苏教版中考数学压轴题 动点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动变化型问题专题复习

【考点导航】

运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型.

【答题锦囊】

例1 如图在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).

(1)设四边形PCQD的面积为y,求y与t的函数关系式;

(2)t为何值时,四边形PQBA是梯形?

(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.

例2如图2,直角梯形CD

,AD=4,DC=3,动点

P从点A

出发,沿A→D→C→B A P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.

(1)求y与x的函数关系式,并求出x y

,的取值范围;

(2)当PQ∥AC时,求x y

,的值;

(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若

O B

把(移

式若

图1

1

2

2

【中考预测】

⒈如图8①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC =8cm ,BC =6cm ,∠C =90°,EG =4cm , ∠EGF =90°,O 是△EFG 斜边上的中点.

如图8②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交 AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).

(1)当x 为何值时,OP ∥AC ?

(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围.

(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.

(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)

⒉如图9,在平面直角坐标系中,两个函数y=x ,6x 2

1y +-=的图象交于点A .动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ//x 轴交直线BC 于点Q ,以PQ 为一

边向下作正方形PQMN ,设它与ΔOAB 重叠部分的面积为S .

(1)求点A 的坐标.

C

线

C

B

D

A

C 2

D 2

C 1B

D 1A ②

图7 图8

图9

动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动.过点P 作PE ∥BC 交AD 于点E ,连结EQ .设动点运动时间为x 秒.

(1)用含x 的代数式表示AE 、DE 的长度;

(2)当点Q 在BD (不包括点B 、D )上移动时,设EDQ ∆的面积为2()y cm ,求y 与月份x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,EDQ ∆为直角三角形.

⒍如图13,在平面直角坐标系中,

30ABO =o

∠.动点P 在线段AB 上从点A 向点B t 秒.在x 轴上取两点M N ,作等边PMN △.

(1)求直线AB 的解析式;

(2)求等边PMN △的边长(用t 的代数式表示),并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值;

(3)如果取OB 的中点D ,以OD 为边在Rt AOB △内部作如图14所示的矩形ODCE ,点C 在线段AB 上.

设等边PMN △和矩形ODCE 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.

⒎如图15,已知Rt ABC △中,∠AE AB ⊥,且15AE =,连接BE 交AC (1)求PA 的长;

(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;

(3)如图16,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相切..,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.

图17

D

C

图12

相关文档
最新文档