基坑变形监测及其数据处理方案

合集下载

基坑变形监测工程方案

基坑变形监测工程方案

基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。

在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。

1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。

监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。

监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。

2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。

可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。

3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。

监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。

4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。

可以使用倾斜仪、位移计等仪器设备进行监测。

二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。

传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。

在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。

三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。

在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。

四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。

一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。

五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。

深基坑工程中的变形监测与处理方法

深基坑工程中的变形监测与处理方法

深基坑工程中的变形监测与处理方法深基坑工程是现代建筑施工中常见的一项技术挑战,它涉及到深埋地下的巨大土体开挖和支护工程。

在这一过程中,土体的变形是无法避免的,而人们则需要通过变形监测和相应的处理方法来保证工程的安全性和可靠性。

在深基坑工程中,变形监测是至关重要的。

它可以帮助工程师了解土体的变形情况,及时发现潜在的风险,并根据监测数据进行合理的调整和处理。

变形监测可以采用多种方法,如测量支护墙体的变形、测量土体的沉降和位移等。

其中,最常用的方法是采用传感器进行实时监测,如倾斜度传感器、沉降计、位移计等。

监测数据的处理与分析是变形监测的关键步骤。

工程师需要对监测数据进行准确的分析和解读,判断土体的变形情况,并根据情况采取相应的措施。

传统的处理方法是通过人工统计和计算,但随着计算机技术的发展,现代工程师可以借助计算机软件进行数据处理和分析,提高工作效率和准确度。

处理变形监测数据时,工程师需要考虑多个因素。

首先,他们需要将监测数据与设计值进行比较,以判断变形是否在可接受的范围内。

其次,他们需要考虑土体的复杂性和不均匀性,采用合适的数学模型进行数据分析。

此外,他们还需要关注时间因素,根据监测数据的变化趋势,判断土体的变形速度和趋势,并及时采取相应措施。

在处理变形监测数据时,工程师还可以借助经验和专业知识进行判断和决策。

他们可以根据历史数据和类似工程的经验,判断当前工程的安全性,并根据情况调整支护结构和施工方法。

此外,他们还可以借助专业的地质和土力学知识,对土体的特性和变形机理进行深入分析,为工程施工提供参考和建议。

除了变形监测和处理,深基坑工程中还有其他一些重要的安全措施。

例如,在施工前需要进行全面的勘察和调查,了解地下水位、土体的物理性质和结构等。

此外,在开挖和支护过程中,还需要采取相应的排水措施,以减少土体的渗透和水压。

总之,深基坑工程中的变形监测与处理方法是确保工程安全和可靠的重要环节。

通过科学的监测方法和准确的数据处理,工程师可以及时发现土体的变形情况,并采取相应的措施。

深基坑变形监测

深基坑变形监测

深基坑变形监测深基坑变形监测主要是为了确保深基坑施工过程中的安全和稳定性,及时发现并解决潜在的变形问题。

本文将介绍深基坑变形监测的意义、方法和技术,以及实施监测的关键点。

深基坑施工是城市建设中常见的工程方式之一,通常用于地铁、大型商业综合体等项目的建设。

深基坑施工过程中,由于地下水位、土壤条件等因素的影响,基坑结构会发生变形和沉降,导致地面沉降、建筑物倾斜等问题。

深基坑变形监测的意义主要包括以下几个方面:1.确保施工安全:深基坑结构的变形和沉降可能导致施工过程中的事故,对施工人员和周边居民的生命财产安全造成威胁。

通过变形监测,可以实时了解基坑变形情况,及时采取措施,确保施工安全。

2.保证工程质量:深基坑变形可能会对周边建筑物和地下管线等产生不利影响,导致土壤沉降、房屋裂缝等问题。

及时发现并解决变形问题,可以保证基坑施工后的工程质量。

3.控制环境污染:深基坑施工过程中可能会对周边环境造成噪音、振动、粉尘等污染。

通过变形监测,可以及时控制施工影响,减少环境污染。

深基坑变形监测的方法和技术多种多样,常用的包括全站仪监测、测量标杆监测、变形挠度监测等。

下面将介绍其中几种常用的监测方法和技术:1.全站仪监测:全站仪是一种高精度的测量仪器,可以同时测量水平角、垂直角和斜距。

在深基坑变形监测中,可以使用全站仪监测基坑边缘的标志点,通过连续测量,了解基坑的变形情况。

2.测量标杆监测:测量标杆是固定在基坑边缘或建筑物周围的标志物,通过测量标杆的位置和高程变化,可以判断基坑的变形情况。

常用的测量标杆包括水平标杆、竖直标杆和倾斜标杆等。

3.变形挠度监测:变形挠度监测是通过安装在建筑物或基坑结构上的变形传感器来测量变形挠度。

常见的变形传感器有测斜管、水平位移计、水准仪等。

通过实时监测和分析变形挠度的变化,可以了解基坑的变形状况。

深基坑变形监测是一个复杂的过程,需要注意一些关键点,以保证监测的准确性和可靠性。

1.监测方案设计:在进行深基坑变形监测之前,需要制定监测方案,确定监测参数和监测设备的布置。

基坑支护变形测量监测方案

基坑支护变形测量监测方案

基坑支护变形观测方案Xx有限公司xx年xx月xx日1、工程概况Xx项目基坑支护项目位于xxxxxx,根据设计图纸要求,沿基坑四周布设水平及竖向位移观测点SS1--SS26共计26个、沉降观测点C1--C9共计9个。

2、执行的标准和技术依据①《工程测量标准》(GB50026—2020);②《国家一、二等水准测量规范》(GB12897—2006);③《建筑变形测量规范》(JGJ8—2016);④《建筑基坑工程监测技术标准》(GB50497-2019)⑤《建筑基坑支护技术规程》(JGJ120-2012)⑥《测绘成果质量检查与验收》(GB/T 24356-2009)⑦《数字测绘成果质量检查与验收》(GB/T 18316-2008)⑧委托人及设计单位有关技术要求;⑨项目技术设计书。

