黑龙江省哈尔滨市第三中学2019-2020学年高一下学期期末考试数学试卷
哈尔滨市第三中学2020届高三数学综合题三理含解析
![哈尔滨市第三中学2020届高三数学综合题三理含解析](https://img.taocdn.com/s3/m/7b767ac7afaad1f34693daef5ef7ba0d4a736d9f.png)
即OE与FD1所成的角的余弦值为 。
10. 若函数 在其定义域的一个子区间 内不是单调函数,则实数 的取值范围是( )
A. B。 C。 D.
【答案】D
【解析】
因 ,故由题设 在区间 内有零点,即 ,所以 且 ,即 ,应选答案D.
11。 已知两正数 , ,满足 ,则 的最小值为( )
【详解】解:∵ ,
复数 的虚部是 .
故选:C
【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题。
2. 已知 ,函数 ,若 满足关于 的方程 ,则下列选项的命题中为假命题的是
A. B。
C. D。
【答案】C
【解析】
试题分析:因为, 满足关于 的方程 ,所以, ,使 取得最小值,因此, 是假命题,选C.
15。 中, , , , 为 边上一动点,则 的最小值为______.
【答案】
【解析】
【分析】
根据三边长得出直角三角形,以 作为基底,表示出 ,即可求得模长,利用函数单调性求出最值。
【详解】 中, , , , ,
根据勾股定理
为 边上一动点,设 ,
,
,
则
,根据二次函数性质,当 时,取得最小值,
最小值为 。
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)
13。 展开式中 的系数是______。(用数字作答)
【答案】
【解析】
【分析】
利用二项式定理得到 展开式通项,进而得到 展开式通项,令 幂指数等于 可求得 ,代入求得结果。
【详解】 展开式通项公式为 ,
展开式通项公式为 ,
考点:方程的根,二次函数的图象和性质,全称命题、存在性命题.
黑龙江省哈尔滨市第三中学2023-2024学年高一下学期期末考试地理试卷
![黑龙江省哈尔滨市第三中学2023-2024学年高一下学期期末考试地理试卷](https://img.taocdn.com/s3/m/dc0bf375ec630b1c59eef8c75fbfc77da3699768.png)
哈三中2023-2024学年度下学期高一学年期末考试地理(选考)试卷第Ⅰ卷选择题一、单项选择题(本题共40题,每小题1.5分,共60分。
每小题给出的四个选项中,只有一项符合题目要求。
)新学期伊始,哈三中学子进行了校园初探活动。
图1为哈三中学子手绘两校区校园平面图,图甲为古朴典雅的南岗校区,图乙为恢宏大气的群力校区。
两图图幅面积一致。
据此,完成1~3题。
甲乙图11.南岗校园外侧的果戈里大街走向为A.南—北B.西南—东北C.东—西D.西北—东南2.两幅平面图的比例尺大小为A.甲>乙B.甲<乙C.甲=乙D.无法比较3.若乙图中AB之间的图上距离为26 cm,则AB之间的实际距离约为A.52 m B.260 m C.520 m D.5200 m图2为局部经纬网图,甲、乙区域所跨的纬度相等,QR的实际距离约为MN的2倍。
据此,完成4~5题。
图24.A点A.位于西半球B.位于北京(40°N,116°E)西南C.位于中纬度D.位于南半球5.与M点关于地心对称的坐标为A.(60°N,10°E)B.(60°N,170°W)C.(60°S,10°E)D.(60°S,170°W)2024年3月20日8时31分,长征八号遥三运载火箭在海南文昌卫星发射中心顺利升空,成功将“鹊桥二号”卫星送入预定绕月轨道。
作为公共中继星平台,“鹊桥二号”将为后续嫦娥六号、七号、八号任务提供中继通信服务,本次发射正式开启了我国探月工程四期的新征程。
据此,完成6~8题。
图36.下列关于“鹊桥二号”的说法,正确的是A.在飞行过程中会穿过小行星带B.与水星、金星天体类型相同C.所属最低级天体系统是地月系D.在轨运行期间面临强风威胁7.“鹊桥二号”在上升至45 km高空过程中的气温变化是A.不断下降B.不断上升C.先升后降D.先降后升8.“鹊桥二号”发回了清晰的月面图片,获取该图片运用的地理信息技术是A.遥感B.地理信息系统C.全球定位系统D.数字地球洪积扇是河流、沟谷的洪水流出山口进入平坦地区后,因坡度骤减,水流搬运能力降低,碎屑物质堆积而形成的扇形堆积体。
黑龙江省哈尔滨市第三中学校2018-2019学年高一上学期期末考试数学试题(解析版)
![黑龙江省哈尔滨市第三中学校2018-2019学年高一上学期期末考试数学试题(解析版)](https://img.taocdn.com/s3/m/5f10d016ccbff121dd3683ed.png)
哈三中2018—2019学年度上学期高一学年第一模块数学试卷第I卷(选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.()A. B. C. D.【答案】A【解析】【分析】利用特殊角的三角函数值计算即可求出值.【详解】故选:A【点睛】此题考查了特殊角的三角函数值,正确记忆相关角的的三角函数值是解题的关键.2.()A. 2B. -3C. 7D. 1【答案】B【解析】【分析】利用根式的性质及对数的运算性质直接化简求值即可.【详解】.故选:B【点睛】本题考查了根式的运算性质,考查了对数的运算性质,考查了计算能力.3.已知集合,,,则()A. B.C. D.【答案】C【解析】【分析】,借助余弦图像即可得到结果.【详解】∵,∴即故选:C【点睛】本题考查交集概念及运算,考查余弦函数的图象与性质,属于基础题.4.函数的零点所在区间为()A. B.C. D.【答案】C【解析】【分析】令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x),最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【详解】令0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:C.【点睛】本题主要考查函数零点所在区间的求法.考查数形结合思想是中档题.5.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A. ①,②,③,④B. ①,②,③,④C. ①,②,③,④D. ①,②,③,④【答案】B【解析】【分析】通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项【详解】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.【点睛】本题考查幂函数的图象与性质,幂函数的图象取决于幂指数.属于基础题.6.函数的单调递减区间是()A. B. C. D.【答案】A【分析】先求出函数的定义域,再由复合函数的单调性求单调减区间.【详解】∵x2+2x﹣3>0,∴x>1或x<﹣3;又∵y=x2+2x﹣3在(﹣∞,﹣1]上是减函数,在[﹣1,+∞)上是增函数;且y=log2x在(0,+∞)上是增函数;∴函数y=log2(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3);故选:A.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.7.在中,角所对的边分别为,,则A. B. C. D.【答案】B【解析】【分析】利用正弦定理,即可解得.【详解】∵∴,即,∴,又a<b,A三角形的内角,∴故选:B【点睛】本题考查了正弦定理的应用,注意利用大边对大角进行角的限制,属于基础题.8.已知则()A. B. C. D.【答案】D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β).【详解】∵∴,∴。
最新版黑龙江省哈尔滨市第三中学校高一10月月考数学试题Word版含答案
![最新版黑龙江省哈尔滨市第三中学校高一10月月考数学试题Word版含答案](https://img.taocdn.com/s3/m/9ee68bdc04a1b0717fd5dd28.png)
