太阳能电池特性研究

合集下载

太阳能电池特性测试实验报告-资料类

太阳能电池特性测试实验报告-资料类

太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的2、实验设备与材料3、实验原理4、实验步骤5、数据记录与处理6、实验结果与分析7、误差分析8、结论与展望1、实验目的11 了解太阳能电池的工作原理和基本特性。

111 掌握太阳能电池的输出特性和效率的测量方法。

112 研究光照强度、负载电阻等因素对太阳能电池性能的影响。

2、实验设备与材料21 太阳能电池板211 光源模拟器212 数字万用表213 可变电阻箱214 数据采集卡及计算机3、实验原理31 太阳能电池的工作原理基于光伏效应,当光照射到半导体材料上时,光子能量被吸收,产生电子空穴对。

在内建电场的作用下,电子和空穴分别向两端移动,形成光生电动势。

311 太阳能电池的输出特性包括短路电流(Isc)、开路电压(Voc)、最大输出功率(Pm)等。

312 太阳能电池的效率(η)定义为输出电功率与入射光功率之比。

4、实验步骤41 连接实验设备,将太阳能电池板与光源模拟器、数字万用表、可变电阻箱等连接好。

411 调节光源模拟器的光照强度,设置不同的光照条件。

412 改变可变电阻箱的电阻值,测量太阳能电池在不同负载电阻下的输出电压(V)和输出电流(I)。

413 记录数据,包括光照强度、负载电阻、输出电压和输出电流等。

5、数据记录与处理51 将测量得到的数据整理成表格形式,包括光照强度、负载电阻、输出电压、输出电流等。

511 计算太阳能电池的短路电流(Isc)、开路电压(Voc)和最大输出功率(Pm)。

512 根据公式计算太阳能电池的效率(η)。

6、实验结果与分析61 绘制太阳能电池的输出特性曲线,包括输出电压输出电流曲线(VI 曲线)和输出功率输出电压曲线(PV 曲线)。

611 分析光照强度对太阳能电池输出特性的影响,随着光照强度的增加,短路电流和开路电压均增大。

612 研究负载电阻对太阳能电池输出功率的影响,存在一个最佳负载电阻,使得输出功率达到最大值。

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告太阳能电池特性及应用实验报告引言:太阳能电池是一种将太阳能转化为电能的装置,它在可再生能源领域具有重要的应用前景。

本实验旨在研究太阳能电池的特性,并探索其在实际应用中的潜力。

一、太阳能电池的基本原理太阳能电池是利用光电效应将太阳能转化为电能的装置。

光电效应是指当光照射到半导体材料上时,光子的能量会激发电子跃迁,从而产生电流。

太阳能电池通常由p-n结构的半导体材料构成,其中p型半导体富含正电荷,n型半导体富含负电荷。

当光照射到p-n结构上时,光子的能量会激发p-n结附近的电子,使其跃迁到导带中,形成电流。

二、太阳能电池的特性参数太阳能电池的性能主要由以下几个参数来描述:1. 开路电压(Open Circuit Voltage,简称OCV):在没有外部负载的情况下,太阳能电池正极和负极之间的电压。

OCV主要取决于半导体材料的能带结构和光照强度,通常在0.5V至1V之间。

2. 短路电流(Short Circuit Current,简称SCC):在外部负载为零时,太阳能电池正极和负极之间的电流。

SCC主要取决于光照强度和半导体材料的光电转换效率,通常在1mA至10mA之间。

3. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池输出功率与最大输出功率的比值,反映了太阳能电池的电流-电压特性曲线的平坦程度。

填充因子越接近1,表示太阳能电池的性能越好。

4. 转换效率(Conversion Efficiency):转换效率是指太阳能电池将太阳能转化为电能的比例,通常以百分比表示。

转换效率越高,表示太阳能电池的能量利用效率越高。

三、太阳能电池的应用实验为了进一步了解太阳能电池的特性和应用潜力,我们进行了一系列实验。

1. 光照强度对太阳能电池性能的影响实验:我们在实验室中设置了不同光照强度的环境,通过改变光源的距离和光源的亮度来调节光照强度。

实验结果表明,随着光照强度的增加,太阳能电池的输出电流和功率也随之增加,但是开路电压基本保持不变。

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告太阳能电池特性研究实验报告引言:太阳能作为一种清洁、可再生的能源,近年来备受关注。

太阳能电池作为太阳能利用的核心技术之一,其特性研究对于提高太阳能利用效率具有重要意义。

本实验旨在探究太阳能电池的特性及其对环境因素的响应。

一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、填充因子和转换效率,并探究环境因素对太阳能电池特性的影响。

二、实验原理太阳能电池是利用光生电压效应将太阳能转化为电能的装置。

在太阳能电池中,光线照射到半导体材料上,激发出电子-空穴对,形成光生电流。

通过将正负极连接外部电路,可以将光生电流转化为电能。

三、实验步骤1. 准备实验所需材料和设备,包括太阳能电池、光源、电压表、电流表和电阻箱等。

2. 将太阳能电池置于光源下方,调整光源的强度,使得太阳能电池表面接收到均匀的光照。

3. 使用电压表和电流表分别测量太阳能电池的开路电压和短路电流。

4. 调整电阻箱的阻值,改变电路中的负载,记录太阳能电池的输出电压和输出电流。

5. 根据实验数据计算太阳能电池的填充因子和转换效率。

通过实验测量,得到了太阳能电池在不同光照强度下的开路电压和短路电流。

随着光照强度的增加,太阳能电池的开路电压呈现出先增大后减小的趋势,而短路电流则随光照强度的增加而增加。

这是因为在光照较弱时,太阳能电池中的载流子复合速率较慢,导致开路电压较低。

随着光照强度的增加,载流子的生成速率增加,导致短路电流增加。

然而,当光照强度过高时,太阳能电池中的电子-空穴对的生成速率达到饱和,载流子复合速率也增加,导致开路电压下降。

填充因子是太阳能电池特性的重要参数之一,它反映了太阳能电池的电流输出能力。

通过实验测量的数据,可以计算出太阳能电池的填充因子。

填充因子的大小受到太阳能电池的内部电阻和光照强度的影响。

当太阳能电池的内部电阻较小时,填充因子较大;而当光照强度较小时,填充因子较小。

转换效率是衡量太阳能电池性能的指标之一,它反映了太阳能电池将太阳能转化为电能的能力。

探究太阳能电池的输出特性

探究太阳能电池的输出特性

探究太阳能电池的输出特性一、引言能源危机与环境污染是人类正面临的重大挑战,开发新能源和可再生清洁能源是21世纪最具决定影响的技术领域之一。

太阳能是一种取之不尽、用之不竭的可再生清洁能源,对太阳能电池的研究与开发也变得日益重要。

二、实验目的1、在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。

2、测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路电流I SC 、开路电压U OC 、最大输出功率Pm及填充因子FF ,[FF=Pm/(I SC *U OC )]。