3、监测实施方案3.1、监测流程本工程监测工作按以下流程进行。

3.2、实施方案3.2.1、监测点位埋设本工程的基坑监测共需埋沉降观测基准点3个,位移观测基准点3个,基坑观测点详见《基坑支护变形监测点平面布置图》。

3.2.2、监测频率与周期在工程施工过程中,按以下频率进行监测。

①基坑开挖前,各监测点采集稳定的初始值,且不少于2次;②每层土方开挖后监测一次,基坑开挖至设计标高后,2~5天监测一次,半个月后5天监测一次,以后每15天观测一次。

③当变形超过有关标准或场地条件变化较大时,进行加密监测,观测时间间隔现场定;④当有危险事故征兆时,进行连续监测。

3.2.3、信息反馈在工程的监测过程中,监测数据报送的的及时性是发挥监测工作作用的一个重要因素,包括监测快报、周报、月报等。

(信息反馈流程图)具体各监测报告按以下要求进行报送。

3.2.4、检查验收(1)、实行二检一审制度1)、一级检查包括监测过程中作业组内的自检、互检技术负责人组织的队级质量检查。

对于本工程,作业组必须有至少另外一个技术人员的独立数据处理文件并进行比对方可提交二级检查和审定,独立数据处理人员需承担该工程技术负责人技术责任的50%,且在审核意见处理表上需两人共同签名确认。

基坑变形监测及应急预案

基坑变形监测及应急预案

基坑变形监测及应急预案(一)、基坑监测方案本工程土方、降水、护坡工程由甲方指定分包,本公司从清槽开始施工,在施工过程中基坑需要由原施工单位做变形监测并需制定应急预案。

为保证施工中的基坑边坡安全做到安全施工,我单位将在原单位监测的基础上自行进行监测,形成自己的数据,保证安全施工。

1、观测点的布置沿坡顶布置位移观测点,间距20m~30m,作水平位移、沉降观测。

2、观测精度要求满足国家三级水准测量精度要求水平误差控制<1.00mm垂直误差控制<0.5mm3、观测时间的确定:(1)基坑开挖每一步都应作变形观测。

(2)基坑开挖完7天后,两天监测一次,15天后每周监测一次。

4、场地查勘与记录:(1)随时观察边坡情况,查清有无原始裂缝和异常并作记录,照相存档。

(2)每次观测结果详细记入汇总表并绘制位移与时间的关系曲线。

5、注意事项(1)每次观测应用相同的观测方法和观测线路。

(2)观测其间使用一种仪器,一个人操作,不能更换。

(3)加强对基坑各侧沉降,变形观测,特别有地下管线的各边坡进行重点观测。

(4)坡顶侧向位移与当时的开挖深度之比超过3‰(砂土中)和3‰~5‰(一般粘性土中)时,应密切加强观察、分析原因并及时支护结构采取加固、补救措施,必要时增用其它方法。

(二)、边坡支护预案及应急方案基坑支护是一个综合性岩土工程问题,既涉及土力学中典型的强度与稳定问题,又包含了变形问题,同时还涉及到土与支护结构相互作用问题,这些问题又受到工程现场的地质、水文、环境、荷载、天气等诸多因素的影响。

因此,施工中不可避免地要出现一些问题,这些问题的应急方案常采用同类工程的成功经验来处理,有时它比理论计算或规范更有效。

如通过监测手段、分析基坑边壁位移过程曲线,确定其对基坑边壁稳定的影响程度,以便采用限制边壁位移的应急方案。

1、预防措施(1)安全措施:认真贯彻安全第一、预防为主的方针,项目经理是安全生产第一责任者,安全员是安全工作的直接责任者,建立、健全各级各部门的安全生产责任制,责任落实到人,做到谁施工谁对安全负责。

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案一、背景介绍基坑围护桩是基础建设中常用的一种施工方式,通过在基坑边缘打入桩体来支撑土壤,以防止边坡坍塌和基坑变形。

然而,基坑围护桩在施工过程中可能会出现变形现象,因此,对基坑围护桩的变形进行监测是非常重要的。

本文将介绍一种基坑围护桩施工变形监测专项监控量测方案。

二、监测设备的选择1.变形测量仪:用于测量基坑围护桩的变形情况,可以通过测量点位与参考点的相对位移来计算变形量。

2.倾斜仪:用于测量基坑围护桩的倾斜角度,可以通过倾斜角度来判断桩体的稳定性。

3.压力传感器:用于测量基坑围护桩的负荷压力,可以了解桩体所承受的力的大小。

4.GPS定位仪:用于确定监测点的位置,以便进行数据分析和处理。

三、监测点的设置为了全面了解基坑围护桩的变形情况,需要设置一系列的监测点。

监测点的设置应根据基坑围护桩的实际情况和施工要求进行确定,一般应包括以下几个方面的监测点:1.桩顶监测点:用于测量基坑围护桩的竖向位移和沉降情况。

2.桩身监测点:用于测量基坑围护桩的水平位移和倾斜情况。

3.周边土体监测点:用于测量基坑围护桩周边土体的位移和变形情况。

4.基坑内土体监测点:用于测量基坑内土体的位移和变形情况。

四、监测频次和周期基坑围护桩施工变形监测应根据实际需要和施工进度来确定监测频次和周期。

一般情况下,可以将监测频次设置为每周一次,监测周期设置为施工周期的两倍。

这样可以及时了解基坑围护桩的变形情况,以便及时采取相应的措施来保证施工的顺利进行。

五、数据处理和分析监测数据的处理和分析是基坑围护桩施工变形监测的重要环节。

监测数据的处理和分析应包括以下几个方面的内容:1.数据处理:对采集到的监测数据进行整理和清洗,排除异常值和错误数据。

2.数据分析:对处理后的监测数据进行统计和分析,得出基坑围护桩的变形特征和趋势。

3.结果评估:根据分析结果对基坑围护桩的变形情况进行评估,判断是否需要采取进一步的措施。

基坑工程变形监测方案

基坑工程变形监测方案

基坑工程变形监测方案1. 背景介绍基坑工程是指在建筑施工中,为了在地下建造高层建筑或者地下结构,需要在地面上开挖较深的坑,并按照设计图纸对坑下进行倒土处理,同时基坑周边的建筑、道路等都会受到一定的影响。

