木材干缩湿胀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
木材的干缩与湿胀
1 木材干缩与湿胀
1.1 木材干缩和湿胀现象
(1)木材干缩和湿胀湿材因干燥而缩减其尺寸的现象称之为干缩;干材因吸收水分而增加其尺寸与体积的现象称之为湿胀。干缩和湿胀现象主要在木材含水率小于纤维饱和点的这种情况下发生,当木材含水率在纤维饱和点以上,其尺寸、体积是不会发生变化的。
木材干缩与木材湿胀是发生在二个完全相反的方向上,二者均会引起木材尺寸与体积的变化。对于小尺寸而无束缚应力的木材,理论上说其干缩与湿胀是可逆的;对于大尺寸实木试件,由于干缩应力及吸湿滞后现象的存在,干缩与湿胀是不完全可逆的。
干缩与湿胀对木材利用有很大的影响。干缩对木材利用的影响主要是引起木制品尺寸收缩而产生的缝隙、翘曲变形与开裂;湿胀不仅增大木制品的尺寸发生地板隆起、门与窗关不上,而且还会降低木材的力学性质,唯对木桶、木盆及船等浸润胀紧有利。
(2)木材干缩(湿胀)的种类木材的干缩分为线干缩与体积干缩二大类。线干缩又分为顺着木材纹理方向的纵向干缩和与木材纹理相垂直的横向干缩。在木材的横切面上,按照直径方向和与年轮的切线方向划分,横向干缩分为径向干缩与弦向干缩。
纵向干缩是沿着木材纹理方向的干缩,其收缩率数值较小,仅为0.1—0.3%,对木材的利用影响不大。横纹干缩中,径向干缩是横切面上沿直径方向的干缩,其收缩率数值为3—6%;弦向干缩是沿着年轮切线方向的干缩,其收缩率数值为6—12%,是径向干缩的1-2倍。由于木材结构特点使得它在干缩和湿胀性质上表现出明显的方向性,各个方向干缩湿胀的不均匀性对木材加工利用有重要影响,不可忽视。
由于木材径向干缩、弦向干缩数值均较大,导致其体积干缩数值大,通常木材体积干缩数值在1~20%范围内变化。这大数量的体积变化,对于含水量高的板材、方材和原木等产品来说,在贸易上会产生材积数量的短缺,木材流通领域应注意此问题。
1.2 影响木材干缩和湿胀主要因素,木材干缩湿胀除了明显的各个方向的异性外,还与下列因素有关。
(1)树种树种不同,其构造和密实程度不同,干缩湿胀树种间差异很大(表5-5)。有的树种很容易干燥,干缩湿胀和变形都很小,而有的树种特难干燥,其干缩湿胀很大,使用和干燥过程中特别易发生开裂变形。
(2)微纤丝角度木材管胞或纤维胞壁S2层微纤丝角度对木材各向干缩有较大的影响,如图5-8。微纤丝角增大,纵向干缩变大,而弦向干缩变小。特别是微纤丝角大于30,木材纵向干缩明显增大,会因起板材翘曲现象。人工林短周期小径材或带有髓心的板材易发生此种现象,直接影响到板材的利用。
(3)晚材率木材年轮内早晚材颜色差异大,反映出其密实程度差异大。现代技术X-射线密度仪显示晚材最大密度要比早材最小密度大2-3倍。表5-6为马尾松木材晚材率与其横纹干缩间的关系,随着晚材率的增大,径弦向干缩率直线增加,并且弦向干缩始终大于径向干缩。表5-3中三个树种为分离后的早材、晚材分别测定的结果,早材、晚材弦向干缩也大于其径向干缩。这也反映出密实程度大的晚材干缩性,要比密实程度小、松软的早材干缩大得多。木材的顺纹干缩与此相反,即木材顺纹干缩率与密度成反比。当晚材率增加时,顺纹干缩减小,即木材密度愈小,早材相应增多,顺纹干缩亦因而愈大。之所以如此变异,为早材次生壁的中间层较薄,微纤丝的排列相对的成较大角度,木材顺纹干缩与此角度成正比,所以早材率越大,木材顺纹干缩也越大;晚材率大,木材顺纹干缩小。
(4)树干中的部位树干中近髓心的木材,其纵向干缩率大,径向干缩与弦向干缩小;而远离髓心的和近树皮处的木材纵向干缩小,径向干缩与弦向干缩小。这种变化与木材密度和
