取有效的电能质量治理措施提供依据。 2 牵引供电系统仿真模型的建立 机车牵引供电系统是由外部电源、牵引变电所、牵引网和电力机车等组成的,其结构如图1所示。因此,只有建立起电力机车,牵引网和牵引变压器的模型,才能真正的研究清楚电气化铁路的电能质量问题及其对电力系统的影响。下面对电气化铁路牵引供电系统的各组成部分分别进行建模。

高电压工程答案(清华大学版)

高电压工程课后答案 1.1空气作为绝缘的优缺点如何? 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 1.2为什么碰撞电离主要是由电子而不是离子引起? 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 1.5负离子怎样形成,对气体放电有何作用? 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 1.7非自持放电和自持放电主要差别是什么? 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 1.13电晕会产生哪些效应,工程上常用哪些防晕措施? 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 1.14比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点? 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 2.1雷电放电可分为那几个主要阶段? 答:主要分为先导放电过程,主放电过程,余光放电过程。 2.4气隙常见伏秒特性是怎样制定的?如何应用伏秒特性? 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 2.7为什么高真空和高压力都能提高间隙的击穿电压?简述各自运用的局限性? 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显著提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 2.8什么是细线效应?

电动机的机械特性教案

第一章电力拖动系统的动力学基础 【引入】用电动机作原动机的拖动方式,称为电力拖动。现代化矿井使用着大量的生产机械,几乎全部是采用电力拖动的。 第一节机械特性 一、电力拖动装置的组成 通常,一套电力拖动装置由工作机构(生产机械)、电动机、传动机构和控制设备四部分组成。如图1.1.1所示。 图 1.1.1电力拖动系统示意图 1、工作机构 工作机构是生产机械执行工作的机械部分,如提升机的卷筒、钢丝绳及提升容器,采煤机的滚筒与截齿等。电力拖动过程中,负荷的变化往往来自工作机构。 2、电动机 电动机是电力拖动装置的原动机,它的作用是把电源提供的电能转变为机械能用以拖动生产机械运转。 电动机分交流电动机和直流电动机两大类。 3、传动机构 大多数情况下,电动机与工作机构并不直接连接,而是中间还有一套传动机构用来变速或改变运行方式,如联轴器、皮带、链条及减速器等。 4、控制设备 控制设备是控制电动机运转的设备,由各种控制电器和控制电机组成,用以控制电动机的起动、调速、制动和反转等。

除了上述四部分外,还有电源装置,如各种开关柜,上面配有继电保护装置和指示仪表,用以向电动机和控制设备供电。 二、拖动系统的类型 单轴系统:电动机的转轴直接与工作机构的转轴相连接的拖动系统; 多轴系统:电动机和工作机构之间通过若干传动机构相连接的拖动系统。 1、电动运行状态(第一三象限) 其特点是电动机转矩M的方向与 旋转方向(转速n的方向)相同,M为拖 动转矩。电动机从电网取得电能并变为 机械能带动负载运转。 2、制动运转状态(第二四象限) 电动机的转矩M与转速的方向相反,M为制动转矩。此时生产机械带动电动机旋转,电动机吸收机械能并变成电能送回电网或消耗在电阻上。关于制动运转状态的分析将在后面有关章节中讨论。 三、机械特性 1、生产机械的负载特性 生产机械在运转中受到阻转矩的作用。此转矩叫负载转矩M?L反映到电动机轴上即为M L。生产机械的负载特性指其转速n L与负载转矩M L'的关系反映到电动机轴上便是 n=?(M L) 大多数生产机械的负载特性可归纳为以下三种类型: 1) 恒转矩特性 恒转矩特性的特点是负载转矩与转速无关,如图1.1.3所示。矿井提升机、带式输送机等机械具有这种特性。