为了确保基坑工程的安全施工,避免对周边建筑物和地下设施造成不可挽回的损害,需要进行变形监测。

基坑工程变形监测是指在基坑开挖、支护、降水和地下室施工等过程中,从土壤内部和地面上一定深度位置等环境中,连续或定期监测基坑四周变形情况,以获取变形数据,从而判断基坑周围环境的稳定性和安全性。

合理地选择监测点位,对基坑工程进行变形监测,可以有效地监测基坑开挖过程中的变形情况,提前发现潜在危险,保障基坑施工的安全。

2. 变形监测方案变形监测的主要目的是为了监测基坑工程周围环境的变形情况,从而保障基坑工程施工的安全。

变形监测的方案包括:监测内容、监测方法、监测点位、监测频率和监测报告。

2.1 监测内容基坑工程变形监测的内容主要包括:地表变形监测、地下水位监测、支护结构变形监测、周边建筑物变形监测、基坑倒土变形监测等内容。

通过监测这些内容,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。

2.2 监测方法基坑工程变形监测的方法主要包括:GPS定位法、倾斜仪法、水准仪法、测斜仪法、位移传感器法等。

通过这些监测方法可以有效地监测基坑工程周围环境的变形情况,提供准确的监测数据,从而保障基坑工程的施工安全。

2.3 监测点位基坑工程变形监测的点位主要包括:地表监测点位、地下水位监测点位、支护结构监测点位、周边建筑物监测点位、倒土监测点位等。

通过合理选择监测点位,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。

2.4 监测频率基坑工程变形监测的频率主要包括:连续监测、定期监测。

通过连续或者定期监测,可以不断地获取基坑工程周围环境的变形数据,及时发现潜在危险,保障施工的安全。

2.5 监测报告基坑工程变形监测报告是通过监测数据的分析和处理,得出基坑工程周围环境的变形情况,并提供有效的监测报告。

基坑监测方案的数据处理与分析

基坑监测方案的数据处理与分析

基坑监测方案的数据处理与分析为了有效地进行基坑监测,确保施工安全和工程质量,数据处理和分析是至关重要的一环。

本文将介绍基坑监测方案中数据处理与分析的方法和步骤。

一、数据采集及整理在进行基坑监测之前,需要先采集相关数据。

数据采集可以通过各种监测设备来完成,如测量仪器、传感器等。

这些设备可以实时采集监测点的数据,如土壤位移、地下水位等。

采集到的数据应按照时间顺序进行整理,方便后续的处理和分析。

二、数据预处理在进行数据处理之前,通常需要对原始数据进行预处理。

预处理的目的是消除数据中的噪声和异常值,提高数据的可靠性和准确性。

预处理方法包括滤波、差值、插补等。

通过预处理,可以获得更加平滑和可靠的数据。

三、数据分析方法1.频域分析频域分析是一种常用的基坑监测数据分析方法。

通过将时域信号转化为频域信号,可以获取信号的频率特征和能量分布情况。

频域分析可以帮助确定基坑监测点存在的主要频率成分,为后续的工程设计和施工提供参考。

2.时域分析时域分析是指对基坑监测数据的时间变化进行分析。

通过绘制时间序列图、计算平均值、方差等统计参数,可以了解监测点的变化趋势和波动范围。

时域分析可以帮助判断基坑的变形和稳定性情况。

3.统计分析统计分析是对基坑监测数据进行统计学处理和分析的方法。

通过计算均值、标准差、相关系数等统计指标,可以揭示监测点之间的关联性和数据的分布规律。

统计分析可以帮助确定监测数据的可信度和可靠度。

四、数据处理软件为了更方便和高效地进行基坑监测数据的处理与分析,可以借助各种专业的数据处理软件。

常用的软件包括MATLAB、Excel等。

这些软件提供了各种数据处理和分析功能模块,可根据实际需求选择合适的方法和工具。

五、结果解读与应用在完成数据处理与分析之后,需要将结果进行解读和应用。

解读结果包括对监测数据变化趋势的分析、异常情况的判别等。

根据分析结果,可以评估基坑的稳定性和变形情况,并采取相应的措施进行调整和处理。

综上所述,基坑监测方案的数据处理与分析是确保施工安全和工程质量的重要环节。

工程基坑变形监测方案

工程基坑变形监测方案

工程基坑变形监测方案一、前言随着城市化进程的不断加快,大型建筑工程基坑的开挖和支护工程成为城市建设的重要组成部分。

而基坑变形监测作为工程施工的一项重要内容,在工程实施过程中具有重要的意义。

因此,本文将从工程基坑变形监测的重要性、监测内容及监测方法等方面展开介绍,以期为相关工程施工提供参考。

二、基坑变形监测的重要性基坑工程开挖及支护过程中,受到土体变形、地下水位变化、周边建筑物影响等因素的影响,往往容易引发基坑结构变形,因此对基坑变形进行监测可以及时发现并解决基坑的变形问题。

同时,基坑变形监测也可以为后续的支护施工提供实时的监测数据,确保施工过程安全可靠。

基坑变形监测的重要性主要包括以下几点:1. 可有效掌握基坑的变形情况,保障基坑支护施工的安全稳定;2. 可及时发现并解决基坑变形问题,避免引发安全事故;3. 可为后续支护工程提供实时监测数据,确保工程质量;4. 可为工程设计提供实际的变形数据,为相应的设计方式提供依据。