高一第一次阶段性测试(数学)一、选择题(每小题5分)1.已知集合A ={}4,3,2,1,0,B ={}6,5,3,0,则A B 等于(A ){}0,3 (B ){}4,3,2,1,0 (C ){}5,6,0,3 (D ){}6,5,4,3,2,1,02.集合{}0,3,5,7A =的子集个数为(A) 16 (B) 15 (C) 14 (D) 83.集合A =}{40≤≤x x ,B ={}20≤≤y y ,则下列对应关系不能构成从集合A 到集合B映射的是(A )x y x f 21:=→ (B )x y x f 31:=→ (C )x y x f 32:=→ (D ) x y x f =→: 4.已知函数2(1)()13(1)x f x x x x ⎧>⎪=-⎨⎪-+≤⎩,则[](3)f f =(A )1 (B )2 (C )0 (D )2-5.函数y =的定义域为(A )[)[]3,21,2-- (B )[)()3,21,2-- (C )[](]3,21,2-- (D )[)(]3,21,2--6.函数()2f x x = (A )(],2-∞ (B )5,28⎡⎤⎢⎥⎣⎦ (C ) [)2,+∞ (D )15,8⎡⎫∞⎪⎢⎣⎭7. 函数212++=x x y 的值域为 (A )R (B )),74[+∞ (C ) ]74,0( (D )]74,(-∞ 8.已知)(x f 是一次函数,2(2)3(1)5,2(0)(1)1f f f f -=--=,则=)(x f(A )23+x (B )23-x (C )32+x (D )32-x9.全集为R ,{}2|50A x x x =->,B ={}a x x <-5|,(a 是常数),且10B ∈,则 (A )()U A B R =ð (B )()U B A R =ð (C )()()U U A B R =痧 (D )A B R =U 10.若函数1)1(2++-=x a ax y 在()+∞∈,2x 上是增函数,则(A )0>a (B )1>a (C )1≥a (D )31≥a11.已知函数⎩⎨⎧<-≥+=)0(4)0(4)(22x x x x x x x f ,若2(2)(1)f a a f ->-,则实数a的取值范围是(A )()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭ (B )11,2⎛⎫- ⎪⎝⎭(C )1,12⎛⎫- ⎪⎝⎭ (D )()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭12.已知21,x x 是方程()()053222=+++--k k x k x ()R k ∈的两个实根,则2212(1)(1)x x -+-的最大值为(A )32 (B ) 36 (C )955 (D )不存在二、填空题(每小题5分)13.不等式12x +>的解集为 .14.已知2()21f x x =+,则(21)f x += .15.函数2)(2++-=x x x f 的单调递增区间为 .16.定义在正实数集上的函数满足条件:(1)1)2(=f ;(2))()()(y f x f xy f +=;(3)y x >时)()(y f x f >,则满足2)3()(≤-+x f x f 的x 的取值范围为_____.三、解答题(本大题共4道题,每小题10分,共40分)17. 已知函数2()x f x x +=,证明函数()f x 在区间(0,)+∞内单调递减.18. 已知集合{}06|2<--=x x x A ,{}082|2<-+=x x x B ,{}023|22<+-=a ax x x C ,若()C A B ⊆I ,求实数a 的取值范围.19. 若正方形ABCD 边长为4,一质点P 从B 出发沿正方形从B 至C 至D 至A 运动,设点P运动路程为x ,把ABP ∆的面积)(x f 表示为x 的函数.(1)求)(x f 的解析式;(2)x 取何值时ABP ∆面积最大?最大值是多少?20.已知函数bax x x f +=2)(( ,a b 为常数)且方程()12f x x =-有两个实根为123,4x x ==.(1)求函数()f x 的解析式;(2)设1k >,解关于x 的不等式;xk x k x f --+<2)1()(.参考答案1.A2.A3.C4.B5.D6.D7.C8.B9.D 10.D11. C 12.A13.14.15.16.17.证明略。
黑龙江省哈尔滨市第三中学2024届高三上学期期末数学试题(解析版)
![黑龙江省哈尔滨市第三中学2024届高三上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/95bb222b7ed5360cba1aa8114431b90d6c858924.png)
哈三中2023-2024学年度上学期高三学年期末考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知{}21log 1,12xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则A B = ( )A. ()1,2- B. ()1,0- C. ()0,2 D. ()1,2【答案】C 【解析】【分析】根据对数函数的单调性、指数函数的单调性,结合集合交集的定义进行求解即可.【详解】由()22log 1log 2020,2x x A <=⇒<<⇒=,由()011100,22x x B ⎛⎫⎛⎫<=⇒>⇒=+∞ ⎪ ⎪⎝⎭⎝⎭,所以A B = ()0,2,故选:C 2. 复数12iiz +=的虚部为( )A. 1- B. 2C. i- D. i【答案】A 【解析】【分析】利用复数除法的运算法则化简为复数的代数形式,即可得到复数虚部.【详解】由()()2212i i 12i 2i i 2i i iz +-+===--=--,所以虚部为-1.故选:A3. 函数()232f x x x =+的大致图象是( )A. B.C. D.【答案】B 【解析】【分析】先求出定义域,再确定为偶函数,最后由特殊值法确定即可.【详解】定义域为0x ≠,()()()223322f x x x f x xx -=-+=+=-为偶函数,采用特殊值法代入,当x 趋近于零时,2x 趋近于零,23x 趋于正无穷;此时()232f x x x =+取值趋于正无穷;当x 趋近于正无穷时,2x 趋近于正无穷,23x 趋于零,此时()232f x x x=+取值趋于正无穷;所以只有B 图像符合;故选:B4. 若()(),1,2,,3a b a b a b m +=-==,则实数m =( )A. 6B. 6- C. 3D. 3-【答案】B 【解析】【分析】将a b a b +=- 两边平方,结合数量积的运算律求出a b ⋅ ,再根据数量积的坐标公式即可得解.【详解】因为a b a b +=-,所以()()22a ba b +=- ,即222222a b a b a b a b ++⋅=+-⋅,所以0a b ⋅=,即60+=m ,解得6m =-.故选:B.5. 已知命题:2000R,210x ax ax ∃∈+-≥为假命题,则实数a 的取值范围是( )A. ()(),10,-∞-⋃+∞B. ()1,0-C. []1,0-D. (]1,0-【答案】D 【解析】【分析】根据含有一个量词的命题的否定,可知命题:2R,210x ax ax ∀∈+-<为真命题,讨论a 是否为0,结合0a ≠时,解不等式,即可求得答案.【详解】由题意知命题:2000R,210x ax ax ∃∈+-≥为假命题,则命题:2R,210x ax ax ∀∈+-<为真命题,故当0a =时,2210ax ax +-<,即为10-<,符合题意;当0a ≠时,需满足2Δ440a a a <⎧⎨=+<⎩,解得10a -<<,综合可得实数a 的取值范围是(]1,0-,故选:D6. 若椭圆221259x y +=和双曲线22197x y -=的共同焦点为12,,F F P 是两曲线的一个交点,则12PF F △的面积值为 ( )A.B.C. D. 8【答案】A 【解析】【分析】设点(),P m n ,根据方程组求点P 的坐标和焦距,进而可得面积.【详解】对于椭圆221259x y +=可知:半长轴长为5,半短轴长为3,半焦距为4,则128F F =,设点(),P m n ,则22221259197m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩,解得=n 所以12PF F △的面积值为182⨯=.故选:A.7. 等比数列{}n a 中,n S 为{}n a 的前n 项和,若51013S S =,则1015SS =( )A.37B.73C.12D. 1【答案】A 【解析】【分析】根据51051510,,S S S S S --构成等比数列求解即可.【详解】因为{}n a 为等比数列,51013S S =,设510,3,0S k S k k ==>,所以51051510,,S S S S S --构成等比数列.所以15,2,3k k S k -构成等比数列,所以157S k =,所以10153377S k S k ==.故选:A8. 哈三中第38届教改汇报课在2023年12月15日举行,组委会派甲乙等6名志愿者到,A B 两个路口做引导员,每位志愿者去一个路口,每个路口至少有两位引导员,若甲和乙不能去同一路口,则不同的安排方案总数为( )A. 14 B. 20 C. 28 D. 40【答案】C 【解析】【分析】先安排甲乙两人,再根据分组分配的方法安排其余4名志愿者.【详解】先安排甲乙两人,有22A 2=种方法;再安排其余4名志愿者有两类方法,共有122424C A C 14+=种方法,根据分步计数原理可得共有21428⨯=种方法.