三、实验原理1、太阳能电池工作原理:太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为:(1)式中,o I 和β是常数。

)1e(I I Uo -∙=β (1)由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。

C E 为半导体导电带,V E 为半导体价电带。

当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。

电子和空穴对会分别受到二极管之内电场的影响而产生光电流。

图1 电子和空穴在电场的作用下产生光电流假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。

图2 太阳能电池的理论模型电路图图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。

由基尔霍夫定律得:0R )I I I (U IR sh d ph s =---+(2)(2)式中,I 为太阳能电池的输出电流,U 为输出电压。

由(1)式可得, d shph sh s I R UI )R R 1(I --=+(3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。

太阳能电池特性实验仪实验报告(综合)

太阳能电池特性实验仪实验报告(综合)

太阳能电池特性研究实验数据记录报告
表1 三种太阳能电池的暗伏安特性测量
以电压作横坐标,电流作纵坐标,根据表1画出三种太阳能电池的伏安特性曲线。

实验结论:
表2 三种太阳能电池开路电压与短路电流随光强变化关系
根据表2数据,画出三种太阳能电池的短路电流随光强变化的关系曲线。

实验结论:
指导教师:(签字)
2014年月日
表3 三种太阳能电池输出特性实验 D=20cm 光强I= W/m2S=2.5×10-3m2Pin=I×S= mW
根据表3数据作3种太阳能电池的输出伏安特性曲线及功率曲线。

找出最大功率点,对应的电阻值即为最佳匹配负载。

根据表3数据和图4可以得出三种太阳能电池的最佳匹配负载分别为:
单晶硅:Ω,多晶硅:Ω,非晶硅:Ω
根据表3中数据计算三种太阳能电池的填充因子:
表4 三种太阳能电池的填充因子
计算转换效率:
表5 三种太阳能电池的转换效率表
实验结论:。

指导教师:(签字) 2014年月日。

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量摘要:本实验旨在通过特性测量方法研究太阳能电池的工作机理和特性参数,并验证太阳能电池的光伏效应。

在实验中,使用太阳能电池组分别测量其短路电流、开路电压、最大功率输出和填充因子等参数,并绘制出其伏安特性曲线和功率曲线。

实验结果表明,太阳能电池的输出电流、输出电压和输出功率都随光照强度的增加而增加,但是衰减左右场景不同,衰减较快的为室外光照强度较强场景。

太阳能电池的最大功率输出点需根据不同光照强度下自行求解,而填充因子对太阳能电池的输出功率有显著影响。

关键词:太阳能电池;特性测量;伏安特性曲线;功率曲线;光伏效应;填充因子 1. 实验原理太阳能电池是一种将光能直接转换为电能的装置,其工作原理是基于光伏效应。

当光照射在半导体材料上时,会在材料内部产生电子-空穴对,即通过光照,半导体材料内的电子从价带跃升到导带,留下空穴。

由于这些电子和空穴在电场作用下会分别向相反的电极移动,因此在同一方向引出电流,形成光生电动势。

太阳能电池的主要参数包括短路电流$I_{sc}$、开路电压$V_{oc}$、最大功率输出$P_{max}$和填充因子$FF$。

短路电流是在电池组端口短路状态下的输出电流,而开路电压是在电池组端口开路状态下的电压。

最大功率输出是在负载电阻为某一特定值时,电池组所输出的最大功率。

填充因子是指在最大功率输出条件下,电池组实际输出功率与在同等照射强度下能产生的最大功率之比,即$FF=P_{max}/(V_{oc}\times I_{sc})$。

2. 实验方法(1)测量太阳能电池的短路电流$I_{sc}$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,记录短路电流的数值。

此时,太阳能电池组端口暂时不接任何负载电阻。

(图1)(3)测量太阳能电池的最大功率输出$P_{max}$和填充因子$FF$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,依次接入不同大小的负载电阻,并记录每种电阻下的电池组输出电压和输出电流的数值,计算输出功率。

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告太阳能电池伏安特性研究实验报告一、引言太阳能电池是一种将太阳能转换为电能的装置,其工作原理基于光电效应。

随着全球对可再生能源的需求不断增加,太阳能电池作为一种环保、可再生的能源技术备受关注。

本实验旨在研究太阳能电池的伏安特性,以了解其工作原理和性能。

二、实验方法1. 实验仪器和材料本实验使用的仪器和材料包括太阳能电池板、直流电源、电压表、电流表和电阻箱等。

2. 实验步骤(1)将太阳能电池板与直流电源连接,调节电压为一定值。

(2)通过电压表和电流表测量太阳能电池板的电压和电流。

(3)改变直流电源的电压,重复步骤(2),记录数据。

(4)根据测量的电压和电流数据绘制伏安特性曲线。

三、实验结果与讨论通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从伏安特性曲线中可以观察到以下几点:1. 开路电压(Voc):在伏安特性曲线上,当电流为零时对应的电压即为开路电压。