基于以上考虑,基坑变形监测方案的制定和实施显得尤为重要。

三、基坑变形监测内容基坑变形监测的内容主要包括:1. 水平变形监测:包括基坑的水平位移变形监测;2. 竖向变形监测:包括基坑内部各个深度处的沉降变形监测;3. 周边建筑物变形监测:包括周边建筑物的位移变形监测;4. 地下水位监测:包括基坑周围地下水位的变化监测。

通过对以上内容的监测,可以全面了解基坑的变形情况,为工程施工过程提供重要依据。

四、基坑变形监测方法1. 静力位移监测法通过在基坑周边设置一定数量的静力位移监测点,利用水平倾斜仪、水准仪等静力位移仪器进行定期的位移测量。

该方法操作简单、数据确切,能够有效地监测基坑的水平变形情况。

2. GPS监测法通过在基坑周边设置一定数量的GPS监测点,通过GPS定位技术获取基坑变形的信息。

该方法操作便捷、数据精确,适合进行基坑的大范围位移监测。

3. 沉降盘监测法通过在基坑内部设置一定数量的沉降盘,通过沉降盘的沉降变形情况来监测基坑的竖向变形。

基坑变形监测技术方案

基坑变形监测技术方案

基坑变形监测技术方案基坑变形监测是指对地下基坑在施工过程中或者使用过程中由于不均匀沉降、滑移、侧倾、地下水位变动等因素引起的变形进行实时、连续的监测和预警的技术手段。

基坑变形监测的目的是为了及时发现和评估基坑变形情况,为基坑的施工和使用提供科学依据。

1.监测点布置方案:根据基坑的形状、尺寸和地下结构的具体情况确定监测点的位置和数量。

一般来说,监测点应该均匀分布在基坑的不同位置以及周围的地表上,以保证监测结果的准确性和可靠性。

2.监测仪器选择方案:根据监测需求和具体情况选择合适的监测仪器设备。

常用的监测仪器包括测量仪器、位移传感器、应变传感器、倾斜传感器等。

这些仪器可以实时测量和记录基坑变形的各个参数,并将数据传输给监测系统进行分析和处理。

3.数据传输与处理方案:选择合适的数据传输方式和监测系统。

常见的数据传输方式包括有线传输和无线传输,可以根据具体情况选择合适的传输方式。

监测系统可以对传输过来的数据进行实时分析和处理,生成监测报告并进行预警处理。

4.监测报告与预警方案:根据监测结果生成监测报告,并根据预设的预警标准进行预警处理。

监测报告应包括基坑变形的具体情况、变形的趋势和可能的风险评估等内容,以便施工单位或者相关部门及时采取措施避免事故发生。

5.健全的管理与应急预案:建立健全的管理制度和应急预案,并进行培训和演练。

这样可以确保监测系统的正常运行和数据的准确性,同时也能够提高对基坑变形事故的应对能力和处理效率。

总之,基坑变形监测技术方案需要根据实际情况进行合理的选择和设计,并且要注重对监测结果进行分析和预警处理,以保证基坑的施工和使用的安全性和稳定性。

同时,还需要加强对相关技术人员的培训和管理,提高监测系统的使用效率和数据的可靠性。

基坑变形监测技术方案

基坑变形监测技术方案

基坑变形监测技术方案1. 概述基坑工程在建设过程中,由于土体的开挖、支护和工程荷载等因素,基坑周围土体会发生变形,进而对相邻的土体以及周边建筑物产生影响。

为了确保基坑工程的安全进行和及时预警,需要对基坑的变形进行监测。

本文提出了一种基坑变形监测技术方案,通过采用监测设备和数据处理方法,实现对基坑变形的实时监测和分析。

2. 监测设备和传感器为了实现基坑变形的监测,需要安装相应的监测设备和传感器。

以下是常用的监测设备和传感器的介绍:2.1 GNSS测量仪GNSS测量仪(全球导航卫星系统)可用于测量基坑中各个关键点的三维位移,通过比较测量结果与基准值,可以判断基坑是否发生变形。

2.2 倾斜仪倾斜仪可以用于测量基坑支撑体的倾斜情况,倾斜仪的安装位置通常选择在支撑体的关键部位上。

2.3 压力传感器压力传感器可用于测量基坑周边土体的压力变化,通过监测压力的变化,可以判断土体的变形情况。

2.4 监测网络为了实现对监测设备的集中管理和远程监控,可以通过建立监测网络来实现,监测网络可以将各个监测设备的数据传输到监测中心,实现对数据的实时监测和分析。

3. 数据处理方法基坑变形监测的数据处理方法对于实时监测和预警具有重要意义,以下是常用的数据处理方法:3.1 数据采集与存储监测设备通过传感器采集到的数据需要进行有效的存储,可以采用数据库或者云存储的方式,确保数据的安全和可靠。

3.2 数据分析与处理通过采用数据处理算法和数学模型,对监测数据进行分析和处理,可以得到基坑变形的趋势和变形量,进而判断基坑是否存在安全隐患。

3.3 预警与报警基于数据分析结果,可以设置相应的预警和报警机制,当监测数据超过预设阈值时,即发出预警信号,便于及时采取措施避免事故的发生。

4. 方案优势通过采用基坑变形监测技术方案,可以实现以下优势:4.1 实时监测监测设备可以对基坑变形进行实时监测,及时获取监测数据并进行分析,保证工程施工过程的安全性。

基坑工程变形监测方案设计

基坑工程变形监测方案设计

基坑工程变形监测方案设计1.引言基坑工程是指在建筑物或结构物施工过程中,在地下挖掘土方并施工的工程。

基坑工程变形监测是指对基坑工程挖掘、支护系统施工以及土体变形等施工过程中发生的变形情况进行实时监测和数据记录。

变形监测对于保障基坑工程安全和控制施工风险具有重要意义。

本文将从监测目标确定、监测技术与方案选择、监测指标及监测频率以及数据处理分析四个方面设计基坑工程变形监测方案。

2.监测目标确定基坑工程变形监测的目标是实时监测和记录基坑挖掘、支护系统施工和土体变形等施工过程中的变形情况,掌握基坑工程的运行状态,以便及时发现问题、采取措施,保障工程的施工安全和质量。