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

固体电介质的电起性能

固体电介质的电气性能 一、电介质:能在其中持久建立静电场的物质。 二、分类:非极性及弱极性电介质、偶极性电介质和离子性电介质。 三、电介质的极化:电子位移化、离子位移化、转向极化、夹层介质界面极化和空间电荷极化。 四、固体介电常数:非极性及弱极性固体电介质(介点常数:2.0~2.7)、偶极性固体电介质(介点常数: 3~6)、离子性电介质(介点常数:5~8)。 五、固体电介质的电导 体积电导 微观上是由电介质或杂质的离子造成电导,宏观上由于纤维材料或多孔性材料易吸水,电阻率较低。 表面电导 干燥清洁的固体介质的表面电导很小,主要是由表面吸附的水分和污物引起的,介质吸附水分的能力与自身结构有关,是介质本身固有的性质。 固体介质可按水滴在介质表面的浸润情况分为憎水性和亲水性两大类,如下图1所示。如果水滴 的内聚力大于水和介质表面的亲和力,则表现为水滴的接触角大于90。, 即该固体材料为憎水性材料。憎水性材料的表面电导小,表面电导受环境湿度的影响较小。非极性和弱极性介质材料如石蜡、硅橡胶、硅树脂等都属于憎水性材料。如果水滴的内聚力小于水和介质表面的亲和力,则表现为水滴的接触角小于90。,即该固体材料为亲水性材料。亲水性材料的表面电导大,且表面电导受环境湿度的影响大,偶极性和离子性介质材料都属于亲水性材料。 采取使介质表面洁净、干燥或涂敷石蜡、有机硅、绝缘漆等措施,可以降低介质表面电导。 图 1 六、电介质的能量损耗 在交流电压作用下介质的能量损耗除漏导损失,还有极化损失。 图2为介质在交流电压作用下,流过介质的电流U 和I 间的向量图。 由于存在损耗,U 和I 之间的夹角不再是90度,Ic 代表流过介质总 的无功电流,Ir 代表流过介质总的有功电流,Ir 包括了漏导损失和 极化损失。从直观上看,若Ir 大,则损失大,因此用介质损失角正 切值tan δ代表在交流电压下的损耗。

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 也越大,特性变“软”,这类人为机械特性是一组通过 n 0 ,但具有不同斜率的直线。 如下图所示 (2) 改变电枢电压时的人为机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=0=pa R N ΦΦ=

三相异步电动机的机械特性

三相异步电动机的机械特 性 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。 固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 ()

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 () 式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式()表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式()不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功

率因数与转差率之间的关系,间接地找出其变化规律。现分析如表所示。 根据表中的分析,可作出曲线、和分别如图、、所示,据此可得出图所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩 与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一 半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 机械特性的参数表达式 1.参数表达式的推导:

电气性能检测法

电气性能检测 一般衡量电气性能的指标有以下几个方面: 介电强度,在连续升高的电压下电极间试样被击穿时电压与试样厚度之比,单位KV/mm(2) 介电常数,以塑料为介质时的电容与以真空为介质的电容之比 介电损耗,表征该绝缘材料在交流电场下能量损耗的一个参量,是外施电压与通过试样的电流之间的余角正切。 体积电阻系数和表面电阻系数 耐电弧性,表示塑料对电弧,电火花的抵抗能力,塑料的耐电弧性常以烧焦的时间(s)表示 塑料材料、橡胶材料、涂料涂层、绝缘漆、建筑材料、金属材料、电线电缆、电子电器、陶瓷材料等。 GB 11297.11-1989热释电材料介电常数的测试方法 GB 11310-1989 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 2951.51-2008 电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直流电阻率 GB/T 5597-1999 固体电介质微波复介电常数的测试方法 GB/T 7265.1-1987 固体电介质微波复介电常数的测试方法微扰法 GB 7265.2-1987 固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T 10142-1991 电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T 10143-1991 固体电介质微波复介电常数测试方法重入腔法 SJ/T 11043-1996 电子玻璃高频介质损耗和介电常数的测试方法 SJ/T 1147-1993 电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ 20512-1995 微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T 6528-2002 岩样介电常数测量方法 GB/T 3333-1999 电缆纸工频击穿电压试验方法 GB/T 3789.17-1991发射管电性能测试方法电气强度的测试方法 GB/T 507-2002 绝缘油击穿电压测定法 GB 7752-1987 绝缘胶粘带工频击穿强度试验方法 SH/T 0101-1991 石油蜡和石油脂介电强度测定法 GB/T 1424-1996 贵金属及其合金材料电阻系数测试方法 GB/T 351-1995 金属材料电阻系数测量方法 HG/T 3331-1978 绝缘漆漆膜体积电阻系数和表面电阻系数测定法(原HG/T 2-59-78) HG 3332-1978 绝缘漆耐电弧性测定法 HG/T 3332-1980 耐电弧漆耐电弧性测定法