实验结果显示,太阳能电池板的开路电压约为0.6V。

2. 短路电流(Isc):在伏安特性曲线上,当电压为零时对应的电流即为短路电流。

实验结果显示,太阳能电池板的短路电流约为3A。

3. 峰值功率点:伏安特性曲线上的峰值功率点是太阳能电池的最佳工作点,对应的电压和电流分别为Vm和Im。

实验结果显示,太阳能电池板的峰值功率点约为2W。

通过对伏安特性曲线的分析,可以得出以下结论:1. 太阳能电池板的输出功率与其电压和电流的乘积有关,即P = V * I。

为了获得最大的输出功率,需要在峰值功率点(Vm,Im)工作。

2. 开路电压和短路电流是太阳能电池板的基本特性参数,可以用来评估其性能。

3. 太阳能电池板的伏安特性曲线可以用来描述其输出功率随电压和电流变化的关系,为优化太阳能电池的设计和使用提供了依据。

四、结论本实验通过测量太阳能电池板的伏安特性曲线,研究了其基本特性和工作原理。

实验结果显示,太阳能电池板的开路电压约为0.6V,短路电流约为3A,峰值功率点约为2W。

太阳能电池特性实验报告

太阳能电池特性实验报告

太阳能电池特性实验报告太阳能电池特性实验报告引言:太阳能电池是一种利用太阳能将光能转化为电能的装置,具有环保、可再生等特点,被广泛应用于各个领域。

为了深入了解太阳能电池的特性和性能,我们进行了一系列的实验,本报告将对实验过程和结果进行详细介绍和分析。

实验一:太阳能电池的光电流特性在本实验中,我们使用了一台太阳能电池测试仪,通过调节光照强度和测量电流、电压的变化,来研究太阳能电池的光电流特性。

实验结果显示,当光照强度逐渐增大时,太阳能电池的电流也随之增大。

这是因为光照强度的增加会激发更多的光子进入太阳能电池,从而产生更多的电子-空穴对,进而增加电流。

然而,当光照强度达到一定值后,电流的增加趋势开始趋于平缓,这是因为太阳能电池的内部电场已经饱和,无法再继续增加电流。

此外,我们还发现太阳能电池的电流与电压呈反比关系。

随着光照强度的增加,电流增大,但电压却逐渐降低。

这是因为太阳能电池的内部电阻会导致电压损失,而随着电流的增大,这种损失也会变得更加明显。

实验二:太阳能电池的温度特性在本实验中,我们通过改变太阳能电池的温度,来研究太阳能电池的温度特性。

实验结果显示,随着太阳能电池温度的升高,电流呈现出先增大后减小的趋势。

这是因为在较低温度下,电子和空穴的复合速率较低,电流较小;而在较高温度下,电子和空穴的复合速率加快,电流逐渐增大。

然而,当温度超过一定值后,电流开始下降,这是因为高温会导致太阳能电池内部的电子迁移率下降,从而减小了电流。

此外,我们还发现太阳能电池的温度对电压的影响较小。

随着温度的升高,电压基本保持稳定,这是因为太阳能电池的内部电场对温度变化不敏感。

实验三:太阳能电池的寿命特性在本实验中,我们通过长时间连续使用太阳能电池,来研究太阳能电池的寿命特性。

实验结果显示,太阳能电池在连续工作一段时间后,其性能会逐渐下降。

这是因为长时间的工作会导致太阳能电池内部材料的劣化,从而降低了太阳能电池的转换效率。

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告一、引言。

太阳能电池是一种利用光能直接转换成电能的装置,是目前可再生能源中使用最为广泛的一种。

随着全球能源危机的日益严重,太阳能电池作为清洁能源的代表,其研究和应用受到了广泛关注。

本次实验旨在通过对太阳能电池的特性进行深入研究,探索其在不同条件下的性能表现,为太阳能电池的进一步应用提供理论依据。

二、实验目的。

1. 掌握太阳能电池的基本原理和特性;2. 研究太阳能电池在不同光照条件下的输出特性;3. 探究太阳能电池在不同温度下的性能变化;4. 分析太阳能电池在不同负载下的输出特性。

三、实验方法。

1. 实验仪器,太阳能电池、光照度计、温度计、示波器、直流电源等;2. 实验步骤:a. 测量太阳能电池在不同光照条件下的输出电压和电流;b. 测量太阳能电池在不同温度下的输出电压和电流;c. 测量太阳能电池在不同负载下的输出电压和电流。

四、实验结果与分析。

1. 太阳能电池在不同光照条件下的输出特性。

实验结果表明,随着光照度的增加,太阳能电池的输出电压和电流均呈现出增加的趋势。

当光照度达到一定程度后,太阳能电池的输出电压和电流基本保持稳定。

2. 太阳能电池在不同温度下的性能变化。

实验结果显示,随着温度的升高,太阳能电池的输出电压呈现出下降的趋势,而输出电流则呈现出上升的趋势。

这表明太阳能电池的温度对其性能有一定影响,需要在实际应用中加以考虑。

3. 太阳能电池在不同负载下的输出特性。

实验结果表明,太阳能电池在不同负载下的输出电压和电流均呈现出不同的变化规律。

在一定范围内,负载的变化对太阳能电池的输出特性有一定影响,需要根据实际情况选择合适的负载。

五、结论。

通过本次实验,我们深入了解了太阳能电池在不同条件下的特性表现。

光照度、温度和负载都对太阳能电池的输出特性有一定影响,需要在实际应用中进行合理的调整和控制。

本次实验为太阳能电池的进一步研究和应用提供了重要的参考依据。

六、参考文献。

[1] 王明,太阳能电池原理与应用,北京,科学出版社,2018。

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告一、实验目的本实验旨在研究太阳能电池的基本特性,包括太阳能电池的输出电流和电压随太阳辐射强度的变化规律、电池的光谱响应特性以及太阳能电池的能量转换效率等。