监测目标主要包括:(1)基坑开挖变形监测:监测基坑开挖的变形情况,包括地表沉降、基坑周边建筑物的倾斜情况以及支护结构的变形情况。

(2)支护系统施工变形监测:监测支护系统的施工变形情况,包括支护结构的受力情况、变形情况以及支护结构与土体的相互作用情况。

(3)土体变形监测:监测基坑土体的变形情况,包括土体的沉降、变形以及土体与支护结构之间的相互作用情况。

3.监测技术与方案选择基坑工程变形监测可以采用多种监测技术和方案,如全站仪法、GPS法、倾斜仪法、测量雷达法、地面位移监测仪法等。

在选择监测技术和方案时需要结合基坑工程的具体情况和监测目标进行综合考虑。

(1)全站仪法:全站仪是一种用于测量角度和距离的精密仪器,可以实现三维坐标的测量和监测。

全站仪可以用于监测基坑开挖、支护结构施工和土体变形等方面的监测,监测精度高。

(2)GPS法:GPS是一种用于测量地面物体位置和速度的卫星导航系统,可以实现地面位移监测。

GPS法可以用于监测基坑周边建筑物的倾斜情况以及土体的沉降等,监测范围广。

(3)倾斜仪法:倾斜仪是一种用于测量地面倾斜角度的仪器,可以实现建筑物倾斜监测。

倾斜仪法可以用于监测基坑周边建筑物的倾斜情况,监测精度较高。

(4)测量雷达法:测量雷达是一种通过微波辐射来实现测量物体距离的仪器,可以实现地面位移监测。

建筑基坑沉降位移监测的内容及方法

建筑基坑沉降位移监测的内容及方法

建筑基坑沉降位移监测的内容及方法建筑基坑沉降和位移监测是对建筑施工过程中基坑土体变形情况的监测与分析。

它可以帮助工程师了解基坑工程的稳定性和土体承载能力,从而制定相应的工程措施,确保施工安全。

本文将探讨基坑沉降和位移监测的内容和方法。

一、基坑沉降和位移监测的内容基坑沉降和位移监测的主要内容包括:1.沉降监测:沉降是指基坑周围土体由于施工活动而导致的下沉现象。

通过监测基坑周边地面和建筑物的沉降情况,可以了解土体变形的程度和分布。

这样可以帮助工程师及时发现并处理沉降引起的安全隐患。

2.位移监测:位移是指土体在受力作用下发生的变形,包括水平位移和垂直位移。

通过位移监测,可以了解土体的变形情况、变形速度和方向。

这对评估基坑稳定性、土体承载能力和与周围建筑物之间的影响至关重要。

3.基坑附近建筑物监测:基坑施工可能对周围建筑物的安全稳定性产生影响。

因此,在进行基坑沉降和位移监测时,还需要监测附近的建筑物变化情况。

这有助于判断施工对建筑物的影响以及采取适当的措施进行调整。

4.监测数据分析:监测数据的收集和分析是基坑沉降和位移监测的最后一步。

通过对监测数据的分析,可以评估基坑工程的稳定性和土体承载能力是否达到设计要求。

同时,还可以作为以后类似工程的参考,对施工过程进行优化和改进。

二、基坑沉降和位移监测的方法基坑沉降和位移监测可以采用多种方法进行,具体方法根据工程情况和监测的要求而定。

以下是几种常见的监测方法:1.易损性监测:易损性监测方法是通过设置易损性点或基准点,通过测量点的位移来判断土体的变化情况。

常见的易损性监测点包括悬挂建筑物、监测桩和基坑围护结构等。

2.干涉测量:干涉测量是通过干涉仪进行测量,如干涉仪、全站仪、全球导航卫星系统(GNSS)等。

这些仪器可以测量点的水平位移和垂直位移,并提供相应的坐标变化数据。

3.激光扫描:激光扫描是一种非接触式测量方法,利用激光器发射射线,通过扫描范围内的物体反射光束。

基坑变形监测方案

基坑变形监测方案

基坑变形监测方案1. 简介基坑变形监测是土木工程中的重要环节,通过对基坑变形情况的实时监测,可以及时发现并解决基坑工程中可能出现的安全隐患,保障工作人员和周边环境的安全。

本文档将介绍一种基坑变形监测方案,该方案结合了传统的测量方法和现代化的监测技术,能够实现对基坑变形的全面和精确监测。

2. 方案概述本方案主要包含以下几个步骤:1.基坑测量点布设:根据基坑的大小和形状,合理确定测量点的布设位置。

测量点应覆盖基坑各个关键部位,包括边坡、底板和周围建筑物等。

2.测量仪器选择:根据实际需要选择合适的测量仪器。

可以使用传统的光学测量仪器,如全站仪和水准仪,也可以使用现代化的无线传感器和监测设备。

3.测量方式和频率:根据工程的实际情况确定测量方式和频率。

可以选择静态测量或动态测量,频率可以根据需要进行调整。

4.数据处理和分析:采集到的监测数据需要进行处理和分析,以获取基坑变形的具体情况。

可以使用专业的数据处理软件,如MATLAB和Excel,对数据进行分析和可视化展示。

5.报告撰写和汇总:根据监测结果撰写监测报告,对基坑的变形情况进行详细描述和分析。

报告应包括测量数据、分析结果和建议等内容,并及时上报相关部门和项目管理方。

3. 方案优势相较于传统的基坑变形监测方法,本方案具有以下优势:1.实时监测:采用现代化的无线传感器和监测设备,可以实现对基坑变形的实时监测,及时发现变形情况并采取相应措施。

