高密度电阻率法
工程物探-高密度电阻率法

二、高密度电阻率法的基本原理和工作方法
高密度电阻率法可以实现数据的快速采集和 微机处理,从而改变了电阻率法勘探传统的 工作模式,大大地提高了工作效率,减轻了 劳动强度,使电法勘探的智能化程度大大的 向前迈进了一步。
高密度电阻率法
一、高密度电阻率法的特点、应用范围 二、高密度电阻率法的基本原理和工作方法 三、高密度电阻率法的工作流程 四、数据处理与解释
-AB/2(m)
1110 -5 -1 0 -1 5 -2 0 -2 5 -3 0 -3 5 -4 0 -4 5
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
(a)原 始 视 电 阻 率 数 据 等 值 线 图
5 0 -5 -1 0 -1 5 -2 0 -2 5 -3 0 -3 5 -4 0 -4 5
-100
50
100
150
200
250
0
-50
50
100
150
200
250
(3)模型三:温纳装置
视电阻率断面
-AB/2(m)
-10 -20 -30 -40
20
40
60
80
100
电阻率反演断面
-5
-15
-25
20
40
60
80
100
Depth(m)
(4)实例一:施伦贝尔装置(岩溶勘查)
在730号点经钻孔验证: 0-9.8m为粘土; 9.8-15.2m为白云质灰岩; 15.2-18.6m为含砾粘土, 18.6-72.8m为白云质灰岩, 其中67.3-73.6m为溶洞。
高密度电阻率法原理

高密度电阻率法原理高密度电阻率法(High-Density Resistivity Method)是地球物理探测方法中的一种,用于研究地下介质的电阻率分布。
其原理是基于电阻率和导电性质的差异,通过在地下埋设电极、注入电流并测量电位差,得到地下介质的电阻率分布信息。
高密度电阻率法首先需要选择合适的电极配置,通常采用正交电极排列的方式。
首先在地下埋设固定间距的电极,通常为四极、八极或更多。
然后,在一对相邻的电极之间通入稳定的电流,产生人工电场。
电流流经地下介质时,会受到地下介质电阻率的影响,而产生电位差。
根据欧姆定律和电极间距、电阻率的关系,可以得到地下介质的电阻率分布。
如果电阻率不均匀,则电流趋向于沿着相对较低电阻率的路径流动。
因此,测量电位差的大小和位置,可以推断地下介质的电阻率分布。
对于高密度电阻率法,除了在地下的电极配置上进行工艺优化来实现高密度的布放,还需要关注测量的精度和可靠性。
为了提高测量精度,通常采用双极、四极、六极等不同的电极配置方式,并使用相同的电极配置进行多次测量,以提高测量结果的可靠性。
高密度电阻率法的应用范围广泛,可以用于勘探地壳结构、地下水体分布、地下岩石、土壤结构、矿产资源等。
在工程勘察中,可以使用高密度电阻率法来评估地质地形的稳定性和建筑物的基础设计。
同时,在水资源管理和环境保护领域,高密度电阻率法也被广泛应用于地下水位测量、水流分析、地下水污染检测等方面的研究。
高密度电阻率法具有以下优点:非侵入式探测、操作简便、成本较低、测量精度高、分辨率较好。
但也存在一些局限性,比如对测量现场和数据处理要求较高,需要专业人员进行操作和解译。
总之,高密度电阻率法是一种有效的地球物理勘探方法,可以用于研究地下介质的电阻率分布。
通过在地下埋设电极、注入电流并测量电位差,可以推断地下介质的电阻率分布情况。
在地质、水文、环境等领域都有广泛的应用前景。
高密度电阻率法实验报告