故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分,9. 下列说法正确的是( )A. 已知111,,,202420232023α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在()0,∞+上递减,则α只能为1-B. 函数()212log 20242023y x x =-+-的单调递减区间为()1,1012C.函数y =与函数3y x =-是同一个函数D. 已知函数()21f x +的定义域为[]1,1-,则函数()22f x +的定义域为[]1,1-【答案】BCD 【解析】【分析】对于A ,直接由幂函数的奇偶性、单调性即可验证;对于B ,由复合函数单调性以及复合对数函数的定义域即可验证;对于C ,定义域都是全体实数,且对应法则也一样,由此即可判断;对于D ,由抽象函数定义域的求法即可验证.【详解】对于A ,当1α=-时,幂函数()1f x x xα==奇函数,且在()0,∞+上递减,满足题意,当12023α=时,幂函数()1f x x x α==在()0,∞+上递增,不满足题意,当12023α=-时,幂函数()f x x α==()0,∞+上递减,满足题意,当2024α=-时,幂函数()20241f x x xα==为偶函数,在()0,∞+上递减,不满足题意,故A 错误;对于B ,12log y t =关于t 在定义域内单调递减,若函数()212log 20242023y x x =-+-关于x 在定义域内单调递减,则由复合函数单调性可知220242023x x t -+-=关于x 单调递增,而二次函数220242023x x t -+-=开口向下,对称轴为2012x =,所以22024202302012x x x ⎧-+->⎨<⎩,解得12012x <<,所以函数()212log 20242023y x x =-+-的单调递减区间为()1,1012,故B 正确;对于C ,()13333y x x ⎡⎤==-=-⎣⎦,故C 选项正确,对于D ,若函数()21f x +的定义域为[]1,1-,则[][]1,1,211,3x x ∈-+∈-,所以函数()22f x +的定义域满足[]221,3x +∈-,解得[]1,1x ∈-,故D 正确.故选:BCD.10. 已知正数,a b ,2a b +=,且a b >,则下列说法正确的是( )为A.1b a> B. e e a b a b+>+ C.114a b+> D.1<【答案】AB 【解析】【分析】选项A ,将不等式1b a>等价转化为1ab <,由于和式为定值,判断积的取值范围即可;对于选项B ,需要研究函数e x y =的单调性,即可判断不等式;对于选项C ,1111()2a b a b a b ++=+⨯,应用基本不等式即可;对于选项D 平方,2a b =++,判断积的取值范围即可;【详解】对于选项A ,1b a>等价1ab <,2a b =+≥1≤,其中a b >1<,1ab <,不等式成立,选项A 正确;对于选项B ,因为e 1>,指数函数e x y =是增函数,且a b >,所以e e a b >所以e e a b a b +>+,选项B 正确;对于选项C ,1111()112222a b b a a b a b a b ++=+⨯=++≥+=,由于a b >,22b a a b ≠,等号取不到,112a b+>,选项C 不正确;对于选项D ,22()4a b a b +=++≤+=,由于a b >,等号取不到,所以24<2<,选项D 不正确;故选:AB.11. 在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的有( )A. 11//AC 平面1B CDB. 点1C 到平面1B CDC. 当P 在线段11C D 上运动时,三棱锥11A B PC -的体积不变D. 若Q 为正方体侧面11BCC B 上的一个动点,,E F 为线段1AC 的两个三等分点,则QE QF +的最小值【答案】BCD【解析】【分析】对于A 通过观察可得直线11A C 与平面有公共点1A 所以A 不正确;对于B 利用等体积法计算点到平面距离;对于C 观察到点P 到平面11A B C 的距离为定值,确定三棱锥11A B PC -的体积不变;对于D 利用线段1AC 关于平面11BCC B 的对称直线,将QE QF +转化,利用两点间线段距离最短求解.【详解】对于A ,因为平面1B CD 也就是平面11A B CD 与直线11A C 有公共点1A ,所以A 选项不正确. 对于B ,设点1C 到平面1B CD 的距离为h ,由1111C B CD D CC B V V --=得11111133B CD CC B S h S ⨯=⨯ ,由已知易得11,CD B C D ===则1B CD △是直角三角形,所以1B CD S =112C CD S =,解得h =.故B 选项正确对于C ,设点P 到平面11A B C 的距离为h ,易知点P 所在的直线11C D 与平面11A B C 平行,则点P 到平面11A B C 的距离为定值,因为11111113A B PC P A B C A B C V V S h --==⨯ ,其中11A B C S 也为定值,故C 选项正确.对于D ,如图1QE QF QE QF +=+,当1E Q F 、、共线的时候1QE QF EF +=最小,在1AC M 中222111111cos 23C A C M AMAC M C A C M+-∠==,由余弦定理得22211111111112cos 9EF C E C F C E C F AC M =+-∠=,所以1EF =,所以QE QF +有最小值,故D 正确.故选:BCD12. 已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2,()f x 的最小正周期为π,将()y f x =图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,再把得到的曲线向左平移π3个单位长度得到()g x 的图象,则下列结论正确的是( )A. π6x =是()f x 图象的一条对称轴 B. ()π2cos 26f x x ⎛⎫=-⎪⎝⎭C. π2g x ⎛⎫+⎪⎝⎭是奇函数 D. 方程()2lg 0g x x -=有3个实数解【答案】ACD 【解析】【分析】由()f x 最小正周期为π,求出ω,由最值点和最值,求出,a b ,得()f x 的解析式,判断AB 选项;由函数图象的变换,求()g x 的解析式,验证C 选项,数形结合验证D 选项.【详解】()()cos sin f x a x b x x ωωωϕ=+=-,其中tan b aϕ=,()f x 的最小正周期为πT =,则有2π2π2πT ω===,故()()2f x x ϕ=-,函数()f x 在π6x =处取得最大值2,则πππcos sin 26332f a b ⎧⎛⎫=+= ⎪⎪⎝⎭=,解得1a b =⎧⎪⎨=⎪⎩()πcos22cos 23f x x x x ⎛⎫==- ⎪⎝⎭,B 选项错误;函数()π2cos 23f x x ⎛⎫=- ⎪⎝⎭在π6x =处取得最大值2,则π6x =是()f x 图象的一条对称轴,A 选项正确;将()y f x =图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得函数π2cos 3y x ⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移π3个单位长度得到()2cos g x x =的图象,ππ2cos 2sin 22g x x x ⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭,函数为奇函数,C 选项正确;在同一直角坐标系下作出函数()2cos g x x =和函数2lg y x =的图象,如图所示,的两个函数图象有3个交点,可知方程()2lg 0g x x -=有3个实数解,D 选项正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 已知α为第二象限角,2sin 3α=,则tan2α=_______.【答案】-【解析】【分析】根据同角三角函数的关系式,结合正切的二倍角公式即可求得.【详解】因为2sin 3α=,α为第二象限角,所以cos ===α则sin tan cos ===ααα22tan tan21tan ααα=-2⎛⨯==-故答案为:-14. 已知边长为2的等边三角形ABC 所在平面外一点,S D 是AB 边的中点,满足SD 垂直平面ABC,且SD =S ABC -外接球的体积为_______.【解析】【分析】建立空间直角坐标系,设出球心坐标,根据外接球的性质,列出方程组,即可求出外接球的半径,从而求得三棱锥S ABC -外接球的体积.