二、实验原理太阳能电池是一种半导体器件,主要由一个p型半导体和一个n型半导体构成,在两种材料的交界面上形成一个PN结。

当太阳辐射射到 PN 结上时,电子受到能量激发而从 P 区向 N 区运动,从而产生电势差,这就是太阳能电池的基本工作原理。

太阳能电池的输出电流和电压随太阳辐射强度的变化规律可以用伏安特性曲线来表示。

光谱响应特性可以通过将太阳能电池暴露在具有不同波长的单色光下,测量电池对不同波长光的响应来研究。

太阳能电池的能量转换效率可以用输出电力与进入电力之比来表示。

三、实验器材太阳能电池、恒流源、数字万用表、单色光源、光谱仪等。

四、实验步骤1. 使用数字万用表测量太阳能电池的开路电压和短路电流,并记录数据。

2. 将太阳能电池暴露在不同太阳辐射强度下,测量太阳能电池的输出电流和电压,并记录数据。

3. 将太阳能电池暴露在不同波长的单色光下,测量太阳能电池的输出电流和电压,并记录数据。

4. 使用光谱仪测量太阳能电池在不同波长光下的光谱响应,并记录数据。

5. 根据实验数据计算太阳能电池的能量转换效率,并进行比较分析。

五、实验结果与分析1. 输出电流和电压随太阳辐射强度的变化规律随着太阳辐射强度的增大,太阳能电池的输出电流和电压都会增加,但其增长趋势是不同的。

当太阳辐射强度较小时,输出电流的增长更加明显,而当太阳辐射强度较大时,输出电压的增长更加明显。

2. 光谱响应特性太阳能电池对不同波长的光的响应是不同的,其响应度最大的波长在可见光区域的绿黄色光波段。

随着波长的偏离,响应度逐渐降低。

3. 能量转换效率通过计算得到太阳能电池的能量转换效率为 XX%,与实验数据比较分析得知,太阳能电池的能量转换效率受到多种因素的影响,例如光谱匹配、电路匹配、光伏电池的材料参数等。

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告一、引言。

太阳能电池是一种能够将太阳能转化为电能的装置,是目前可再生能源中使用最为广泛的一种。

随着全球对清洁能源的需求不断增加,太阳能电池作为一种清洁、可再生的能源形式,受到了越来越多的关注。

本次实验旨在研究太阳能电池的特性,探究其在不同条件下的电能输出情况,为太阳能电池的优化设计和应用提供参考。

二、实验目的。

1. 研究太阳能电池在不同光照条件下的输出电压和电流特性;2. 探究太阳能电池在不同温度下的输出电压和电流特性;3. 分析太阳能电池在不同光照和温度条件下的效率变化。

三、实验原理。

太阳能电池的工作原理是利用光生电压效应,通过半导体材料的光生电子和空穴对的分离而产生电流。

当太阳能电池受到光照时,光子会激发半导体中的电子,使其跃迁到导带中,形成电子-空穴对。

这些电子-空穴对在电场作用下会分离,形成电流并产生电压。

四、实验步骤。

1. 将太阳能电池置于不同光照条件下,记录输出电压和电流;2. 将太阳能电池置于不同温度条件下,记录输出电压和电流;3. 根据记录的数据,计算太阳能电池在不同条件下的效率。

五、实验结果与分析。

通过实验数据的记录和分析,得出以下结论:1. 在光照强度较高的条件下,太阳能电池的输出电压和电流较大,表现出较高的输出功率;2. 随着光照强度的减小,太阳能电池的输出电压和电流逐渐降低,输出功率也相应减小;3. 在较高温度条件下,太阳能电池的输出电压和电流也会受到一定影响,表现出一定程度的降低;4. 太阳能电池的效率随着光照强度和温度的变化而变化,呈现出一定的规律性。

六、结论。

通过本次实验,我们对太阳能电池在不同条件下的特性有了更深入的了解。

太阳能电池在光照和温度条件下的输出特性对其在实际应用中的效率和稳定性有着重要影响。

因此,在太阳能电池的设计和应用过程中,需要充分考虑光照和温度对其特性的影响,以优化太阳能电池的性能和效率。

七、参考文献。

1. 王小明,太阳能电池原理与应用,北京,科学出版社,2018。

太阳能电池特性的测量实验报告

太阳能电池特性的测量实验报告

太阳能电池特性的测量实验报告一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、最大功率点以及填充因子等参数,深入了解太阳能电池的工作原理和性能特点,为太阳能电池的应用和优化提供实验依据。

二、实验原理太阳能电池是一种基于半导体pn 结光生伏特效应的能量转换器件。

当太阳光照射到太阳能电池表面时,光子的能量被半导体吸收,产生电子空穴对。

在内建电场的作用下,电子和空穴分别向 n 区和 p 区移动,形成光生电流和光生电压。

1、开路电压(Voc)当太阳能电池处于开路状态时,即外电路电阻无穷大,此时输出的电压即为开路电压。

开路电压与半导体材料的禁带宽度、光照强度和温度等因素有关。

2、短路电流(Isc)当太阳能电池的输出端被短路,即外电路电阻为零,此时流过的电流即为短路电流。

短路电流主要取决于光照强度和电池的面积。

3、最大功率点(Pm)在不同的负载电阻下,太阳能电池的输出功率不同。

当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,此时对应的工作点称为最大功率点。

4、填充因子(FF)填充因子是衡量太阳能电池性能的重要参数,定义为最大功率与开路电压和短路电流乘积的比值,即 FF = Pm /(Voc × Isc)。

三、实验仪器与材料1、太阳能电池实验装置包括太阳能电池板、可变电阻箱、数字电压表、数字电流表、光源等。

2、计算机及数据采集软件四、实验步骤1、连接实验电路将太阳能电池板与可变电阻箱、数字电压表和数字电流表按照正确的电路连接方式连接好。

2、测量开路电压在光源关闭的情况下,将可变电阻箱调至无穷大,测量太阳能电池的开路电压 Voc,并记录数据。

3、测量短路电流在光源关闭的情况下,将可变电阻箱调至零,测量太阳能电池的短路电流 Isc,并记录数据。

4、测量不同负载下的输出特性打开光源,调节可变电阻箱的阻值,从大到小依次测量不同负载电阻下太阳能电池的输出电压 V 和输出电流 I,并记录数据。

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告太阳能电池伏安特性研究实验报告引言:太阳能电池作为一种可再生能源的重要组成部分,其伏安特性的研究对于提高太阳能电池的效率和稳定性具有重要意义。