高密度电阻率法实验报告实验目的:通过在不同电极间施加电场,测量样品体积内所产生的电势差,得到样品电阻率,并掌握高密度电阻率法的基本原理和实验方法。
实验仪器:高密度电阻率仪,电极系统,计算机等。
实验原理:高密度电阻率法是一种间接测量样品电阻率的方法。
当在样品内部施加一定的电势差时,通过测量样品内部产生的电流强度,可以计算出样品电阻率的大小。
在实验中,首先将样品置于电极系统中,然后通过高密度电阻率仪在不同电极间施加一定的电势差。
当电场强度足够大时,样品内部会产生电流,电流的大小与电势差和电极间距有关。
通过测量样品内部电流的大小和样品尺寸,可以计算出样品电阻率的大小。
实验步骤:1. 准备样品和电极系统。
样品应具有一定的导电性,表面应平整,干净。
电极系统应密封严密,电极间距应根据样品尺寸和电势差确定。
2. 连接电路。
将电极系统连接到高密度电阻率仪上,并根据仪器说明连接相应的控制和测量电路。
3. 施加电势差。
根据实验要求,通过仪器控制,施加一定的电势差。
4. 测量电流强度。
在施加电势差的同时,测量样品内部产生的电流强度。
5. 计算电阻率。
根据测量结果,通过计算公式计算样品电阻率的大小。
6. 统计实验结果并分析。
实验注意事项:1. 样品应保持干净,避免外部因素影响实验结果。
2. 电极间距应根据实验需要进行调整,太近或太远都会影响实验结果。
3. 电势差应尽量稳定,避免突然的变化。
4. 对于不同类型的样品,可能需要采用不同的电势差和电极间距,以保证实验结果的准确性。
实验结果:样品编号:001样品尺寸:10cm x 10cm x 10cm 电极间距:5cm施加电势差:10V测量电流强度:0.5A计算电阻率:1Ωm样品编号:002样品尺寸:20cm x 20cm x 20cm 电极间距:10cm施加电势差:20V测量电流强度:0.8A计算电阻率:0.5Ωm实验结论:通过高密度电阻率法实验得到的样品电阻率结果,与样品本身的导电性质有关。
第五章高密度电阻率法

(1.5.4)
104
测量时,AB=BM=MN=α为一个电极间距,A、B、M、N 逐点同时向右移动,得到第一条 剖面线;接着 AB、BM、MN 增大一个电极间距, A、B、M、N 逐点同时向右移动,得到另 一条剖面线;这样不断扫描测量下去,得到倒梯形断面。
⒊γ排列(微分装置 AMBN) 该装置适用于固定断面扫描测量,电极排列如图 1.5.5:其rs 表达式为
(1.5.8)
由上式得到
r
a s
Ka =
Kb
r
b s
Ka +
Kg
r
g s
(1.5.9)
当 三 电 位 电 极 系 的 极 距 为 a 时 , 上 述 三 种 电 极 装 置 系 数 依 次 为 : K a = 2pa, K b
= 6pa, K g = 3pa ,于是(1.5.9)式写成
r
a s
=
1 3
r
b s
+
2 3
r
g s
(1.5.10)
可见,当已知其中任意两种电极排列的视电阻率时,通过(1.5.10)式便可计算第三种电极排列
的电阻率。
四、视参数及其计算
高密度电阻率法采用上述三电位电极系,其视电阻率参数将包括
r
a s
= 2pa U b I
;
r
g s
= 3pa DU g I
结果并将其加以组合而构成的;
Ts (i)
=
r
b s
(i
)
r
g s
(i)
(1.5.11)
Ts 比值参数综合了同一地电断面 b 和 g 两种视参数所反映异常分布的相对关系,因而用该 参数所绘制的比值断面图在反映地电结构的分布形态方面,远较相应排列的视电阻率断面图要
工程物探-高密度电阻率法

二、高密度电阻率法的基本原理和工作方法
高密度电阻率法勘探系统结构示意图
二、高密度电阻率法的基本原理和工作方法
高密度电阻率法可以实现数据的快速采集和 微机处理,从而改变了电阻率法勘探传统的 工作模式,大大地提高了工作效率,减轻了 劳动强度,使电法勘探的智能化程度大大的 向前迈进了一步。
(c)非均匀初始模型的反演结果
(5)实例二:二极装置(古城墙勘查)
-AB/2
-5
视电阻率断面 -10
-15
5 0
10
15
20
25
30
35
40
-5
反演断面 -10
Depth(m)
-15
5
10
15
20
25
30
35
(6)实例三(矿产勘查) 实测视电阻率断面
-50
-100
-150
-200
50
100
150
正演:已知地下介质物性参数的空间分布信 息,获取与物性参数有关的数据,这个数 学或物理实现过程,就被成为正演。
反演:根据获取与物性参数有关的数据,反 推地下介质物性参数的空间分布信息,这 个数学或物理实现过程,就被成为反演。
Depth(m)
1、正演——有限元法
-10 -20 -30
(a)正演模型 10m
数据处理阶段 成果应用阶段
三、高密度电阻率法的工作流程
2、排列的合理设计
电极的排列长度和点距的大小直接影响着高密度电法对地下目标 物的勘探能力。 1> 点距越小对目标体的探测精度相对越高, 2> 但是如果电极数不变,随着点距的减小,排列长度也相应减小, 从而也减小了探测深度,影响了对埋深较大的异常体的探测能力。
高密度电阻率法实验报告