2.高精度测量:采用高精度的测量仪器,如全站仪和水准仪,可以对基坑的变形进行精确测量,提高监测结果的准确性。

3.数据处理简便:采用专业的数据处理软件,可以对大量监测数据进行自动化处理和分析,提高数据处理的效率和准确性。

4.可视化展示:通过对监测数据进行可视化展示,可以更直观地呈现基坑的变形情况,方便工程管理和决策。

5.报告及时性:通过及时撰写监测报告,并及时上报相关部门和项目管理方,可以及时发现和解决基坑工程中可能出现的安全隐患。

工程基坑变形监测方案怎么写

工程基坑变形监测方案怎么写

工程基坑变形监测方案怎么写1. 前言工程基坑是指在建筑、地下交通工程、地下综合管廊等工程建设过程中,由于需要进行地下开挖和施工,所以需要对地面进行挖掘使地下空间暴露于地表,形成一个类似坑的结构。

由于地下环境复杂,地下水位变化、土质情况不同等因素,地下开挖和工程施工过程中,会对周围的土体、建筑物和地下管线等产生一定的影响,可能引起基坑边坡稳定性问题、地表沉降等地质灾害。

因此,为了及早发现变形趋势和本体变形的速率,采取合理的变形监测手段来及时掌握变形信息,对于工程稳定性和安全性至关重要。

2. 监测目的工程基坑变形监测的目的是为了掌握地下开挖和工程施工过程中的基坑变形情况,及时发现并预警可能出现的地质灾害,保障工程建设的安全和稳定。

具体目的包括:(1) 及时监测和掌握基坑周边土体和建筑物的变形情况,预警土体失稳、建筑物沉降等地质灾害;(2) 了解地下水位变化对基坑周边土体和建筑物的影响,预测地下水对施工的影响;(3) 对地下管线、桥梁等基础设施进行监测,确保工程施工过程中对其无影响或最小影响,以保障其运行安全。

3. 监测内容工程基坑变形监测的内容包括:(1) 地表沉降监测:通过设置地面沉降监测点,利用水准仪等测量仪器,对地表进行周期性的沉降观测,以掌握地表沉降情况;(2) 边坡位移监测:通过设置边坡位移监测点,利用全站仪或位移传感器等仪器,对基坑周边边坡进行位移观测,以及时发现土体位移情况;(3) 建筑物变形监测:通过设置建筑物变形监测点,利用倾斜仪或变形传感器等仪器,对周边建筑物进行倾斜和变形观测,以及时掌握建筑物变形情况;(4) 地下水位监测:通过设置地下水位监测点,利用水位计等仪器,对基坑周边地下水位进行监测,以掌握地下水位变化情况;(5) 地下管线变形监测:通过设置地下管线变形监测点,利用应变计等仪器,对周边地下管线进行变形观测,以及时发现地下管线变形情况。

4. 监测技术工程基坑变形监测的技术主要包括传统测量技术和新型监测技术两大类。

基坑变形监测方案

基坑变形监测方案
3.监理单位:负责监督监测工作的实施,审核监测报告,督促施工单位采取相应措施。
4.设计单位:负责对监测数据进行审查,根据监测结果调整设计及施工方案。
九、其他
1.本方案未尽事宜,依据相关规范、设计文件及施工合同执行。
2.本方案经各方签字盖章后生效,修改、补充须书面同意。
3.各方应严格按照本方案要求,切实履行职责,确保基坑工程安全。
五、监测点布置
1.地表沉降监测点:沿基坑周边及影响范围内布置。
2.围护结构顶部水平位移监测点:布置在围护结构的关键部位。
3.围护结构深层水平位移监测点:布置在围护结构的关键深度位置。
4.支撑轴力监测点:根据支撑的分布情况合理布置。
5.地下水位监测点:布置在基坑周边及关键区域。
6.相邻建筑物及地下管线变形监测点:根据其位置及影响范围进行布置。
(4)支撑轴力监测;
(5)地下水位监测;
(6)相邻建筑物及地下管线变形监测。
四、监测方法及设备
1.地表沉降监测:采用水准仪、全站仪等设备,按照二等水准测量要求进行。
2.围护结构顶部水平位移监测:采用全站仪,按照三等导线测量要求进行。
3.围护结构深层水平位移监测:采用测斜仪进行。
4.支撑轴力监测:采用应变计或轴力计进行。
第2篇
基坑变形监测方案
一、前言
基坑工程作为建筑工程中的重要组成部分,其稳定性直接关系到整个工程的安全。为保障施工过程中基坑的稳定性,预防安全事故的发生,特制定本基坑变形监测方案。本方案依据《建筑基坑工程监测技术规范》等相关国家标准和规范,结合项目具体情况进行编制。
二、监测目标
1.实时掌握基坑在施工过程中的变形动态,确保施工安全。
1.监测成果包括:监测数据、分析报告、预警记录等。

基坑工程变形监测方案的主要内容

基坑工程变形监测方案的主要内容

基坑工程变形监测方案的主要内容
首先呢,得说清楚监测啥东西。

这就包括基坑的边坡啦,看它有没有像喝醉了酒一样歪歪斜斜的,还有支护结构,这就好比是保护基坑的铠甲,得时刻盯着有没有变形。

地下水位也不能放过,它就像基坑的地下小邻居,水位要是瞎蹦跶,对基坑影响可不小呢。

然后就是监测点的布置。

这就像是在基坑周围安插小间谍,要布置得妥妥当当的。

哪些地方是关键位置得重点照顾,哪些地方也得兼顾到,都得安排明白。

比如说在边坡容易出问题的角落啦,支护结构的关键受力点啥的,都得有监测点盯着。

再就是用啥仪器去监测。

这就好比医生用啥工具给病人看病一样。

水准仪、全站仪、测斜仪这些工具就都得上场啦。

不同的仪器负责监测不同的项目,可不能乱点鸳鸯谱。

还有监测的频率,这就像给基坑检查身体的周期。

刚开工的时候,基坑比较脆弱,可能就得勤快点检查,一天好几次也说不定。

等基坑慢慢稳定了,就可以稍微放松点,隔个几天检查一次。

要是遇到特殊情况,像下大雨或者旁边有大工程施工捣乱的时候,又得加密检查次数,就像病人情况突然恶化了得随时观察一样。

最后呢,数据处理和预警机制也很重要。

收集来的那些监测数据得好好整理分析,看看有没有啥不正常的地方。

一旦数据超过了设定的安全范围,就像拉响警报一样,得赶紧通知相关人员,好让他们采取措施,别让基坑出大乱子。

这就是基坑工程变形监测方案大概要包含的内容啦。

基坑工程变形检测方案设计

基坑工程变形检测方案设计

基坑工程变形检测方案设计一、引言基坑工程变形检测是指对于正在进行的基坑工程进行实时、连续的监测、记录、分析,以了解其变形情况,并及时发现问题,以确保基坑工程建设的安全、稳定和顺利进行。