本实验旨在通过对太阳能电池的伏安特性进行研究,探索太阳能电池的工作原理和性能特点。

实验方法:1. 实验器材准备:本实验使用的太阳能电池为多晶硅太阳能电池,实验器材包括电流表、电压表、可变电阻器、直流电源等。

2. 实验步骤:(1)将太阳能电池与电流表、电压表、可变电阻器和直流电源连接,组成电路。

(2)通过调节可变电阻器的电阻值,改变电路中的电阻大小,记录不同电阻下的电流和电压值。

(3)根据记录的电流和电压值,绘制太阳能电池的伏安特性曲线。

实验结果与分析:通过实验记录的数据,我们绘制了太阳能电池的伏安特性曲线。

在伏安特性曲线中,横轴表示电压,纵轴表示电流。

曲线的特点如下:1. 开路电压(Voc):伏安特性曲线的横轴上的点表示太阳能电池的开路电压,即在没有负载电阻的情况下,太阳能电池的输出电压。

通过实验测量,我们得到了太阳能电池的开路电压为XV。

2. 短路电流(Isc):伏安特性曲线的纵轴上的点表示太阳能电池的短路电流,即在短路状态下,太阳能电池的输出电流。

通过实验测量,我们得到了太阳能电池的短路电流为XI。

3. 最大功率点(Pmax):伏安特性曲线上的最高点表示太阳能电池的最大功率点,即太阳能电池在最佳工作状态下的输出功率。

通过实验测量,我们得到了太阳能电池的最大功率为XP。

通过分析伏安特性曲线,我们可以得出以下结论:1. 太阳能电池的输出电流随着负载电阻的增加而逐渐减小,而输出电压则随之增加。

这是因为负载电阻的增加导致电流通过的路径变长,从而增加了电阻,降低了电流。

2. 在太阳能电池的伏安特性曲线中,最大功率点位于曲线的拐点处。

在最大功率点处,太阳能电池的输出功率最大,这也是太阳能电池的最佳工作状态。

3. 太阳能电池的伏安特性曲线受到光照强度和温度等因素的影响。

太阳能电池特性研究_实验报告参考

太阳能电池特性研究_实验报告参考

E I I圏&全暗吋太阳能电池在外加偏压吋的伏安特性测量电路之二四、实验步骤1 •在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性,用实验测得的正向偏压时I ~ U关系数据,画出I ~ U曲线并求得常数1和I。

的值。

2•在不加偏压时,用白色光源照射,测量太阳能电池一些特性。

注意此时光源到太阳能电池距离保持为20cm。

(1 )画出测量实验线路图。

(2)测量太阳能电池在不同负载电阻下,|对U变化关系,画出I ~ U曲线图。

(3)用外推法求短路电流| sc和开路电压U oc。

(4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。

(5)计算填充因子[FF =P m/(l sc ・U°c)]。

五、实验数据和数据处理1.在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性。

表1图-(b)全暗情况下太阳能电池外加偏压时的伏安特性半对数曲线二V ,丨0二mA,相关系数0.9996,电流与电压的指数关系得到验证。

2 •在不加偏压时,用白色光源照射,测量太阳能电池一些特性。

图9恒定光强无偏压时太阳能电池输出功率与负载电阻关系曲线太阳能电池的最大输出功率P m 二 ,最大输出功率时负载电阻 R L二1. 2I (inA)3在恒定光照下太阳能电池不加偏压时的伏安特性曲线填充因子[FF 二P m/(l sc ・U°c)]= = 。

六.实验结果- V ' , I o = mA,短路电流l sc= ,开路电压U OC=。

填充因子[FF =P m/(l sc ・U°c)]=七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题实验报告内容:一.实验目的二.实验仪器(仪器名称、型号、参数、编号)和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题三.实验原理(原理文字叙述分析讨论(实验结果的误差来欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

太阳能电池光伏特性研究

太阳能电池光伏特性研究

太阳能电池光伏特性研究太阳能光伏电池特性实验研究太阳能光伏电池的输出具有⾮线性,这种⾮线性受到外部环境(包括⽇照强度、温度等)以及本⾝技术指标(如输出阻抗)的影响,从⽽使得太阳能电池的输出功率发⽣变化,其实际转换效率受到⼀定限制。

因此,对太阳能光伏电池输出特性的研究成为了⼀个重要课题[1]。

与跟踪式太阳能光伏系统相⽐,固定式太阳能光伏系统有着结构简单、成本低廉等优点。

太阳能光伏电池表⾯温度将随辐射能的增强⽽升⾼,在⼀定程度上影响了太阳能电板的输出功率。

本⽂主要对固定式单晶硅太阳能电池输出功率等进⾏了实验研究。

1、理论分析理想的太阳能电池可以看做是⼀个产⽣光⽣电流I ph 的恒流源与⼀个处于正向偏置的⼆极管并联,如图1所⽰。

如果负载R L 短路了,电路只有光⽣电流I ph ,光强越强,电⼦-空⽳对的产⽣率越⾼,光⽣电流I ph 越⼤,即短路电流I sc 为:sc ph I I =-(1)II图1 理想太阳能电池等效电路[2]如果负载R L 不短路,那么P-N 结内流过的电流I d ⽅向与光⽣电流⽅向相反,会抵消部分光⽣电流,使少数载流⼦注⼊和扩散。

太阳能电池输出的净电流I 是光⽣电流I ph 和⼆极管电流I d 之差,故太阳能电池的光伏I-V 特性可表⽰为:ph d ph exp 1O qV I I I I I nkT ??=-=--(2)式中:I o ——反向饱和电流;n ——理想因⼦,由半导体材料和制造技术决定,n=1~2;V ——⼆极管电压;k ——波尔兹曼常数;q ——电⼦电量;T ——⼆极管绝对温度。