高密度电阻率法实验报告实验报告:高密度电阻率法一、实验目的1.熟悉高密度电阻率法的实验原理和实验方法;2.掌握电阻率测量实验的基本操作步骤;3.研究不同材料的电阻率特性,分析其导电性能。
二、实验原理四电极法是在样品上加入四个电极,两个电极起电流作用,两个电极测量电压,通过测量电流和电压可以得出样品的电阻。
为了减小接触电阻对实验结果的影响,电极要采用大面积接触面积,以及保持电极与样品接点清洁,减小接触电阻。
电阻率的计算公式为:ρ=R*A/L其中,ρ为电阻率,R为电阻,A为电阻的横截面积,L为电阻的长度。
三、实验仪器与材料1.高密度电阻率测试仪;2.不同导电材料样品。
四、实验步骤1.打开高密度电阻率测试仪,确保设备的工作状态正常;2.将要测试的导电材料样品放置在测试夹具上,并将电极接触到样品表面;3.选择合适的电流大小,通过测试仪的控制面板设置电流;4.设置测量时间,保证样品得到充分供电;5.点击“开始测量”按钮,测试仪开始对样品进行电阻率测量;6.测量完成后,记录下电阻率的数值;7.更换不同导电材料样品,重复步骤2-6五、实验结果与分析根据实验步骤进行电阻率测量,记录下不同导电材料样品的电阻率数值。
导电材料,电阻率(Ω·m)-----------,---------------铜,X铁,Y铝,Z通过实验结果我们可以看出,不同导电材料的电阻率有所差异。
铜的电阻率最低,铁的电阻率中等,铝的电阻率最高。
这与材料的导电性质相对应,导电性越好的材料电阻率越低。
六、实验总结通过高密度电阻率法的实验,我们熟悉了该实验方法的基本原理和操作步骤,并且对不同导电材料的电阻率特性有了初步的了解。
在实验过程中,要注意保持电极与样品的接触面积大和接触点的清洁,以减小接触电阻的影响。
此外,实验中所测得的电阻率值还受到温度和材料状态的影响,因此在进行比较时应注意这些因素可能带来的误差。
综上所述,高密度电阻率法是一种常用的测量导体材料电阻率的方法,对于研究材料的导电性能具有重要意义。
高密度电阻率法在滑坡探测中的应用

高密度电阻率法在滑坡探测中的应用
高密度电阻率法是一种地球物理勘探方法,可以用于滑坡探测。
该方
法利用电流在地下的传播特性,测量地下不同深度处的电阻率分布情况,
从而推断地下岩土体的物理性质和结构特征。
在滑坡探测中,高密度电阻
率法可以用于以下方面:1.滑坡体的边界识别:通过测量地下电阻率分布
情况,可以识别出滑坡体与周围岩土体的边界位置,从而确定滑坡体的形
状和大小。
2.滑坡体的内部结构分析:通过测量地下电阻率分布情况,可
以推断出滑坡体内部的岩土体性质和结构特征,如岩土层的厚度、分布、
岩性等,从而分析滑坡体的形成机制和演化过程。
3.滑坡体的稳定性评价:通过测量地下电阻率分布情况,可以推断出滑坡体内部的岩土体性质和结
构特征,从而评价滑坡体的稳定性,为滑坡治理提供科学依据。
总之,高
密度电阻率法在滑坡探测中具有重要的应用价值,可以为滑坡治理提供科
学依据和技术支持。
高密度电阻率法

图1.8
2020/5/24
16
• ⒋δA排列(联剖正装置AMN∞) • 该装置适用于固定断面扫描测量,电极排列如图1.9: • 图1.9 联剖正装置排列示意图
• 【特点】测量断面为倒梯形。
• 【描述】测量时,AM=MN为一个电极间距,A、M、N逐点同时向右移动, 得到第一条剖面线;接着AM、MN增大一个电极间距, A、M、N 逐点同时 向右移动,得到另一条剖面线;这样不断扫描测量下去,得到倒梯形断面。
2020/5/24
18
• ⒍A-M
二极排列
• 该装置适用于变断面连续滚动扫描测量,电极排列如图1.11:
• 【特点】测量断面为平行四边形。
• 【描述】测量时,A不动,M逐点向右移动,得到一条滚动线;接着A、 M同时向右移动一个电极,A不动,M逐点向右移动,得到另一条滚动 线;这样不断滚动测量下去,得到平行四边形断面。
2020/5/24
14
• ⒉β排列(偶极装置ABMN) • 该装置适用于固定断面扫描测量,电极排列如图1.7:
偶极装置排列示意图
• 这种装置的特点是供电电极A、B和测量电极M、N均采用偶极,并按一定的距
离分开。由于四个电极都在同一测线上,故又称偶向偶极。其s表达式为
•
s
K
U I
M(N 1.5)
• 其中 Kβ=6 a
该断面总测点数=Rsum×N=200×16=3200。
2020/5/24
13
(三)、电极排列
• ⒈α排列(温纳装置AMNB)
• 该装置适用于固定断面扫描测量,电极排列如下:
•
K 2
• 图1.6 温纳装置排列示意图
• 采用对称四极装置方式时,当AM=MN=NB=α时,这种对称等距排列称为温纳
高密度电阻率法介绍课件

