语音信号的盲分离(知识分析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书
学生姓名:专业班级:通信1103
指导教师:许建霞工作单位:信息学院
题目: 语音信号的盲分离
初始条件:Matlab软件、PC机
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)设计任务
根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。
设计要求
(1) 用matlab做出采样之后语音信号的时域和频域波形图
(2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图
(3) 采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。
(4) 用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。
(5) 对结果进行对比分析。
时间安排:
序号设计内容
所用
时间
1 根据课题的技术指标,确定整体方案,并进行参数设计计算2天
2 根据实验条件进行全部或部分程序的编写与调试,并完成基本功能7天
3 总结编写课程设计报告1天
合计2周指导教师签名: 2014年 6 月 10 日系主任(或责任教师)签名:2014 年 6 月 10 日
摘要
盲信号处理(Blind Signal Processing,BSP)是指从观测到的混合信号中,在没有任何先验条件的情况下,恢复出未知的源信号过程。盲信号分离已成为信号处理学界和通信工程学界共同感兴趣的一个极富挑战性的研究热点问题,并获得了迅速的发展。
盲分离根据信号源的不同可以分为确定信号盲分离、语音信号盲分离和图像盲分离等,本设计主要讨论语音信号的盲分离。
语音信号的盲分离主要是利用盲源分离(Blind Signal Separation,BSS)技术对麦克风检测到的一段语音信号进行处理,本文重点研究了以语音信号为背景的盲处理方法,在语音和听觉信号处理领域中,如何从混有噪声的的混叠语音信号中分离出各个语音源信号,来模仿人类的语音分离能力,成为一个重要的研究问题。根据盲信号分离原理,本设计用matlab采集3路语音信号,选择合适的混合矩阵生成若干混合信号。
具体实现主要结合独立分量分析ICA技术,选取混合矩阵对3个语音信号进行混合,并从混合信号中分离出原语音信号,最后画出各分离信号的时域波形和频谱图和原来的信号进行比较。此外还运用PCA算法进行了混合语音信号的分离实现,最终对两种算法进行比较。
关键字:盲信号处理;语音信号;盲源分离BSS;独立分量分析ICA技术
Abstract
Blind Signal Processing (Blind Signal Processing, BSP) from the observed mixed-signal, to recover the unknown source signal process without any prior conditions. Blind signal separation has become a signal processing academia and communication engineering communities of common interest a challenging research focus and rapid development.
Blind source separation based on the signal source can be divided to determine the blind signal separation, blind separation of speech signals and Blind Image Separation, the design focuses on the blind separation of speech signal.
Blind separation of speech signal using blind source separation (Blind the Signal Separation, BSS) detected by the microphone a voice signal processing, the paper focuses on the blind approach to speech signal as the background in voice and acoustic signal processing in the field, how isolated from a mixture of noise aliasing voice signal voice source signal to mimic the human voice separation ability, become an important research question. Blind signal separation principle, the design collection of three-way voice signal using matlab, select the appropriate mixing matrix to generate a number of mixed-signal.
Concrete realization of the combination of independent component analysis ICA technology, select the mixing matrix of three speech signals mixed and separated from the mixed signal to the original speech signal, and finally draw the separation of signals in time domain waveform and frequency spectrum and the original signal . In addition, use of the PCA algorithm for the separation of mixed speech signals to achieve the final two algorithms. Keywords: blind signal processing;speech signal ;blind source separation BSS independent ;component analysis ICA technology