当电流I =0时,这意味着产⽣的光⽣电流I ph 正好等于光电压V oc 产⽣的⼆极管电流I d ,即I ph =I d 。

从式(2)可得出V oc 为:ph 01OCI nkT V In q I ??=+(3)I-V 特性曲线是测量太阳能电池参数的常⽤曲线。

电池的开路电压V oc 由I-V 曲线与V 轴的交点(I =0)给出。

太阳能电池特性测试实验报告

太阳能电池特性测试实验报告

太阳能电池特性测试实验报告一、1.1 实验目的与意义随着科技的不断发展,太阳能作为一种清洁、可再生的能源越来越受到人们的关注。

为了更好地了解太阳能电池的性能,提高太阳能电池的转换效率,我们进行了一次太阳能电池特性测试实验。

本实验旨在通过理论分析和实验验证,探讨太阳能电池的工作原理、性能参数及其影响因素,为太阳能电池的研究和应用提供理论依据。

二、2.1 实验原理太阳能电池是一种将太阳光能直接转化为电能的装置。

其工作原理是利用半导体材料的光电效应,当太阳光照射到半导体表面时,光子能量被吸收,使得半导体中的电子跃迁至导带,形成自由电子和空穴对。

在P-N结界面,自由电子和空穴相遇时,产生电场,从而产生电流。

太阳能电池的输出电压与太阳辐射强度成正比,输出电流与太阳辐射强度的平方成正比。

三、3.1 实验设备与材料1. 太阳能电池模块:用于接收太阳光并产生电流。

2. 数字万用表:用于测量电流和电压。

3. 短路开关:用于保护电路。

4. 直流电源:用于给太阳能电池模块供电。

5. 光纤激光器:用于产生单色光束。

6. 光谱仪:用于测量光强和光谱。

7. 数据处理软件:用于记录和分析实验数据。

四、3.2 实验步骤与方法1. 将太阳能电池模块安装在光源和数字万用表之间,确保模块表面与光源平行。

2. 用短路开关连接太阳能电池模块的正负极。

3. 用直流电源给太阳能电池模块供电。

4. 用光纤激光器产生单色光束,使其经过一个分束镜后分为两束光线。

5. 其中一束光线经过一个透镜后聚焦在太阳能电池模块上,另一束光线经过一个偏振片后得到一个具有一定相干度的光束。

6. 将光谱仪放置在聚焦后的光线附近,测量光强和光谱分布。

7. 用数据处理软件记录实验数据,并进行分析。

五、实验结果与分析通过本次实验,我们得到了太阳能电池模块的输出电流和电压数据。

我们还观察到了太阳光在经过分束镜、透镜和偏振片后的光谱分布情况。

根据实验数据和光谱分析结果,我们得出了太阳能电池的光电转换效率以及其随太阳辐射强度变化的关系。

太阳能电池的伏安特性研究实验报告

太阳能电池的伏安特性研究实验报告

太阳能电池的伏安特性研究实验报告以下是太阳能电池的伏安特性研究实验报告参考,供您参考。

一、实验目的本实验的目的是研究太阳能电池的伏安特性和光伏效应,探究太阳能电池的工作原理,并通过实验数据分析和实验结果验证理论模型的准确性。

二、实验原理太阳能电池是一种利用光电效应将太阳光转换成电能的装置。

在光伏效应中,太阳能电池将光能转化为电能,电池的电流和电压与光照强度和电池温度有关。

光伏效应产生的电能是由光子将电子从半导体的导带带到价带来产生的,这个过程中向外释放出电子,从而产生电流,如果将这些电子围捕起来,就能产生实际的电流。

太阳能电池的伏安特性是指光照不变时,太阳能电池输出电流与电压之间的关系。

实验过程中,我们需要利用一定的电路将太阳能电池直接连接到多用表上,研究得到太阳能电池的伏安特性波形和数据,明确太阳能电池的性能指标,为使用太阳能电池提供参考。

三、实验步骤1、将太阳能电池放置在日光下,将电池的阳极和阴极与多用表的电极接触。

2、调节多用表的量程,记录下此时太阳能电池的开路电压和短路电流。

3、改变光照强度,调节多用表的量程,记录下太阳能电池不同光照强度下的开路电压和短路电流。

4、记录实验数据并绘制出太阳能电池的伏安特性曲线。

四、实验结果根据实验数据和计算,我们得到太阳能电池的伏安特性曲线如下:(插入图片)五、实验结论通过实验可得知,太阳能电池的输出电压与电流之间存在明显的非线性关系,即太阳能电池的伏安特性曲线呈现出一个充满了峰谷的曲线,同时太阳光照强度对太阳能电池的输出电压和电流都产生了影响。

太阳能电池的输出电压随光照强度的增大而增大,输出电流随光照强度的增大而增大。

这些结果表明太阳能电池是一种可靠的能源转换器,其性能指标与使用环境和光照强度密切相关,对人类现代化生活和环境保护有着重要的意义。

太阳能电池特性的测量实验报告doc

太阳能电池特性的测量实验报告doc

太阳能电池特性的测量实验报告.doc 实验报告:太阳能电池特性的测量一、实验目的本实验旨在通过测量太阳能电池的特性,包括电流、电压、填充因子和转换效率等参数,以了解太阳能电池的工作原理和性能特点。

二、实验原理太阳能电池是一种利用光能转换为电能的装置。

其工作原理基于光生伏特效应。

当太阳光照射在太阳能电池表面时,光子与半导体材料相互作用,使电子从价带跃迁到导带,从而产生电流。

太阳能电池的特性受到材料、结构、光照条件等多种因素的影响。

三、实验步骤1.准备实验器材:太阳能电池模块、数字万用表、光源及光强计、恒流电源、负载电阻等。

2.将太阳能电池模块放置在光强计前,调整光强计与太阳能电池模块的相对位置,使光线垂直照射在太阳能电池表面。

3.用数字万用表分别测量太阳能电池的正负极电压和电流。

测量时需要注意万用表的量程选择和极性判断。

4.调整恒流电源的输出电流,使太阳能电池在不同光照强度下工作,重复步骤3的测量。

5.连接负载电阻,测量太阳能电池在不同负载条件下的电压和电流。

6.记录实验数据,绘制电流-电压曲线和填充因子-电压曲线。

7.根据测量结果计算太阳能电池的转换效率。

四、实验结果及数据分析1.实验数据记录:根据实验数据,可以得出以下结论:(1)随着光照强度的增加,太阳能电池的电压和电流也相应增加。

这表明太阳能电池的输出性能受到光照条件的直接影响。

(2)填充因子(FF)是衡量太阳能电池性能的重要参数之一。

FF值越高,说明太阳能电池的电学性能越好。

实验数据显示,随着光照强度的增加,填充因子略有提高,但变化不大。

这说明填充因子主要受到材料和结构等因素的影响,而非单一的光照条件。

(3)转换效率(η)是评价太阳能电池能量转换效率的重要指标。

实验数据显示,随着光照强度的增加,转换效率呈上升趋势。

然而,当光强达到一定值时,由于串联电阻的增加和反偏二极管的影响,转换效率趋于稳定。

这说明在选择太阳能电池材料时,需要综合考虑材料的导电性能、光学性能和稳定性等因素。

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告太阳能电池基本特性研究实验报告引言:太阳能电池是一种利用太阳光转化为电能的装置,具有环保、可再生等优点,因此在可持续能源领域备受关注。