工程勘察:用于建 筑地基和地下工程
勘察
环境监测:用于地 下水污染监测和土
壤污染调查
农业灌溉:用于地 下水灌溉和土壤水
分监测
城市规划:用于地 下管线探测和城市
地下空间开发
灾害预警:用于地 震、滑坡、泥石流
等自然灾害预警
面临的挑战与机遇
技术挑战:提高 测量精度,降低 成本,提高数据
传输速度
应用挑战:拓展 应用领域,如地 下水监测、地质
高密度电阻率法介绍课件
演讲人
目录
01. 高密度电阻率法的原理 02. 高密度电阻率法的应用 03. 高密度电阻率法的优缺点 04. 高密度电阻率法的发展趋势
高密度电阻率法的原 理
电阻率与地层特性的关系
电阻率是地层特性的重要指标,反映 了地层的岩性、含水率、孔隙度等特
征。
地层的电阻率与岩性、含水率、孔隙度 等特征之间存在一定的相关性,可以通 过分析电阻率数据来推断地层的岩性、
灾害预警等
市场竞争:与其 他电阻率测量方 法竞争,如电磁
法、地震法等
政策支持:争取 政府政策支持, 推动高密度电阻 率法在相关领域
的应用和发展
谢谢
Байду номын сангаас
高密度电阻率法的发 展趋势
技术改进与创新
1
提高测量精度:通过改进传感器和算 法,提高测量精度和稳定性
2
降低成本:通过优化设计,降低设备 成本和维护成本
3
提高数据传输速度:通过改进数据传 输协议,提高数据传输速度和实时性
4
智能化:通过引入人工智能技术,实 现自动分析、诊断和预测
应用领域拓展
地质勘探:用于矿 产资源勘探和地质
工程勘察
第四章高密度电法

High Density Resistivity Method
是一种重要的工程物探方法 以地下岩土介质的电性差异为基础 主要是观测研究人工建立的地下稳定 电流场的分布规律 主要用于水文、工程和环境地质调查
高密度电阻率法是集电测深和剖面法于一体的一 种多装置,多极距的组合方法,它具有一次布极即 可进行的装置数据采集以及通过求取比值参数而能 突出异常信息,信息多并且观察精度高,速度快, 探测深度灵活等特点。
DUK-1探测系统测试记录仪
DUK-1探测系统测量电极示意图
电缆抽头 拔插卡
电极
高密度电法野外观测示意图
4.5 基本的资料处理方法
1. 统计处理:视电阻率参数断面图或灰度图 取滑动平均;计算均值、方差;视参数分级
2. 比值换算法:等值线断面图或灰度图 λ 参数对局部低阻体
4.1 高密度电阻率法的特点(相对常规的电阻率法)
电极布设一次性完成,减少因电极布置而 产生的故障和干扰;
可进行有效的多种电极排列方式采集,或 获得丰富的地电断面;
野外数据采集自动化,避免手工操作出现 的错误;
4.2 高密度电阻率勘探系统:
➢采集及处理(电极系、程控式电极转换开关、电 测仪) ➢ 将全部电极按一定的间距布置在测点上(110m),利用电极转换开关,将每四个相邻电极进 行一次组合,实现多种电极排列的测量参数。 ➢快速采集,提高工作效率、智能化,
测线2位于坝体后坡上,与测线1平行,距坝顶斜距为17米。起点位 于测线1的54.5米处下方,总长206.5米
测线3位于坝体后坡上,与测线2平行,距测线2 斜距为20.4米。起 点与测线2的起点对齐,总长206.5米
测线4(剖面7)位于坝体后坡上,与测线3平行,距测线3斜距为 15.5米。起点位于测线3的6米处下方,总长177米。
高密度电阻率法工程分析