【详解】因为SD 垂直平面ABC ,ABC 为等边三角形,且D 是AB 边的中点,以D 为坐标原点,分别以,,DB DC DS 所在的直线为x 轴,y 轴,z轴,建系如图,设三棱锥S ABC -外接球的球心(),,O x y z ,半径为R ,因为2AB BC AC ===,则DC ===,又因为SD =(S ,()1,0,0B ,()1,0,0A -,()C ,则====OS OA OB OC R ,即RRR R ====,解得0x y z R =⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩所以三棱锥S ABC -外接球的体积3344R 33V ππ===.15. 直线l 与抛物线24x y =交于,A B 两点且3AB =,则AB 的中点到x 轴的最短距离为_______.【答案】916【解析】【分析】设出直线方程,利用弦长得到两个变量间的关系式,结合函数单调性可得答案.【详解】设直线l 的方程为y kx m =+,()()1122,,,A x y B x y ;联立24y kx m x y=+⎧⎨=⎩,2440x kx m --=,216160k m ∆=+>,12124,4x x k x x m +==-.AB ==因为3AB =3=,整理可得()229161m k k =-+.由()21212242y y k x x m k m +=++=+,所以AB 的中点到x 轴的距离为()2212292112161y y k m k k +=+=++-+设21t k =+,则1t ≥,1291216y y t t +=+-,由对勾函数的单调性可得129216y y +≥,当且仅当0k =时,取到最小值916.故答案为:91616. 设()f x 是定义在()(),00,∞-+∞U 上的奇函数,对任意的()12,0,x x ∈+∞满足()()1221120x f x x f x x x ->-且()315f =,则不等式()5f x x >的解集为_______.【答案】(,3)(0,3)-∞-⋃【解析】【分析】根据题意可设()(),0f x g x x x=≠,结合()f x 的奇偶性判断()g x 的奇偶性,再结合题设判断()g x 的单调情况,进而结合不等式()5f x x >,讨论x 的正负,结合()g x 的单调情况,分类求解,即可得答案.【详解】设()(),0f x g x x x=≠,而()f x 是定义在()(),00,∞∞-⋃+上的奇函数,即()()f x f x -=-,故()()()()f x f x g x g x xx---===--,即()(),0f x g x x x=≠为偶函数;对任意的()12,0,x x ∞∈+,不妨设12x x <,则()()()()121212f x f xg x g x x x -=-()()211212x f x x f x x x -=,又对任意的()12,0,x x ∞∈+满足()()1221120x f x x f x x x ->-,当12x x <时,120x x -<,则()()12210x f x x f x -<,即()()21120x f x x f x ->,而120x x >,故()()()()1212120,f x f x g x g x x x ->∴>,则()g x 在()0,∞+上单调递减,又()g x 为偶函数,故()g x 在(),0∞-上单调递增,()315f =,故()3(3)53f g ==,则(3)5g -=-,而不等式()5f x x >,即为不等式()50f x x x ⎧>⎪⎨⎪>⎩或()50f x x x ⎧<⎪⎨⎪<⎩,即()5(3)0g x g x >=⎧⎨>⎩或()5(3)g x g x <=-⎧⎨<⎩,故03x <<或3x <-,即不等式()5f x x >的解集为(,3)(0,3)-∞-⋃,故答案为:(,3)(0,3)-∞-⋃【点睛】方法点睛:诸如此类抽象函数的问题,解答时要结合题设构造出函数,由此判断出其奇偶性和单.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,角,,A B C 所对的边分别为,,a b c)sin b C C =-.(1)求角B ;(2)D 为AC 边上一点,DB BA ⊥,且4AD DC =,求cos C 的值.【答案】(1)2π3; (2.【解析】【分析】(1)利用正弦定理边化角,然后由三角形内角和定理与和差公式化简整理即可求解;(2)BCD △和Rt ABD 分别根据正弦定理和三角函数定义列式,联立整理得2c a =,再由余弦定理求得b =,然后可解.在【小问1详解】)sinb C C=-,)sin sinA B C C=-,又()()sin sinπsin sin cos cos sinA B C B C B C B C⎡⎤=-+=+=+⎣⎦,)cos sin sin sinB C B C B C C+=-,整理得)πsin sin2sin sin03C B B C B⎛⎫+=+=⎪⎝⎭,因为()0,π,sin0C C∈>,所以πsin03B⎛⎫+=⎪⎝⎭,又()ππ4π0,π,,333B B⎛⎫∈+∈ ⎪⎝⎭,所以ππ3B+=,即2π3B=.【小问2详解】由(1)知B,因为DB BA⊥,所以π6CBD∠=,记BDCθ∠=,则πBDAθ∠=-,在BCD△中,由正弦定理得πsinsin6CD aθ=,得2sinaCDθ=,在Rt ABD中,有()sinπsinc cADθθ==-,因为4AD DC=,所以2sin sinc aθθ=,得2c a=,在ABC中,由余弦定理可得22222π422cos73b a a a a a=+-⨯=,即b=,所以cos C==18. 已知{}n a是公差不为零的等差数列,11a=,且125,,a a a成等比数列.(1)求数列{}n a的通项公式;.(2)若114(1)n n n n nb a a ++=-⋅,求{}n b 的前1012项和1012T .【答案】(1)21n a n =- (2)101220242025T =【解析】【分析】(1)根据等差数列的通项公式和等比中项即可得解;(2)由裂项相消法可求出前1012项和.【小问1详解】设等差数列{}n a 的公差为d ,又11a =,则211a a d d =+=+,51414a a d d =+=+,因为125,,a a a 成等比数列,所以2215a a a =⋅,即()()21114d d +=⨯+,得220d d -=,又因为{}n a 是公差不为零的等差数列,所以2d =,即()()1111221n a a n d n n =+-=+-=-.【小问2详解】由(1)知()()11114411(1)(1)(1)21212121n n n n n n n n b a a n n n n ++++⎛⎫=-=-=-+ ⎪⋅-⋅+-+⎝⎭,1012123410111012T b b b b b b =++++++ 11111111111133557792021202320232025⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 12024120252025=-=.19. 已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点为12,A A ,点G 是椭圆C 的上顶点,直线2A G 与圆2283x y +=相切,且椭圆C.(1)求椭圆C 的标准方程;(2)过椭圆C 右焦点F 的直线l (与x 轴不重合)与椭圆C 交于A B 、两点,若点()0,M m ,且MA MB =,求实数m 的取值范围.【答案】(1)22184x y +=(2)[【解析】【分析】(1)先由离心率得出a =,再由直线2A G 与圆2283x y +=相切得到圆心(0,0)O 到直线2A G 的距离等于半径得出2222883a b a b +=,联立即得椭圆方程;(2)依题设出直线AB 方程,与椭圆方程联立,得出韦达定理,求出AB 的中点H 坐标,利用条件MA MB =判断MH 是直线AB 的中垂线,求出方程,将求m 的取值范围转化成求关于t 的函数的值域问题即得.【小问1详解】由c a =可得:a =①因2(,0),(0,)A a G b ,则2:1A Gx y l a b +=即:0bx ay ab +-=,又因直线2A G 与圆2283x y +==2222883a b a b +=②,联立①②,可解得:2a b ⎧=⎪⎨=⎪⎩故椭圆C 的标准方程为:22184x y +=.【小问2详解】如图,因直线l 与x 轴不重合,椭圆焦点为(2,0)F ,故可设:2l x ty =+,由222184x ty x y =+⎧⎪⎨+=⎪⎩,消去x整理得:22(2)440t y ty ++-=,易得:0∆>,不妨设1122(,),(,)A x y B x y ,则有12212242,42t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩设AB 中点为00(,)H x y ,则:1202222y y t y t +==-+,1212022()442()222222x x t y y t t x t t ++==+=⋅-+=++,即:2242(,)22t H t t -++,因MA MB =,则MH 为直线AB 的中垂线.