本实验旨在研究太阳能电池的基本特性,包括光照强度对电池输出电流的影响、温度对电池输出电压的影响以及不同材料制成的太阳能电池的比较等。

实验一:光照强度对电池输出电流的影响实验装置:太阳能电池、光源、电流计、电压计实验步骤:1. 将太阳能电池连接到电流计和电压计上,并将光源对准电池表面。

2. 开启光源,调节光照强度,记录不同光照强度下的电流值。

3. 分析数据,绘制光照强度与电流的关系曲线。

实验结果:实验结果显示,光照强度与太阳能电池输出电流呈正相关关系。

随着光照强度的增加,电流值也随之增加。

这是因为太阳能电池中的光敏材料吸收光能后,产生电子-空穴对,从而形成电流。

因此,光照强度越高,太阳能电池输出电流越大。

实验二:温度对电池输出电压的影响实验装置:太阳能电池、温度控制装置、电压计实验步骤:1. 将太阳能电池连接到电压计上,并通过温度控制装置调节电池的温度。

2. 记录不同温度下的电压值。

3. 分析数据,绘制温度与电压的关系曲线。

实验结果:实验结果显示,温度对太阳能电池输出电压有一定的影响。

随着温度的升高,电压值呈现下降的趋势。

这是因为太阳能电池中的光敏材料在高温下容易发生退化,从而导致电池的电压下降。

因此,在实际应用中,需要注意控制太阳能电池的工作温度,以保证其正常工作和输出电压的稳定。

实验三:不同材料制成的太阳能电池的比较实验装置:不同材料制成的太阳能电池、光源、电流计、电压计实验步骤:1. 将不同材料制成的太阳能电池连接到电流计和电压计上,并将光源对准电池表面。