随着基坑工程的规模和复杂程度的增加,变形监测变得尤为重要。

因此,设计一个科学合理、可行性强的基坑工程变形检测方案是至关重要的。

二、基坑工程变形检测的目的1、确保基坑工程的安全施工;2、准确掌握基坑工程现场变形情况;3、及时发现并处理异常情况;4、为设计和施工提供重要的参考数据。

三、基坑工程变形监测方法1、测量法:通过GPS、GNSS、测绘仪等测量设备,对基坑工程进行全方位、连续的变形监测;2、传感器监测:利用变形传感器、倾斜仪等现代化传感设备,对基坑工程进行实时监测;3、数学模型监测:通过计算机辅助设计与计算机辅助监测,创建基坑工程的数学模型,以实现变形的快速监测。

四、基坑工程变形监测方案设计1、监测点布设:根据基坑工程的各个关键部位、不同工程阶段的变形特点,科学合理地布设监测点;2、监测周期:设定不同时间间隔的监测周期,对变形进行连续监测;3、监测方式:采用多种监测方法,如测量法、传感器监测、数学模型监测等,相互协调;4、监测数据处理:对监测到的数据进行及时、准确的处理与分析,形成可靠的监测报告;5、异常处理机制:一旦发现异常情况,需要立即采取相应的措施进行处理。

五、基坑工程变形监测技术1、GPS/GNSS技术:通过全球卫星导航系统进行基坑工程的准确定位、变形监测;2、遥感技术:利用遥感技术获取基坑工程区域的地形、水文等信息,为变形监测提供数据支持;3、应力应变传感技术:通过应力应变传感器对基坑工程的变形进行实时监测;4、数学建模技术:通过有限元分析等数学建模技术对基坑工程进行变形监测和预测。

六、基坑工程变形监测设备1、GPS/GNSS设备:用于基坑工程的定位和变形监测;2、传感器监测设备:倾斜仪、应变传感器等,用于基坑工程变形的实时监测;3、测量设备:测量仪、测距仪等,用于基坑工程的实地测量。

变形监测及数据处理方案

变形监测及数据处理方案

目录摘要 (I)Abtract.............................................................................................................................................. I I1 工程概况 (1)2 监测目的 (2)3 编制依据 (3)4 控制点和监测点的布设 (4)4.1 变形监测基准网的建立 (4)4.2 监测点的建立 (4)4.3 监测级别及频率 (5)5 监测方法及精度论证 (6)5.1水平位移观测方法 (6)5.2沉降观测方法 (8)5.3基坑周围建筑物的倾斜观测 (9)6 成果提交 (10)7 人员安排及施工现场注意事项 (11)8 报警制度 (13)9 参考文献 (13)附录1 基准点布设示意图 (15)附录2 水准观测线路设示意图 (16)附录3 水平位移和沉降观测监测报表 (17)附录4 巡视监测报表样表 (18)附录5 二等水准测量观测记录手薄 (19)附录6 水平位移记录表 (20)1 工程概况黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。

由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。

按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。

”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。

为此,编制以下检测方案。

2 监测目的在基坑施工期间,由于坑内土体开挖,会引起基坑底面的回弹;在外侧土压力的作用下,会引起围护结构内力发生变化,同时产生变形;如果围护结构强度和刚度不足,将导致支护桩倾斜,甚至坍塌等严重事故;同时由于基坑降水,水位的下降会引起坑外土体的固结,使地面发生沉降,特别是如果支护防渗系统存在缺陷,将会发生渗漏,流沙等现象,结果导致地坪开裂以及周围建筑物产生不均匀沉降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文论文题目:变形监测及其数据处理方案设计作者姓名:学号:专业班级:08测绘(1)班指导老师:完成时间:2012.06.01安徽建筑工业学院摘要摘要本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。

主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。

采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。

关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标AbtractThis design is mainly for a deep foundation pit during the construction of foundation pit deformation and cause the deformation of the surrounding environment monitoring methods and data processing program design and analysis.The main monitoring content of the foundation pit wall for monitoring horizontal displacement and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision analysis.Keyword:Horizontal displacement observation; settlement observation; tilt observation; two level; polar coordinates目录摘要 (I)Abtract.............................................................................................................................................. I I1 工程概况 (1)2 监测目的 (2)3 编制依据 (3)4 控制点和监测点的布设 (4)4.1 变形监测基准网的建立 (4)4.2 监测点的建立 (4)4.3 监测级别及频率 (5)5 监测方法及精度论证 (6)5.1水平位移观测方法 (6)5.2沉降观测方法 (8)5.3基坑周围建筑物的倾斜观测 (9)6 成果提交 (10)7 人员安排及施工现场注意事项 (11)8 报警制度 (13)9 参考文献 (13)附录1 基准点布设示意图 (15)附录2 水准观测线路设示意图 (16)附录3 水平位移和沉降观测监测报表 (17)附录4 巡视监测报表样表 (18)附录5 二等水准测量观测记录手薄 (19)附录6 水平位移记录表 (20)1 工程概况黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。