又因直线AB 的斜率为1t,故直线AB 的中垂线MH 的斜率为t -,于是2224:()22MH t l y t x t t +=--++,因()0,M m ,则有:222422222t t tm t t t =-=+++,①当0=t 时,0m =,此时直线:2l x =,点(0,0)M ,符合题意;②当0t ≠时,22m t t=+,若0t >,则2t t +≥可得m ∈,当且仅当t =时取等号;若0t <,则2t t +≤-,可得[m ∈,当且仅当t =.综上,实数m的取值范围为[.20. 如图,在四棱锥P ABCD -中,//,4,2,60AB CD AB BC CD BP DP BCD ︒=====∠=,AD PD ⊥.(1)求证:平面PBD ⊥平面ABCD ;(2)若线段PC 上存在点F ,满足CF FP λ= ,且平面BDF 与平面ADP实数λ的值.【答案】(1)证明见解析(2)2λ=【解析】【分析】(1)要证面面垂直,需证线面垂直,就是要证AD ⊥平面PBD ,再进一步判断面面垂直;(2)建立空间直角坐标系,用向量的方法求解.【小问1详解】如图:因为2CB CD ==,60BCD ∠=︒,所以BCD △为等边三角形,2BD =又//AB CD ,所以60ABD BDC ∠=∠=︒,又4AB =,所以22212··cos 60164242122AD AB BD AB BD =+-︒=+-⨯⨯⨯=.因为222AD BD AB +=,所以ABD △为直角三角形,AD BD ⊥.又AD PD ⊥,BD ,PD 为平面PBD 内的两条相交直线,所以AD ⊥平面PBD ,AD ⊂ABCD ,所以:平面PBD ⊥平面ABCD .【小问2详解】取BD 中点O ,AB 中点E ,因为PB PD =⇒PO BD ⊥,又平面PBD ⊥平面ABCD ,平面PBD 平面ABCD BD =,PO ⊂平面PBD ,所以PO ⊥平面ABCD ,又OE BD ⊥,故以O 为原点,建立如图空间直角坐标系,所以()0,1,0B ,()0,1,0D -,()0,0,3P ,)E,()1,0A -,()C .设(),,F x y z ,因为CF FPλ=⇒()(),,,3x y z x y z λ+=---⇒()3x xy y z z λλλ⎧=-⎪=-⎨⎪=-⎩解得031x y z λλ⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩,所以31F λλ⎛⎫ ⎪ ⎪+⎝⎭.设平面ADP 的法向量为()111,,m x y z =,则m AD m DP ⎧⊥⎪⎨⊥⎪⎩ ⇒·0·0m AD m DP ⎧=⎪⎨=⎪⎩⇒()()()()111111,,0,,0,1,30x y z x y z ⎧⋅-=⎪⎨⋅=⎪⎩⇒111030x y z =⎧⎨+=⎩,取()0,3,1m =- ;设平面BDF 的法向量为()222,,n x y z = ,则n BD n BF ⎧⊥⎪⎨⊥⎪⎩ ⇒·0·0n BD n BF ⎧=⎪⎨=⎪⎩ ⇒()()()222222,,0,2,003,,1,01x y z x y z λλ⎧⋅-=⎪⎛⎫⎨⋅-= ⎪⎪ ⎪+⎝⎭⎩⇒222030y z λ=⎧⎪⎨+=⎪⎩,取),0,1n =.那么⋅=m n ()0,3,1-⋅),0,11=-,m =,n = .由m n m n ⋅=⋅⇒231λ+=⇒24λ=,又0λ>,所以2λ=.【点睛】关键点睛:根据CF FP λ=,和点C 、F 的坐标,求F 点坐标是本题的一个关键.21. 圆G经过点(()2,,4,0-,圆心在直线y x =上.(1)求圆G 的标准方程;(2)若圆G 与x 轴分别交于,M N 两点,A 为直线:16l x =上的动点,直线,AM AN 与曲线圆G 的另一个交点分别为,E F ,求证直线EF 经过定点,并求出定点的坐标.【答案】(1)2216x y +=(2)证明见详解,直线EF 过定点()1,0【解析】【分析】(1)设出圆心坐标,利用圆心到圆上各点的距离等于半径求解即可;(2)设出直线AM 的方程和直线AN 的方程,分别与圆的方程联立写出E F 、的坐标,进而写出直线EF的方程,化简即可证明直线EF 经过定点,并求出定点的坐标.【小问1详解】因为圆心在直线y x =上,设圆心为(),,a a 又因为圆G经过点(()2,,4,0-则()(()222224a a a a -+-=++,解得0a =,所以圆心()0,0,4=,所以圆G 的标准方程为2216x y +=【小问2详解】由圆G 与x 轴分别交于,M N 两点,不妨设()()4,0,4,0M N -,又A 为直线:16l x =上的动点,设()()16,0A t t ≠,则,,2012==AM AN t t k k 则AM 方程为()420t y x =+,AN 方程为()412ty x =-,设()()1122,,,E x y F x y ,联立方程()2242016t y x x y ⎧=+⎪⎨⎪+=⎩,解得()()22224008164000t x t x t +++-=,所以()212164004400t x t --=+,即()211224400160,400400t t xy t t --==++,即()2224400160,400400t t E t t ⎛⎫-- ⎪ ⎪++⎝⎭.联立方程()2241216t y x x y ⎧=-⎪⎨⎪+=⎩,解得()()22221448161440t x t x t +-+-=,所以()222161444144t x t -=+,即()22222414496,144144t t x y t t --==++,即()222414496,144144t t F t t ⎛⎫-- ⎪ ⎪++⎝⎭.所以()()2222221609640014444004144400144EFt tt t k t t t t --++=----++232240=-t t,所以直线EF 的方程为()222241449632,144240144t t t y x t t t ⎛⎫-- ⎪-=- ⎪+-+⎝⎭化简得()2321,240ty x t =--所以直线EF 过定点()1,0.22. 已知函数()()()22e e e ,,e 12x x x xf xg xh x x -+===+.(1)求函数()f x 在1x =处的切线方程;(2)当0x >时,试比较()()(),,f x g x h x 的大小关系,并说明理由;(3)设n *∈N ,求证:1111111111ln2123421223421n n n -+-+⋅⋅⋅+-<<-+-+⋅⋅⋅+--.【答案】(1)e e 44y x =+ (2)()()()f x g x h x <<;理由见解析; (3)证明见解析.【解析】【分析】(1(2)构造函数,利用导数确定函数的单调性,求出最值,即可判定结论;(3)构造函数,结合数列知识求和即可证明结论.【小问1详解】由()e1xf x x =+得,()()2e 1xx f x x '=+,所以()f x 在1x =处的切线的斜率()e 14k f ='=,切点e 1,2⎛⎫⎪⎝⎭,所以所求切线方程:()e e124y x -=-,即e e 44y x =+;【小问2详解】结论:()()()f x g x h x <<;理由如下:要证()()f x g x <,即证e e e 12x x x x -+<+,只需证()()2e 1e e x x xx -<++,为令()()()2e 1e e x x x x x ϕ-=-++,则()()()()()2e e e 1e -e ee x x x x x x x x x x ϕ---=-+-+=-',当0x >时,1x e -<,e 1x >,故()0x ϕ'<,所以()()()2e 1e e xx x x x ϕ-=-++在0x >时单调递减,所以()()00x ϕϕ<=,即()()2e 1e e 0x x x x --++<,所以e e e 12x x xx -+<+,故()()f x g x <;要证()()g x h x <,即证22e ee 2x x x -+<,只需证22e e ln ln e 2x x x -+<,令()222e e e e 1ln ln e ln 222x x x x x v x x --++=-=-,则()e e e e x x x x v x x ---=-+',令()e e e ex xx x w x x ---=-+,则()()241e e x x w x -=-+',当0x >时,e e 2x x -+>,从而()2e 4x ->,故()()2410e e x x w x -=-'<+,所以()e e e ex xx x v x x ---=-+'在0x >时单调递减,所以()()00v x v ''<=,从而()2e e 1ln 22x x v x x -+=-在0x >时单调递减,所以()()00v x v <=,即22e e ln ln e 20x x x -+-<,即22e e ln ln e 2x x x -+<所以22e ee 2x x x -+<,故()()g x h x <,又因为()()f xg x <,所以()()()f x g xh x <<.