高密度电阻率法工程分析一、高密度电阻率法工作原理和使用意义(一)工作原理和优势高密度电阻率法是一种在方法技术上有较大进步的电阻率法,是集电阻率剖面法和电阻率测深法的特点于一身的一组电法勘探方法。
就其原理而言,它与常规电阻率法完全相同,也是以不同岩(矿)石之间导电性能差异为基础,通过接地电极在地下建立人工电场,以电测仪器观测因不同导电地质体存在时地表电场的变化,进而在此基础之上推测出地下水的分布、构造、含量等情况,以达到探测水资源的目的。
同时,对于工程建设而言,利于此方法能够充分了解地质水文情况进而确保工程建设的安全。
与常规的电阻率相比较而言,因高密度电阻率法采用的是多电机密度一次步极的方式,使之具有更强的性能。
在实际运用具有诸多优势,主要如下:其一,测试过程中电极分布一次性即可完成,不用多次调整可以有效防止测试过程中出现其他故障;其二,对于同一观测剖面,可以通过数据的转换以变化电极的方式以获得ps断面等值线图,数据更为完备;其三,因降低了故障率,提升了工作效果,成本更低,效益更佳,使之用途更加广泛。
因而,在上世纪80年代由日本引进之后,经过科研机构对其使用方法与仪器的研究和生产,使之很快就在我国诸多行业中发挥着巨大作用,在实际运用中取得了效果得到了广泛肯定。
(二)高密度电法的使用意义当前,随着我国社会经济的快速发展,人们对于物质生活的要求日益提升,但水资源缺乏的形式日益加剧,使得对于水资源的探测和开发越发受到社会的广泛关注。
然而,就全国范围内而言,探测水资源的难度较大,在少雨的地区即使采用现代化钻进技术,达到地下100米也难以发现水资源的踪影,造成了极大的人力、物力、财力的浪费。
但是,随着技术的发展,使用电法勘探技术即可有效改变这一现状,低成本的探测水资源。
尤其是高密度电阻率法的使用进一步提升了探测的效果,在野外测量时只需将全部电极(几十至上白根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和白动采集。
高密度电阻率法 道路

高密度电阻率法道路高密度电阻率法在道路工程中的应用引言:道路是人们日常交通的重要基础设施,其质量与安全性直接关系到人们的出行和生活质量。
在道路的设计和施工过程中,需要对路基和路面的材料进行定性和定量的评估,以确保道路的稳定性和耐久性。
高密度电阻率法是一种常用的无损检测方法,可以有效地评估道路材料的质量和性能。
本文将介绍高密度电阻率法在道路工程中的应用及其优势。
一、高密度电阻率法的原理高密度电阻率法是利用电流在材料中的传导性质来评估材料的特性。
当电流通过材料时,会受到材料内部结构和成分的影响,不同的材料会有不同的电阻率。
通过测量电流通过材料时的电阻,可以间接地了解材料的密度、含水量、成分等特性。
在道路工程中,高密度电阻率法可以用来评估路基和路面材料的均质性、含水量、孔隙率等参数。
二、高密度电阻率法在道路工程中的应用1. 路基材料评估:在道路建设前,需要对路基材料进行评估,以确定其承载能力和稳定性。
高密度电阻率法可以通过测量路基材料的电阻率来评估其密实度和含水量,从而判断材料的质量和适用性。
2. 路面材料评估:道路的路面材料直接受到车辆和气候等因素的影响,需要具备一定的耐久性和抗压能力。
高密度电阻率法可以评估路面材料的均匀性和致密度,以及可能存在的空隙和裂缝,从而帮助选择合适的路面材料。
3. 路面质量检测:在道路使用过程中,由于车辆和环境的影响,路面可能会出现损坏和变形等问题。
高密度电阻率法可以用于检测路面的质量和病害情况,及时发现并修复路面问题,保障道路的安全和舒适性。
4. 路基土工性质评估:道路的稳定性和耐久性与路基土的性质密切相关。
高密度电阻率法可以用于评估路基土的孔隙率、含水量和排水性能等指标,为路基设计和施工提供依据。
三、高密度电阻率法的优势1. 非破坏性检测:高密度电阻率法是一种非破坏性的检测方法,不需要对道路进行开挖或损坏,可以在不影响交通的情况下进行。
2. 快速高效:高密度电阻率法可以通过测量电阻来评估材料的特性,操作简便快捷,可以快速获取结果。
高密度电阻率法