由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。

按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。

”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。

为此,编制以下检测方案。

2 监测目的在基坑施工期间,由于坑内土体开挖,会引起基坑底面的回弹;在外侧土压力的作用下,会引起围护结构内力发生变化,同时产生变形;如果围护结构强度和刚度不足,将导致支护桩倾斜,甚至坍塌等严重事故;同时由于基坑降水,水位的下降会引起坑外土体的固结,使地面发生沉降,特别是如果支护防渗系统存在缺陷,将会发生渗漏,流沙等现象,结果导致地坪开裂以及周围建筑物产生不均匀沉降。

对基坑及周边环境进行监测,预警并防范过大位移、变形与工程事故的发生,并通过监测,保证整个基坑工程的安全施工。

进行基坑围护安全监测,可使基坑开挖工作顺利进行,及时了解基坑围护结构本身的受力和变化情况,同时关注基坑周围建筑物的变化情况,对基坑开挖工程进行动态监测,在预知可能出现危险的情况下及时报警,以便采取相应的应急措施,从而使基坑在施工期间确保围护结构不产生过大的位移和变形,使基坑施工最大地处于安全经济的状态下进行。

对基坑向外1~2倍开挖范围内相邻建筑及道路进行沉降监测,预警基坑开挖引起的环境问题。

3 编制依据(1)设计方提供的设计图纸(格构柱确认及东侧支护方案20110607) (2)《工程测量规范》GB50026-2007(3)《建筑变形测量规范》JGJ8-2007(4)《国家三角测量规范》GB/T17942-2000(5)《国家一、二等水准测量规范》GB12897-91(6)《精密工程测量规范》GB/T15314-944 控制点和监测点的布设4.1 变形监测基准网的建立选择通视良好、无扰动、稳固可靠、距离基坑3倍开挖深度的位置布置三个基准点(如图4-1),组成监测基准网(见附图1),编号分别为BM1、BM2和BM3。

图4-1 混凝土普通水准标石(单位:cm)4.2 监测点的建立监测点应布置在边坡变形较大、坑边存在严格控制变形的建筑物以及土质相对较差处。

在基坑边坡顶和内支撑上布置22个监测点,编号分别为东侧为J-1~J-33。

平面布置见附图。

用膨胀螺栓植入冠梁或护坡混凝土中,用红色油漆做标记。

钢筋顶部刻十字标记。

在周边建筑物上布置18个沉降观测点。

用Φ18螺纹钢端部磨光滑,折成90度,分别布置于每栋楼承重墙高出±0.000m约400mm~500mm区域。

测点安装如图(4-2)。

图4-2沉降点(单位:mm)4.3 监测级别及频率根据设计图纸及国家相关规范要求,基坑的检测级别为二级。

预计基坑有效使用期为六个月,如无异常变形,每开挖一层土方监测一次,雨后须加测一次,基坑开挖到底后3天监测一次,如有异常,每天监测一次,直至变形收敛至正常。

具体监测频率视现场施工情况而定。

5 监测方法及精度论证5.1水平位移观测方法根据设计图纸及相关规范要求,在黄金广场6#楼基坑支护工程施工过程中需对场区内及周围环境进行日常的基坑壁坡顶的水平及沉降和周边建筑物沉降及倾斜的常规监测。

变形监测采用平面导线测量,通过测量距离与方位角,按极坐标计算公式可准确求出每周期各变形点的三维坐标:Xp=Dp.coSHzp + XoYp=Dp.SinHzp + YoHp=hp+ Zo式中Hzp-----监测点至变形点的方位角;Xo、Yo、Zo------监测站的坐标值求出各监测点坐标,平差后与初始值对比推算得到桩顶水平位移值。

5.1.1 水平位移精度论证由基坑监测平面图知,以BM1为测站点,BM2为后视点时,C10点为最弱点。

图5-1 极坐标法观测原理全站仪测量坐标的计算公式为:x p = s ·cosHap + x A (1)y p = s ·sinHap + y A (2)利用误差传播定律,可以导出坐标测量的中误差计算公式为:m x ²=m s ²•cosHap ²+s ²•sinHap ²•(ρm a )²-m s ·s ·sin2Hap ·(ρm a ) my ²=m s ²•sinHap ²+s ²•cosHap ²•(ρm a )²+m s ·s ·sin2Hap ·(ρm a ) m p ²=m x ²+m y ²=m s ²+ s ²•(ρm a )² 式中ms 、ma 按全站仪的标称精度计算。

采用测距精度(2mm+2ppm ×D )、测角精度ma 的全站仪观测距离工作基点120m 处的监测点C23,则监测点的点位中误差计算:m p ² =m s ²+ s ²•(ρm a )² 由二级观测点坐标中误差为3mm ,即mp 不应大于3mm 。

m s=2mm+2×0.12mm=2.24mm s=120mm p ²=2.24²+0.3384 m a ²≤9m a ≤3.4即可采用标称测距精度为(2mm+2ppm ×D ),测角精度不大于3.4″的任一全站仪。

本次采用GTS-332W 型全站仪,其标称测距精度为(2mm+2ppm ×D ),测角精度为2″。

5.2沉降观测方法沉降观测采用严格的二等水准线路测量,测出个监测点的高程,平差后与初始值对比推算得到桩顶沉降值。

测量路线如图(见附录1),分3条路线,第一条以BM1为基准点C1~C10、J14~J17、J22和J1闭合到BM1。

第二条以BM3为基准点C11~C18、J13和J33闭合到BM3。

基坑内支撑和其他基坑壁的观测点作为第三条观测路线。

5.2.1沉降监测精度论证由水准路线略图知线路测站最多的为17站。

C7为最弱点。

设最弱点精度为σ,BM1至C7的中误σ1,权为P ;则:σ1 ²=σ站²+σ站²+…+σ站²=N ·σ站²σ1=N ·σ站由于从BM1至C7两端的站数均为9站所以σ1=9·σ站DS1级水准仪每公里往返测平均高差中误差为1mm 。

相关文档
最新文档