【小问3详解】令()()()ln 101x u x x x x =-+>+,则()()()22110111x u x x x x -=-=<+++'所以()()ln 11x u x x x =-++在当0x >时单调递减,所以()()00u x u <=,所以()ln 11x x x <++,即()1ln 111x x <++,令1x n =,则有()11ln 1ln 1ln 1n n n n ⎛⎫<+=+- ⎪+⎝⎭,即()1ln 1ln 1n n n <+-+,所以()()1ln 2ln 12n n n <+-++,()()1ln 3ln 23n n n <+-++,⋯()1ln 2ln 212n n n<--,所以111ln 2ln ln 2112n n n n n++<-=++ ,所以111111234212n n-+-+⋅⋅⋅+--11111111223421242n n ⎛⎛⎫=++++⋅⋅⋅++-++⋅⋅⋅+ ⎪-⎝⎝⎭1111111112342122n n n ⎛⎫⎛⎫=++++⋅⋅⋅++-++⋅⋅⋅+ ⎪ ⎪-⎝⎭⎝⎭,所以11111111112342121112n n n n n n-+-+⋅⋅⋅+-=+++-+++ ,因为1111ln 21112n n n n+++<+++ ,所以111111ln 2234212n n -+-+⋅⋅⋅+-<-;下面先证当0x >时,ln 1≤-x x ,令()()1ln 0p x x x x =-->,()111x p x x x'-=-=,令()0p x '>,则1x >,所以()1ln p x x x =--在()0,1上单调递减,在()1,∞+上单调递增,所以()()10p x p ≥=,从而()1ln 0p x x x =--≥,即ln 1≤-x x ,当且仅当1x =时,ln 1x x =-,所以当0x >时,()ln 1x x +<,令1x n =,则有11ln 1n n⎛⎫+< ⎪⎝⎭,即()1ln 1ln n n n+-<,所以()()1ln 2ln 11n n n +-+<+,()()1ln 3ln 22n n n +-+<+,⋯()()1ln 2ln 2121n n n --<-,所以()1111ln 2ln 1221n n n n n n -<++++++- ,即111ln 2121n n n ++++>+- ,因为1111123421n -+-+⋅⋅⋅+-111111112234212422n n ⎛⎫⎛⎫=++++⋅⋅⋅+-++⋅⋅⋅+ ⎪⎪--⎝⎭⎝⎭111111112342121n n ⎛⎫⎛⎫=++++⋅⋅⋅+-++⋅⋅⋅+ ⎪ ⎪--⎝⎭⎝⎭,所以111111111234211221n n n n n -+-+⋅⋅⋅+=++++-++- ,因为1111ln 21221n n n n ++++>++- ,所以11111ln 223421n -+-+⋅⋅⋅+>-,综上所述,1111111111ln2123421223421n n n -+-+⋅⋅⋅+-<<-+-+⋅⋅⋅+--.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
黑龙江省哈尔滨市第三中学2024-2025学年度高一上学期12月月考地理试卷( 含答案)
![黑龙江省哈尔滨市第三中学2024-2025学年度高一上学期12月月考地理试卷( 含答案)](https://img.taocdn.com/s3/m/a3b6c328bf1e650e52ea551810a6f524cdbfcb4c.png)
哈三中2024-2025 学年度上学期高一学年12 月月考地理试卷第Ⅰ卷选择题一、选择题:本题共30 小题,每小题2分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2016 年9 月25 日,有着“超级天眼”之称的全球最大单口径球面射电望远镜在贵州大窝凼落成启用。
“天眼”探测范围可达人类目前已知的宇宙边缘,对探索地外文明具有重要意义。
据此完成1~2 题。
1.“天眼”可探测到的最高级别天体系统为A .可观测宇宙B .银河系C .太阳系D .地月系2.“地外文明”所在星球若适合人类居住,可能是因为其①有适合生物呼吸的大气②体积和质量较小③距恒星近,表面温度高④有液态水的存在A . ①③B . ①④C . ②③D . ②④北京时间2024 年4 月23 日13 时左右,太阳表面相隔数十万公里的不同位置,几乎同时发生了四次罕见的耀斑,共覆盖了太阳表面三分之一的面积,在人类观测史上尚属首次。
据此完成3~4 题。
3 .耀斑发生在太阳大气层中的A .光球层B .色球层C .日冕层D .对流层4 .太阳耀斑爆发对地球带来的影响可能有A .全球多地火山活动频发B .地表指南针指示方向更准C .赤道上空出现极光现象D .影响多地无线电短波通信2022 年11 月27 日晚,世界最大的活火山——美国夏威夷冒纳罗亚火山喷发,喷发过程中产生了大量火山灰云。
图1 示意地球圈层结构。
据此完成5~6 题。
图15 .冒纳罗亚火山喷发的岩浆在地球内部圈层迁移的顺序是A .地核—下地幔—上地幔—地壳B .莫霍面—软流层—岩石圈—地壳C .地核—地幔—岩石圈—软流层D .软流层—上地幔顶部—莫霍面—地壳6 .下列关于地球圈层结构的叙述,正确的是A . ①是大气圈,随海拔升高,大气密度减小B . ②是水圈,即各种水体组成的不连续圈层C . ③是地壳,大陆地壳较薄、大洋地壳较厚D . ④是岩石圈,在地球圈层结构中最为活跃甘肃省和政县地处青藏高原和黄土高原交会处,孕育了珍贵的古脊椎动物化石群。
黑龙江哈尔滨第三中学校学年高二下学期期中考试数学(理)试题 含答案
![黑龙江哈尔滨第三中学校学年高二下学期期中考试数学(理)试题 含答案](https://img.taocdn.com/s3/m/4ea955a9fab069dc5122011f.png)
哈三中2018-2019学年度下学期高二学年第一模块考试数学(理)试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设命题n n N n p 2,:2>∈∃,则¬p 为A .n n N n 2,2>∈∀B .n n N n 2,2≤∈∃C .n n N n 2,2≤∈∀D .n n N n 2,2=∈∃ 2.“21<<x ”是“2<x ”成立的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3. 复数i m m m m )3()6522-++-(是纯虚数,其中i 是虚数单位,则实数m 的值是 A .3 B .2 C .2或3 D .0或2或34.用反证法证明命题:“已知*∈N y x ,,如果xy 可被7整除,那么y x ,至少有一个能7 整除”时,假设的内容是A .y x ,都不能被7整除B .y x ,都能被7整除C .y x ,只有一个能被7整除D .只有x 不能被7整除5.设a ,b 为实数,若复数1+2i 1i i a b =++,其中i 是虚数单位,则 A .31,22a b == B .3,1a b == C .13,22a b ==D .1,3a b == 6 . 如果命题“p ∧q ”是假命题,“¬p ”是真命题,那么 A .命题p 一定是真命题 B .命题q 一定是真命题C .命题q 一定是假命题D .命题q 可以是真命题也可以是假命题 7.dx e e x x ⎰-+10)(= A .e e 1+B .2eC .e 2D .ee 1- 8. 函数]2,2[,sin )(ππ-∈-=x x x x f 的最大值是 A .21π+- B .2π C. 2π- D. 21π- 9. 已知命题“若函数mx e x f x -=)(在()0,+∞上是增函数,则1≤m ”,则下列结论确的是 A .否命题是“若函数mx e x f x -=)(在()0,+∞上是减函数,则1m >”,是真命题B .逆命题是“若1≤m ,则函数mx e x f x -=)(在()0,+∞上是增函数”,是假命题C .逆否命题是“若1m >,则函数mx e x f x -=)(在()0,+∞上是减函数”,是真命题D .逆否命题是“若1m >,则函数mx e x f x -=)(在()0,+∞上不是增函数”,是真命题10. 函数xe tx x xf )()(2+=(实数t 为常数,且t <0)的图象大致是 A . B .C .D .11.如下分组正整数对:第一组为{},)1,2(),2,1(第二组为{},)1,3(),3,1(第三组为{},)1,4(),2,3(),3,2(),4,1(第四组为{},)1,5(),2,4(),4,2(),5,1(依此规律.