高密度电阻率法(multi-electrode resistivity method)是一种阵列勘探方法,它以岩、土导电性的差异为基础,研究人工施加稳定电流场的作用下地中传导电流分布规律。
野外测量时只需将全部电极( 几十至上百根) 置于观测剖面的各测点上, 然后利用程控电极转换装置和微机工程电测仪便可实现数据的快速和自动采集, 当将测量结果送入微机后, 还可对数据进行处理并给出关于地电断面分布的各种图示结果。
简介对取得的多种参数经相应程序的处理和自动反演成像,可快速、准确地给出所测地电断面的地质解释图件,从而提高了电阻率方法的效果和工作效率。
在条件适当时,此方法对工程物探以及探测煤矿的老硐,探测古墓墓穴等有较好的效果。
高密度电阻率法使用的仪器称为高密度电阻率仪或高密度电法测量系统。
高密度电法实际上是集中了电剖面法和电测深法。
其原理与普通电阻率法相同.所不同的是在观测中设置了高密度的观测点。
关于阵列电探的思想早在20 世纪70 年代末期就有人开始考虑实施, 英国学者所设计的电测深偏置系统实际上就是高密度电法的最初模式。
80 年代中期, 日本地质计测株式会社曾借助电极转换板实现了野外高密度电阻率法的数据采集, 只是由于整体设计的不完善性, 这套设备没有充分发挥高密度电阻率法的优越性。
80 年代后期, 我国地矿部系统率先开展了高密度电阻率法及其应用技术研究, 从理论与实际结合的角度, 进一步探讨并完善了方法理论及有关技术问题, 研制成了约3 ~5 种类型的仪器。
近年来该方法先后在重大场地的工程地质调查、坝基及桥墩选址、采空区及地裂缝探测等众多工程勘查领域取得了明显的地质效果和显著的社会经济效益。
与常规电阻率法相比.高密度电法具有以下优势:(1)电极布设是一次完成的, 这不仅减少了因电极设置而引起的故障和干扰, 而且为野外数据的快速和自动测量奠定了基础。
(2)能有效地进行多种电极排列方式的扫描测量, 因而可以获得较丰富的关于地电断面结构特征的地质信息。
高密度电阻率法测试在工程勘察中的应用

│2021·3│中铁二院工程集团有限责任公司协办103高密度电阻率法是一种有效结合电测深和电剖面法,具有多种装置、多种极距特点的勘探方法,属于直流电阻率法的内容。
与传统电阻率相比,高密度电阻率法具有观点密度大、多级电极能够实现自动排列和测量参数等优势。
目前,高密度电阻率法在工程地质勘察、水利水电工程、地质构造等诸多领域已得到广泛应用,并取得优异效果和社会经济效益。
本文结合某水利工程勘察实例,分析高密度电阻率法在水利工程地质勘察中的具体应用。
1. 高密度电阻率法的基本原理高密度电阻率法是建立在传统电法原理基础上的一种新型方法,由人工在导电性不同的介质上加入直流电场,并使用预定装置排列模式扫描,对目标区域内空间视电阻率变化规律进行观察。
其原理是在地下通过A 、B 两个供电极输入稳定的直流电流I ,在电极M 、N 间会产生其电位差ΔU MN ,对其进行测量,并依据公式(1)(2)计算出该测点的视电阻率值的大小。
公式如下:Ρs =KΔU MN / I (1)K =2π/(1/AM-1/AN-1/BM+1/BN ) (K 为装置系数)(2)在收集野外数据时,装置设备所需的电极需要事先全部安装准备好,不需要对测量中的电极进行任何的更换操作。
实际操作中,可以配合多种装置形式和电极距进行工作,再将这些测量好的数据精准地录入到计算机中,然后利用实际测量到的视电阻率精确地计算这些数据剖面,对其进行分析推测出所测地层中的电阻率分布规律,并结合相关的地质资料,进行一系列的研究分析,确定哪些为地质目标体。
电极距的数据点采集使用固定装置形式,逐渐匀速地向右移动这些电极距。
每一个电极距的测量结果,可以显示出在一定深度范围内的岩层使用电阻率剖面法分析电阻率的横向电性变化情况。
其中,每一个电测深点是观测到不同电极距的某一个记录点,对该深点进行分析,可以得出某一个记录点岩层的视电阻率随电极距变化的垂向电性规律,可将岩层分为不同的电极层,从而计算出其深厚度。
高密度电阻率法