2. 开启光源,记录不同太阳能电池的电流和电压值。

3. 分析数据,比较不同太阳能电池的性能差异。

实验结果:实验结果显示,不同材料制成的太阳能电池具有不同的性能特点。

例如,硅太阳能电池具有较高的转换效率和稳定性,是目前应用最广泛的太阳能电池;铜铟镓硒(CuInGaSe2)太阳能电池具有较高的光吸收能力和较高的光电转换效率,但成本较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.3 0.052 0.008 0.004 2.2 5.9 1.854 0.053 3 175.4 93 1.089
0.6 0.119 0.021 0.007 2.3 8.1 2.9 0.071
0.9 0.238 0.045 0.011 2.4 11.7 4.5 0.101
从图和数据可以看出,在无光照射的情况下,三种太阳能电池呈现出了典型的 P-N 结特征。 即在正向电压增加到一定数值时,电流迅速增大。而在有着负向电压时,电池类似于断路, 即电阻非常大。还可以看出,单晶硅的 P-N 结特性十分明显,多晶硅其次,而非晶硅相比之
下 P-N 结特性就不是十分明显了,但是它仍然有明显的 P-N 结特性,将其图单独画出:
2. 测量太阳能电池的开路电压和光强之间的关系 开路电压即电池的电动势,是所有电池的一项重要指标,实验通过改变照射在太阳能电 池上的光功率测量其开路电压,光功率的变化由到光源的不同距离控制。 实验数据:
10 15 20 25 P/(W/m^2) 1048 510 268 166 单晶硅/V 2.8 2.65 2.54 2.44 多晶硅/V 2.93 2.8 2.69 2.61 非晶硅/V 3.11 2.99 2.9 2.83 用 origin 绘制出开路电压与光功率的关系图:
0.013 0.207 0.403 0.602 0.81 8.7 8.2 8 7.9 7.8 多 晶 U/V 0.014 0.208 0.408 0.598 0.801 硅 I/A 14 13.7 13.5 13.2 13 非 晶 U/V 0.001 0.2 0.4 0.6 0.8 硅 I/A 1.513 1.494 1.44 1.415 1.373 作出在 P=122W/m^2 时,三种电池的伏安特性曲线为:
太阳能电池特性实验仪
一、实验目的
本实验研究单晶硅,多晶硅,非晶硅 3 种太阳能电池的特性。
二、实验原理
太阳能电池利用半导体 P-N 结受光照射时的光伏效应发电, 太阳能电池的基本结构就是 一个大面积平面 P-N 结。当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结 区激发的电子和空穴分别被势垒电场推向 N 区和 P 区,使 N 区有过量的电子而带负电,P 区 有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将 P-N 结两端接入外电 路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流, 得到输出伏安特性,如图 2 实线所示。 负载电阻为零时测得的最大电流 ISC 称为短 输出电流 I Pmax 路电流。 负载断开时测得的最大电压 VOC 称为开路 (输出功率) 电压。同样的电池及光照条件,负载电阻大小不 ISC 一样时,输出的功率是不一样的。若以输出电压 为横坐标,输出功率为纵坐标,绘出的 P-V 曲线 如图 2 点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率 Pmax。 VOC 输出电压 V 填充因子 F.F 定义为: 图 2 太阳能电池的输出特性
对不断增多, 但移动的数目会减小, 以至于电压增大到一定程度, 反向电场与原电场相持平, 故此时开路电压不会随着光强的增大而迅速增大的。 4.你认为该实验的设计思想、方案哪些值得你肯定,哪些有待完善? 答:该实验是主要是在不同条件下对太阳能电池的伏安特性研究。从研究的影响因素而言, 该实验主要研究的是光强的不同对太阳能电池的影响, 随后有不同波长的光对太阳能电池的 影响,当然还可以安排譬如温度之类的特性研究等等。从实验的操作上看,由于是普通的电 路元件的伏安特性研究,所以操作都比较简单,但由于参数变化测量较多,使得这个实验的 操作比较繁琐,耗费时间而无价值。建议该实验应该多侧重于研究方面,多探究影响太阳能 电池的各项指标。至于伏安特性测量操作,可以使用电子程序代替,以避免反复调参带来的 时间浪费。 5.发光二极管的 P-N 结与太阳能电池板的 P-N 结有何区别? 答:从能量转化的角度来看,发光二极管是将电能转化为光能,而太阳能电池板则是由光能 转化为电能,两者是相反的。发光二极管的发光机理是由于空穴电子对的复合产生光子,而 太阳能电池板则是由于光的激发产生空穴电子对。 两者都利用了空穴电子对的产生和复合需 要能量或者是放出能量的特点,只是利用的方面恰恰相反而已。
d/cm
30 112 2.36 2.55 2.76
35 83.6 2.29 2.49 2.71
40 64.1 2.22 2.44 2.67
45 51.1 2.15 2.4 2.63
50 41.6 2.09 2.36 2.59
从图中可以看出,光功率从 0 开始增大时,开路电压迅速增大,此后趋于平缓。 3. 测量太阳能电池的短路电流和光强之间的关系 短路电流即为在电池零负载的情况下的输出电流,也是一个电池的重要指标。实验依然 通过改变光功率的大小测量其短路电压。 实验数据
(2)
图 3 不同光照条件下的 I-V 曲线 Pin 为入射到太阳能电池表面的光功率。 理论分析及实验表明,在不同的光照条件下, 短路电流随入射光功率线性增长, 而开路电压在入射光功率增加时只略微增加, 如图 3 所示。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率 为 24.7% ,规模生产时的效率可达到 15% 。在大规模应用和工业生产中仍占据主导地 位。但由于单晶硅价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶 硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池, 其实验室最高转换效率为 18%, 工业规模生产的转换效率可达到 10% 。因此,多晶硅薄 膜电池可能在未来的太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低,重量轻,便于大规模生产,有极大的潜力。如果
15 404 2.64 41.9 2.78 2.3 15 350 2.63 45.6
20 209 2.49 22.3 2.68 1.284 20 180 2.5 22.1
25 127 2.39 13.9 2.6 0.791 25 110 2.4 13.5
30 86 2.3 9.6 2.54 0.545 30 74 2.3 9
10 15 20 25 30 P/(W/m^2) 1048 510 268 166 112 单晶硅/mA 120.1 58.5 34.5 21.5 14.7 多晶硅/mA 110.5 53.7 29.8 18.8 13 非晶硅/mA 14.3 6.5 3.6 2.2 1.54 用 origin 绘制出短路电流与光功率的关系图:
35 62 2.22 7.1 2.48 0.396 35 54 2.22 6.5
40 47 2.14 5.5 2.43 0.304 40 42 2.14 5
45 38 2.07 4.3 2.38 0.241 45 33 2.06 3.9
50 31 2.01 3.5 2.34 0.197 50 27 2 3.2
四、思考题
1.太阳能电池作为光电探测器,在一定的光强范围内,探测器的输出响应与光强成正比, 这一范围成为探测器的线性响应范围,它是光电探测器的特性之一。试设计一个实验来测 量太阳能电池的线性响应。 答:采用实验中使用的伏安特性曲线测量电路,同时对变阻器的要求提高。通过调节电阻器 维持太阳能电池两端的电压不变,改变光强,测量电流,从而得到功率,可以研究太阳能电 池的线性响应。 2.温度会对太阳能电池带来什么影响? 答:在二极管的学习过程中,我们知道温度对它的性能是有一定影响的,故很容易猜测温度 对太阳能电池的性能肯定会有影响。实验中使用的太阳光源功率较大,热辐射也大,在太阳 能电池距离比较近时,很容易给太阳能电池加温。实验中发现,随着照射时间的增加,太阳 能电池输出的各项指标会下降。推测其原因:温度越高,电池内部分子热运动会越剧烈,从 而影响其各项电学性能。为了减小温度对实验带来的影响,在电池板离光源较近时,我们使 用遮光罩遮住电池板, 避免光源对其加热。 待冷却一段时间后, 迅速拿起遮光罩, 记录数据。 3.测量短路电流、开路电压与入射于太阳能电池上光束光强的变化关系,试分析之。 答:从实验数据可以看出,随着光功率的增大,开路电压起初增长迅速,后来增长缓慢,而 短路电流则近似与光功率线性关系。 分析太阳能电池的发电机理——光伏效应, 光伏效应是 由于光照射产生空穴电子对,从而在电场作用下移动,产生电流。对于短路电流而言,光强 越大,产生的空穴电子对越多,从而电流会越大,故线性关系是显然的。至于开路电压,起 初光强由 0 增大时,P-N 结附近产生空穴电子对,并迅速在电场的作用下向两边移动产生电 压,随着移动空穴电子对数目的增多,P-N 结内部反向电场不断增大,虽然产生的空穴电子
FF
Pmax Voc I sc
(1)
I 1000W/m2 800W/m2 600W/m2 400W/m2 200W/m2 V
填充因子是表征太阳电池性能优劣的重要参 数,其值越大,电池的光电转换效率越高,一般的 硅光电池 FF 值在 0.75~0.8 之间。 转换效率ηs 定义为:
P s (%) max 100% Pin
d/cm
35 83.6 10.7 9.6 1.12
40 64.1 8.2 7.3 0.864
45 51.1 6.6 5.8 0.684
50 41.6 5.4 4.7 0.556
从图中可以看出,短路电流与光功率近似成一种线性关系 4. 太阳能电池的输出特性测量 电池最重要的特性自然是输出特性,因为它关系着电池的输出效率问题。实验中通过固 定光功率不变,测量太阳能电池的伏安特性曲线,再根据 P=VI 得到电池的输出特性曲 线。 取 d=30cm,P=122W/m^2
单 晶 U/V 硅 I/A
1.003 7.6 1.007 12.8 1.003 1.332
1.222 7.5 1.202 12.5 1.2 1.291
1.405 7.4 1.401 12.3 1.4 1.245
相关文档
最新文档