直流并励电动机的机械特性和调速

实验一直流并励电动机的机械特性和调速 一、实验目的 1、掌握用实验方法测取直流并励电动机的机械特性。 2、掌握直流并励电动机的调速方法。 二、预习要点 1、什么是直流电动机的机械特性? 2、直流电动机调速原理是什么? 三、实验项目 1、机械特性 保持U=U N和I f=I fN不变,测取n、T2,得到n=f(T2) 2、调速特性 (1)改变电枢电压调速 保持U=U N、I f=I fN=常数,T2=常数,测取n=f(U a) (2)改变励磁电流调速 保持U=U N,T2=常数,测取n=f(I f) 四、实验方法 1、实验设备

2、屏上挂件排列顺序 D31、D42、D51、D31、D44 3、并励电动机的机械特性 1)按图1-1接线。校正直流测功机MG按他励发电机连接,在此作为直流电动机M的负载,用于测量电动机的转矩和输出功率。R f1选用D44的1800Ω阻值。R f2选用D42的900Ω串联900Ω共1800Ω阻值。R1用D44的180Ω阻值。R2选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。

图1-1 直流并励电动机接线图 2)将直流并励电动机M的磁场调节电阻R f1调至最小值,电枢串联起动电阻R1调至最大值,接通控制屏下边右方的电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 3)M起动正常后,将其电枢串联电阻R1调至零,调节电枢电源的电压为220V,调节校正直流测功机的励磁电流I f2为校正值(100 mA),再调节其负载电阻R2和电动机的磁场调节电阻R f1,使电动机达到额定值: U=U N,I=I N,n=n N。此时M的励磁电流I f即为额定励磁电流I fN。 4)保持U=U N,I f=I fN,I f2为校正值不变的条件下,逐次减小电动机负载。测取电动机电枢输入电流 I,转速n和校正电机的负载电流I F(由校正曲线查 a 出电动机输出对应转矩T2)。共取数据9-10组,记录于表1-1中。 表1-1 U=U N=V I f=I fN= mA I f2= mA

三相异步电动机的机械特性

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式.固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5。1三相异步电动机的运行特性三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速、转差率存在下列关系,即 (5。1)则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩. 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式

由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5。2)式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功率因数与转差率之间的关系,间接地找出其变化规律.现分析如表5。1所示。

根据表5。1中的分析,可作出曲线、和 分别如图5。2、5.3、5。4所示,据此可得出图5。1所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时(),如, 减少近一半, 很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为 段,段为曲线段,称为曲线部分.由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 5。1.2机械特性的参数表达式 1.参数表达式的推导: 三相异步电动机的机械特性的参数表达式就是直接表示异步电动机 的电磁转矩与转差率和电机的某些参数(及阻抗等)之间的关系的数学表达式。现推导如下:

高电压工程答案(清华大学版)

高电压工程课后答案 空气作为绝缘的优缺点如何 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 为什么碰撞电离主要是由电子而不是离子引起 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 负离子怎样形成,对气体放电有何作用 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 非自持放电和自持放电主要差别是什么 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 电晕会产生哪些效应,工程上常用哪些防晕措施 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 雷电放电可分为那几个主要阶段 答:主要分为先导放电过程,主放电过程,余光放电过程。 气隙常见伏秒特性是怎样制定的如何应用伏秒特性 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 为什么高真空和高压力都能提高间隙的击穿电压简述各自运用的局限性 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显着提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 什么是细线效应 答;当导线直径很小时,导线周围容易形成比较均匀的电晕层,电压增加,电晕层逐渐扩大,

相关文档
最新文档