纤丝角度随年龄变化规律有关。
2 木材干缩与湿胀各向差异的原因
木材干缩、湿胀之所以有纵向、横向不同及径向与弦向的差异,主要与组成木材这种材料的细胞种类、细胞壁构造和化学成分特性相关。针叶材主要是有管胞组成,有少量的木射线组织。阔叶材主要组成分子是木纤维、导管、轴向薄壁组织和木射线。它们细胞壁主要化学组成是纤维素、木素和半纤维素及少量浸提物。理解这些细胞壁结构特性和化学成分的性质,就不难理解木材干缩与湿胀各向差异的原因。下面分别叙述顺纹方向(纵向)干缩与横纹方向(横向)干缩差异及横向干缩中径向与弦向差异的原因。
2.1 纵向干缩与横向干缩差异的原因
木材纵向干缩小,横向干缩大。形成此种现象的主要原因,关键在于木材的构造和化学组成成分的特性。木材中仅有木射线细胞是横向排列,绝大部分细胞是纵向排列。而细胞壁以次生壁占绝大部分,次生壁中S2层占绝对优势(70—90%),因此木材干缩主要取决于次生壁S2层微纤丝的排列方向。微纤丝是由纤维素长链状分子组成,纤维素与水有很大的亲和力,木材的含水率在纤维饱和点时,细胞壁完全充满水,如图5—10A。当含水率在纤维饱和点以下时,木材开始干燥,水分蒸出,微纤丝之间的距离逐渐缩小,如图5—10B;至绝干材时达到最大干缩量,如图5—10C。反之绝干材吸收水分后,微纤丝之间的距离逐渐增大,木材膨胀,直至纤维饱和点时达到最大湿胀量。
木材细胞壁次生壁中间层微纤丝主轴是由C-C、C-O键连结,水分子无法进入到纤维素分子链内的长度方向。微纤丝链状分子上的碳、氧原子只能在原子核范围内活动,其本身轴向不发生收缩。由于正常木材细胞次生壁中层微纤丝排列方向与主轴不完全平行,而成10—30o的夹角,横纹收缩时在轴向会产生微小的分量(0.1-0.3%)。因此轴向收缩很小,横向干缩大于纵向。纵向收缩的大小主要取决于微纤丝角的大小。由于S1层、S3层微纤丝排列方向与主轴近于垂直,S1层微纤丝在內起着支架作用,限制S2层向内收缩;S3层微纤丝在外层圈着S2层,限制S2层向外过度膨胀,因此木材不会发生无限膨胀和无限收缩。
2.2 径向与弦向干缩差异的原因
木材径向干缩是弦向干缩的一半,产生这种现象的原因复杂,不是单一理论可以解释,而且与不同的树种、木材的构造有关。目前,解释其原因主要有早晚材的影响、径向木射线的抑制作用、细胞径向壁与弦向壁木素含量的差异及纹孔数量多少的影响等理论。
(1)早材与晚材的影响木材收缩量与其细胞壁所含物质含量多少成正比。早材材质轻软,细胞壁物质含量少,密实程度低,干缩小;晚材材质较硬,细胞壁物质含量多,密实程度大,干缩大。横切面上径向,年轮中早材与晚材是串联的,径向干缩是早材干缩和晚材干缩的加权平均值。而弦向,年轮中早材与晚材是并联的,弦向干缩主要受晚材的影响,干缩大的晚材迫使整个年轮均随晚材干缩,因而使弦向干缩接近于晚材的干缩,而这样就造成木材的弦向干缩大于径向。
(2)径向木射线的抑制作用木材中,木射线是唯一横向排列细胞所组成。木射线细胞呈径向排列,其细胞微纤丝排列方向与射线细胞轴向一致,因其纵向收缩小,机械地抑制木材径向收缩;而木材弦向为射线细胞的横向,横向干缩大。这使得木材径向收缩小于弦向。北美红栎实验表明,单一木射线组织径向上的全干缩为2.5%;而无射线的部分径向全干缩率为5.1%。柳杉、赤松、扁柏等树种均与假设相等。
(3)细胞径向壁与弦向壁中木素含量的差异的影响木材主要化学成分中,木素的刚度比综纤维素(纤维素、半纤维素)高,木素的吸湿性比综纤维素小。木材纵向细胞的径面壁上木素的含量比弦面壁高,其吸湿性较弦面小,多少限制了木材径向干缩。