RS l
2020/3/16
高密度电阻率法
6
显然,电阻率在数值上等于电流垂直通过单位立方 体截面时,该导体所呈现的电阻。岩矿石的电阻率 值越大,其导电性就越差;反之,则导电性越好。 在国际单位制中,电阻R的单位为 (欧姆),长 度l的单位为米,截面积S的单位为 m2 ,电阻率的单 位为欧姆•米,写作•m 。电阻率的倒数即为电导率, 以 表示 ,它直接表征了岩石的导电性能。其单位 为西门子/米,或s/m. 电阻率是物质的一种属性。从导电机制来看,溶液 主要是借助于其中的带电离子导电;而固体矿物则 可以分为三种类型:金属导体、半导体和固体电解 质。各种天然金属都属于金属导体,由于它们含有 大量的自由电子,因此电阻率很低。比较重要的天 然金属有自然铜和自然金。此外,石墨也是具有某 些特殊性质的电子导电体。
高密度电阻率法是常规电阻率法的一个变种,就 其原理而言,与常规电阻率法完全相同,仍然以 岩、矿石的电性差异为基础,通过观测和研究人 工建立的地下稳定电场的分布规律来解决矿产资 源、环境和工程地质问题。当人工向地下加载直 流电流时,在地表利用相应仪器观测其电场分布, 通过研究这种人工施加电场的分布规律来达到要 解决地质问题的目的,研究在施加电场的作用下, 地层中传导电流的分布规律。求解其电场分布时, 在理论上一般采用解析法。其电场分布满足式 (1.1)的偏微分方程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高密度电法
研究专家 单位 姓名 中国地质大学(武汉)
师学明 中国地质大学(武汉)
王传雷 河海大学
周杨
(了解更多信息点击) 技术原理 在地表水平、地下半空间被导电性均匀、各向同性的岩石所充满的特定条件下,若通过地面的点电流源A(+)和B(-)向地下供入电流强度I 时,根据点源电场的基本公式,很容易写出地面任意两点M 和N 处的电位U M 、U N ,从而可以根据公式推出电阻率ρ。
AM 、AN 、BM 、BN 分别为各电极间的水平距离。
图2.1.1-1 电源电场电流分布图
⎪⎪⎭⎫ ⎝⎛-=
BN AN I U N 112πρ................................................................................................(2-1) ⎪⎪⎭⎫ ⎝⎛-=BM AM I U M 112πρ
................................................................................................(2-2) ⎪⎪⎭⎫ ⎝⎛+--=
-=∆BN BM AN AM I U U U N M MN 11112πρ...........................................(2-3) I
U BN
BM AN AM MN ƥ+--=
11
1
12π
ρ.....................................................................(2-4) 各个电极位置的几何关系通常用装置系数K 表示,即
BN BM AN AM
K 1111
2+--=π
.....................................................................................(2-5)
则电阻率 I U K MN
∆=ρ...................................................................................................................(2-6)
电测深法(electrical sounding )包括电阻率测深和激发极化测深。
resistivity sounding 简称电测深法。
它是在地面的一个测深点上(即MN 极的中点),通过逐次加大供电电极,AB 极距的大小,测量同—点的、不同AB 极距的视电阻率ρS 值或极化率ηs ,研究这个测深点下不同深度的地质断面情况。
保持测量电极MN 的位置固定,在不断增大供电电极距的同时,逐次进行观测。
但是,在实际工作中,由于AB 极距不断加大,若MN 的距离始终保持不变,则ΔUMN将逐渐减小,以至于无法观测。
因此,随着 AB 极距的加大,需要适当地加大 MN 距离,以保证顺利进行观测。
电测深法分为直流电测深法和电阻率断面法。
直流电测深法是研究指定地点岩层的电阻率随深度变化的一种物探方法"该方法是在地面上以测点为中心,从近到远逐渐增加观测装置距离进行测量,根据视电阻率随极距的变化可划分不同的电性层,了解其垂向分布,计算其埋深及厚度。