则第30组第20个数对是A .)20,12(B .)10,20( C. )11,21( D. )12,20(12. 设函数)(x f 是定义在),1(+∞-上的连续函数,且在0=x 处存在导数,若函数)(x f 及其导函数)(x f '满足1)()1ln()(+-=+'x x f x x x f ,则函数)(x f A. 既有极大值又有极小值 B. 有极大值 ,无极小值C. 有极小值,无极大值D. 既无极大值也无极小值第Ⅱ卷 (非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13. 给定两个命题p ,q ,若p ⌝是q 的必要不充分条件,则p 是q ⌝的________条件.14. 曲线2x x y -=和x x y -=2所围成的封闭图形的面积是_______.15. 甲乙丙丁四人参加某项比赛,只有一人获奖,甲说:是乙或丙获奖,乙说:甲丙都未获奖,丙说:我获奖了,丁说:是乙获奖,已知四人中有且只有一人说了假话,则获奖人为________. 16. 已知函数()⎪⎩⎪⎨⎧<+≥+=1,21211,ln 1x x x x x f ,若21x x ≠,且2)()(21=+x f x f ,则21x x +的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. (本小题满分10分)已知函数()89323-++-=x x x x f . (1)求函数()f x 的极值;(2)若[]0,3-∈x 时,()12-+<c c x f 恒成立,求实数c 的取值范围.18. (本小题满分12分)(1)求证:1532+>;(2)设b a ,均为正实数,求证:221122≥++ab b a19. (本小题满分12分)已知数列}{n a 满足).(31,011*+∈-+==N n a a a a nn n 且 (1) 求432,,a a a 的值并依此猜想数列}{n a 的通项公式;(2) 用数学归纳法证明你的结论.20. (本小题满分12分)近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量y (单位:千件)与销售价格x (单位:元/件)之间满足如下的关系式:a R a x x x a y ,,62,)6(422∈<<-+-=为常数.已知销售价格为4元/件时,每月可售出21千件.(1)求实数a 的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格x 的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)21. (本小题满分12分) 已知.ln 221)(2)(R a x x ax x f ∈-+= (1)讨论函数)(x f 的单调性;(2)若),1[,4)(2)(+∞∈--=x ax x f x g 的最大值为0,求实数a 的取值范围.22. (本小题满分12分)已知函数R m me x x f x ∈--=+,1)(1.(1)若直线3-=y 为函数()f x 的一条切线,求实数m 的值;(2)讨论函数()f x 的零点的个数.哈三中2018-2019学年度下学期高二学年第一模块考试数学(理)答案一. 选择题CABAA DDADB CC二. 填空题13.充分不必要 14. 31 15.乙 16. ),2ln 23[+∞- 三.解答题17.(1)极小值为 13)1(-=-f 极大值为19)3(=f(2)5-<c 或4>c 18.略19.(1) 数列11,53,21,21432+-====n n a a a a n (2)略20. (1)10=a (2) 3.321.(1) 当1-≤a 时,)(x f 在),0(+∞上单调递减; 当01<<-a 时,)(x f 在),211(),211,0(+∞+--++-aa a a 上单调递减, 在)211,211(a a a a +--++-上单调递增; 当0=a 时,)(x f 在21,0(上单调递减,在),21(+∞上单调递增; 当0>a 时,)(x f 在)211,0(a a ++-上单调递减, 在),211(+∞++-a a 上单调递增; (2) 2-≤a 时22.(1)1=m (2) 当0≤m 或31em =时,)(x f 有1个零点;当310e m <<时,)(x f 有2个零点; 当31e m >时,)(x f 没有零点.。
2020-2021学年黑龙江省哈尔滨市第三中学高一下学期期末考试数学试题
![2020-2021学年黑龙江省哈尔滨市第三中学高一下学期期末考试数学试题](https://img.taocdn.com/s3/m/8378ce3cb9f3f90f77c61b64.png)
2020-2021学年黑龙江省哈尔滨市第三中学高一下学期期末考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,在本试卷上作答无效。
2.请将选择题答案填涂在机读卡上,非选择题答案填写在第II 卷答题纸上。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试题卷共23题, 全卷满分150分。
考试用时120分钟。
第I 卷(选择题,共70分)一、选择题:本题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满足2025(1)1z i i +⋅=-,则z 的虚部为( ) A.iB.1-C.i -D.12.某沙漠地区经过治理,生态系统得到很大改善,野生动物有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,计划从这些地块中抽取20个作为样区,根据现有的统计资料,各地块间植物覆盖面积差异很大,为了让样本具有代表性,以获得该地区这种野生动物数量准确的估计,在下面的抽样方法中,最合理的抽样方法是( ) A.系统抽样 B.分层抽样 C.简单随机抽样 D.非以上三种抽样方法3.平面向量()2,1a =,2b =,4a b ⋅=,则向量a 、b 夹角的余弦值为( ) A.255B.45 C. 55 D. 154.如图是一个由正四棱锥P ﹣A 1B 1C 1D 1和正四棱柱ABCD ﹣A 1B 1C 1D 1构成的组合体,正四棱锥的侧棱长为6,BB 1为正四棱锥高的4倍.当该组合体的体积最大时,点P 到正四棱柱ABCD ﹣A 1B 1C 1D 1外接球表面的最小距离是( ) A. 6243- B. 6(32)- C. 6(21)-D. 6(31)-5.已知在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()2b a ac =+,则sin cos cos a Ab A a B-的取值范围是( )A.20,2⎛⎫ ⎪ ⎪⎝⎭B.30,2⎛⎫⎪ ⎪⎝⎭ C.12,22⎛⎫ ⎪ ⎪⎝⎭D.13,22⎛⎫⎪ ⎪⎝⎭ 6.已知平面α、平面γ、平面β、直线a 以及直线b ,则下列命题说法错误的是( ) A. 若αα⊥b a ,//,则b a ⊥ B. 若b a =⋂=⋂γβγαβα,,//,则b a //C. 若αβα⊥a ,//,则β⊥aD. 若γβγα⊥⊥,,则βα⊥a ,// 7.平行四边形ABCD 中,4AB =,3AD =,060=∠BAD ,Q 为CD 中点,点Р在对角线BD1上,且BD BP λ=,若BQ AP ⊥,则=λ( ) A.14B.12C.23D.348.已知直三棱柱ABC ﹣A 1B 1C 1中,60ABC =∠︒,12AA AB ==,1BC =,则异面直线A 1B 与B 1C 所成角的余弦值为( )A.1010B.31020C.31010 D. 10209.某地一重点高中为让学生提高遵守交通的意识,每天都派出多名学生参加与交通相关的各类活动.1现有包括甲、乙两人在内的6名中学生,自愿参加交通志愿者的服务工作这6名中学生中2人被1分配到学校附近路口执勤,2人被分配到医院附近路口执勤,2人被分配到中心市场附近路口执1勤,如果分配去向是随机的,则甲、乙两人被分配到同一路口的概率是( ) A.15B.25C.35 D. 4510.如图是古希腊著名的天才几何学家希波克拉底(公元前470年~公1元前410年)用于求月牙形图形面积所构造的几何图形,先以AB为直径构造半圆O ,C 为弧AB 的中点,D 为线段AC 的中点, 再以AC 为直径构造半圆D ,则由曲线AEC 和曲线AFC 所围成 的图形为月牙形,在图形ABCE 内任取一点,则该点在月牙形内的概率为( )A.112+πB.3+π C. 2+πD. 11+π11.已知平面α与β所成锐二面角的平面角为80︒,P 为α,β外一定点,过点P 的一条直线与α和β所1成的角都是30,则这样的直线有且仅有( )A. 1条B. 2条C. 3条D. 4条12.