单相全控桥式晶闸管整流电路的设计(阻感性负载)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘要 (1)
1 前言 (1)
2 系统方案及主电路设计 (2)
2.1 方案选择 (2)
2.2 系统流程框图 (4)
2.3 主电路的设计 (4)
2.3.1 整流电路及波形图 (4)
2.3.2 工作原理 (5)
2.3.3 整流电路的参数计算 (6)
2.4 晶闸管元件的选择 (7)
2.5 性能指标分析 (9)
3 触发电路的设计 (9)
4 保护电路的设计 (10)
4.1 保护电路的论证与选择 (11)
4.2 过流保护 (11)
4.3 过压保护................................... 错误!未定义书签。心得体会.. (16)
参考文献 (17)
致谢 (18)
单相全控桥式晶闸管整流电路的设计
摘要:整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。正是因为整流电路有着如此广泛的应用,因此整流电路的研究无论在是从经济角度,还是从科学研究角度上来讲都是很有价值的。
关键词:整流电路变压全控晶闸管
1前言
在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、飞机、船舶、电梯等交通运输工具中也广泛采用整流电力电子技术;各种电子装置如通信设备中的程控交换机所用的直流电源、大型计算机所需的工作电源、微型计算机内部的电源都可以利用整流电路构成的直流电源供电,可以说有电源的地方就有电力电子技术的设备。
整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
2 系统方案及主电路设计
2.1 方案选择
我们知道,单相整流电路形式是各种各样的,可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也是比较多的。因此在做设计之前我们主要考虑了以下几种方案:
方案一:单相桥式半控整流电路
电路简图如下:
图1 单相桥式半控整流电路
对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使d U 成为正弦半波,即半周期d U 为正弦,另外半周期为d U 为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。所以必须加续流二极管,以免发生失控现象。
方案二:单相桥式全控整流电路
电路简图如下:
图 2单相桥式全控整流电路
此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
方案三:单相半波可控整流电路:
电路简图如下:
图 3 单相半波可控整流电路
此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 0。但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。实际上很少应用此种电路。
方案四:单相全波可控整流电路:
电路简图如下:
图 4 单相全波可控整流电路
此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两
个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。
综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路。
2.2 系统流程框图
根据方案选择与设计任务要求,画出系统电路的流程框图如图5所示。整流电路主要由驱动电路、保护电路和整流主电路组成。根据设计任务,在此设计中采用单相桥式全控整流电路带阻感性负载。
图 5 系统流程框图
2.3 主电路的设计
2.3.1 整流电路及波形图
图 6 单相桥式全控整流电路图(阻感负载)
输入 过电流保护 整流主电路 过电压保护
驱动触发电路
输出