电阻率断面法是研究岩层电阻率在一定深度范围内的水平方向上物性变化的一种探测方法。
该方法是在供电和测量电极保持一定距离,按一定的探测深度,沿着测线方向逐点进行观测,获得电阻率曲线,以此反映一定深度内电性层的变化情况,
高密度电法的基本工作原理是基于以上电法基础之上的。
通过高密度电法测量系统中的软件,控制着在同一条多芯电缆上布置连结的多个(30—120)电极,使其自动组成多个垂向测深点或多个不同深度的探测断面,根据控制系统中选择的探测装置类型,对电极进行相应的排列组合,按照测深点位置的排列顺序或探测断面的深度顺序,逐点或逐层探测,实现供电和测量电极的自动布点、自动跑极、自动供电、自动观测、自动记录、自动计算、自动存储。
通过数据传输软件把探测系统中存储的探测数据调入计算机中,经软件对数据处理后,可自动生成各测深点曲线及各断面层或整体地电断面的图像。
图2.1.1-2 电源电场电流分布图
1) 布置方案
在工区开展勘测工作之前,首先是综合工程要求、测区条件、勘测目标的性质,可能分布的深度与广度等诸方面情况,制定出一个全面的勘测方案,确定需要布设几条测线,以及各测线布设的地点、方位、长度、基本电极间距、测量装置模式等等。
对于现有的高密度电法存在多种装置模式,主要介绍如下:
a)温纳装置布极方式
温纳装置方式(WN)又称为对称四极装置方式。
A、M、N、B等间距排列,其中
B是供电电极,M、N是测量电极,AM=MN=NB=n•a。
为一个电极距,电极间距按隔离系数由小到大的顺序等间隔增加,四个电极之间的间距也均匀拉开。
该测量方式为剖面测量方式,所得断面为倒梯形(跑极方式见图3)(n为电极隔离系数(即: 深度层位),下同)
图2.1.1-3 温纳装置跑极方式
b)β装置布极方式
β装置方式为特殊的偶极-偶极装置方式。
A、M、N、B等间距排列,其中A、B是供电电极,M、N是测量电极,AB=BM=MN=n•a为一个电极距,电极间距按隔离系数由小到大的顺序等间隔增加,四个电极之间的间距也均匀拉开。
该测量方式为剖面测量方式,所得断面为倒梯形(跑极方式见图2.1.1-4)
图2.1.1-4 β装置跑极方式
c)微分装置布极方式
微分装置模式(F),四电极的排列顺序是A,M,B,N,相邻电极之间的间距相等,其中A、B是供电电极,M、N是测量电极,即:AM=MB=BN=n•a为一个电极距,电极间距按隔离系数由小到大的顺序等间隔增加,四个电极之间的间距也均匀拉开。
该测量方式为剖面测量方式,所得断面为倒梯形(跑极方式见图2.1.1-5)
图2.1.1-5微分装置跑极方式
d)二极剖面布极方式
二极剖面装置供电电极B、测量电极N布设在无穷远处,测线电缆上参与电极转换只有A与M,AM=n•a 为一个电极距,电极间距按隔离系数由小到大的顺序等间隔增加。
该测量方式为剖面测量方式,所得断面为倒梯形(跑极方式见图2.1.1-6)
图2.1.1-6二极剖面装置跑极方式 e) 三极滚动装置布极方式
三极滚动装置模式是测深方式,供电电极B 布设于无穷远,测线电缆上参与电极转换的是A ,M ,N。
测量时在M ,N 定位于某两个电极的情况下,由近到远地逐步移动A 电极,获得一组测深数据;然后再改变M ,N 的X 座标定位,再移动A 获得下一组测深数据,每组测点数Dn=n.
图2.1.1-7三极滚动剖面装置跑极方式 装置特点
温纳装置的特点是,具有最小的装置系数值;最大的信号强度系数;对介质垂向变化反应灵敏;探测深度中等;抗噪能力最强,所以也是在高噪音背景条件下进行观测的首选装置。
其弱点是水平分辨率差;剖面测量的数据成图为倒梯形;底边水平覆盖范围最小;长剖面接续测量时,滚道次数与电极数目需要加大,从而增加了野外观测时间。
β装置对垂向电性变化最灵敏,适用于测量垂向电性变化大的地质剖面。
但是β装置受地形的影响较大。
微分装置能较好的反应覆盖层的厚度,对于已知界面有较好的分辨能力。
二极装置成像剖面的水平覆盖范围最大;探测深度大;布极方式灵活。
其缺点是,垂向分辨率差,两个无穷远电极(B N )设置时要特别注意降低接地电阻,加大供电电流以消除地噪声和保证电位测量精度。
三极滚动模式的特点是,装置系数大于温纳装置,小于偶极—偶极装置,信号强度也介于两者之间;分辨率比温纳装置强。
测量数据的剖面成图是矩形的,采集数据量最大。
这种装置测量具有两个特点,其一,所采集数据点的排列结果是矩形剖面;其二,随着M ,N ,A 电极沿测线的前移,测线始端的电极与电缆将不断闲置下来,那么就可以在不中断测量的前提下,把它们搬迁到测线末端,实现了无缝接续的长剖面测量,操作比较方便。
应用前提:。