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c +=-,11则1tan 2tan()C B C +-的最小值为( )B. 2C. 1D. 13.6(1)(1)ax x -+的展开式中,3x 项的系数为-10,则实数a 的值为( ) A.23B. 2C. -2D. 23-14.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点(-1,0)的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A. 80,11⎛⎫ ⎪⎝⎭B. 110,8⎛⎫⎪⎝⎭C. 80,19⎛⎫ ⎪⎝⎭D. 190,8⎛⎫ ⎪⎝⎭第II 卷(非选择题,共80分)二、填空题:本题共4小题,每小题5分,共20分.15.若向量2a =,2b =,()a b a -⊥,则向量a 与b 的夹角等于_________.16.6(12)(2x -的展开式中2x 的系数为________.(用数字作答)17.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖儒.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,其三视图是三个全等的等腰直角三角形,则异面直线AC 与BD 所成的角的余弦值为______.18.已知函数()||||1x x f x e =+,()()2,02,0f x xg x x x a x ⎧≤=⎨-+>⎩,且()10g =,则关于x 的方程()()10g g x t --=实根个数的判断正确的是_________.①当2t <-时,方程()()10g g x t --=没有相异实根②当110t e-+<<或2t =-时,方程()()10g g x t --=有1个相异实根 ③当111t e <<+时,方程()()10g g x t --=有2个相异实根④当111t e -<<-+或01t ≤<或11t e=+时,方程()()10g g x t --=有4个相异实根三、解答题:共60分,解答应写出文字说明、证明过程或演算步骤.19.(本题满分12分)在①cos 13sin b B a A+=,②2sin tan b A a B =,③()()sin sin sin a c A c A B b B -++=这三个条件中任选一个,补充在下面的横线上,并加以解答.已知△ABC 的内角A 、B 、C 所对的边分别是a 、b 、c ,若______. (1)求角B ;(2)若4a c +=,求△ABC 周长的最小值,并求出此时△ABC 的面积. 20.(本题满分12分)在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业 加班加点生产口罩、防护服、消毒水等防疫物品,保障 抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产厂商在加大生产的同时,狠抓质量管 理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[)100,110,[)110,120,[)120130,, [)130140,,[]140,150,得到如下频率分布直方图. (1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口1罩,质量指标值不低于130的为一级口罩.现从样本口罩中利用分层抽样的方法随机抽取8个1口罩,再从中抽取3个,求恰好取到一级口罩个数为2的概率;(2)在2020年“五一”劳动节前,甲、乙两人计划同时在该型号口罩的某网络购物平台上分别参加1A 、B 两店各一个订单“秒杀”抢购,其中每个订单由n ()*2,n n N ≥∈个该型号口罩构成.假1定甲、乙两人在A 、B 两店订单“秒杀”成功的概率分别为2nπ,2cosn nπ,记甲、乙两人抢购1成功的订单总数量、口罩总数量分别为X ,Y .①求X 的分布列及数学期望()E X ;②求当Y 的数学期望()E Y 取最大值时正整数n 的值.21.(本题满分12分)如图,三棱锥A BCD -中,侧面ABD △是边长为2的正三角 形,22AC CD ==,平面ABD ⊥平面BCD ,把平面ACD 沿CD 旋转至平面PCD 的位置,记点A 旋转后对应的点为P (不在平面BCD 内),M 、N 分别是BD 、CD 的中点. (1)求证:CD MN ⊥;(2)求三棱锥C APD -的体积的最大值. 22.(本题满分12分)(1)已知()2112n x +-的展开式中第二项与第三项的二项式系数之比为1:4,求n 的值.(2)记()212210122112n n n x a a x a x a x +++-=+++⋅⋅⋅+,*n N ∈,①求0121n a a a +++⋅⋅⋅+;②设()2kk k a b =-,求和:()()01221123122k n b b b k b n b +⋅+⋅+⋅+⋅⋅⋅++⋅+⋅⋅⋅++⋅.23.(本题满分12分)设,a b ∈R ,b 为常数,*,2n N n ∈≥,函数(),n f x x ax b x R =-+∈, (1)设3n =,①已知2,1a b ==,求函数f (x )的所有极值的和;②已知0a >,02b <<,函数f (x )在区间[0,1]上恒为非负数,求实数a 的最大值;并判断a 取最大值时函数()f x 在R 上的零点的个数;(2)求证:无论,a n 如何变化,只要函数()f x 同时存在极大值和极小值,那么所有这些极值的和1就是与,a n无关的常数.绝密★启用前 试卷类型A哈尔滨市第三中学2020—2021学年度第二学期期末考试 高一数学试卷参考答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
精练03 基本不等式-高一上学期数学期末考点(新教材人教A版必修第一册)
![精练03 基本不等式-高一上学期数学期末考点(新教材人教A版必修第一册)](https://img.taocdn.com/s3/m/102315aca98271fe910ef9eb.png)
精练03基本不等式1.【内蒙古赤峰市2019-2020学年高一期末】已知0x >,0y >满足22280x y xy y x +--=,则2y x +的最小值为( )A .B .4C .D【答案】C 【详解】由22280x y xy y x +--=知:(2)8xy x y y x +=+,而0x >,0y >∴182y x x y +=+,则21816(2)(2)()101018y x y x y x x y x y +=++=++≥=∴2y x +≥ 故选:C2.【湖北省荆州市2019-2020学年高一期末】若正数x ,y 满足21x y +=,则12x y+的最小值为( )A .4B .3+C .8D .9【答案】C 【详解】解:因为正数x ,y 满足21x y +=,所以()12422248x y x y x y y x ⎛⎫++=+++≥+=⎪⎝⎭, 当且仅当4x y y x =,即11,42x y ==时取等号, 所以12x y+的最小值为8, 故选:C3.【宁夏回族自治区银川一中2019-2020学年高一期末】下列函数的最小值为2的是( ) A .1y x x=+B .1sin (0)sin 2y x x x π=+<<C .y =D .1tan (0)tan 2y x x x π=+<<【详解】 对于A. 1y x x=+,当0x <时,0y <,所以最小值为不是2,A 错误; 对于B. 1sin 0sin 0sin 2y x x x x π⎛⎫=+<<> ⎪⎝⎭,,所以1sin 2sin x x +≥=时, 即sin 1x =,此时无解,所以原式取不到最小值2 ,B 错误.对于C.2y =≥2=,此方程无解,则y 的最小值取不到2,C 错误;对于D,1tan (0)tan?2y x x x π=+<<,因为tan 0x >,所以1tan 2tan x x +≥=, 当且仅当tan 1x =,即4x π=时,y 有最小值2,满足,D 正确;故选:D.4.【江西省南昌市2019-2020学年高一期末】已知a ,0b >,且满足21a ab +=,则3a b +的最小值为( )A B C .D .【答案】C 【详解】 ∵21a ab +=, ∴1b a a=-.即11332a b a a a a a +=+-=+≥=当且仅当2a =时取等号.∴3a b +的最小值为5.【河北省石家庄市2019-2020学年高一期末】如果x >0,y >0,且111x y+=,则xy 有( ) A .最小值4 B .最大值4 C .最大值14D .最小值14【答案】A 【详解】x >0,y >0,且111x y+=,又11x y +≥1≤,114xy ≤, 即4xy ≥,当2x y ==时取等号, 则xy 有最小值4, 故选:A6.【贵州省毕节市威宁县2019-2020学年高一期末】已知正实数a ,b 满足1a b +=,则2241a ba b--+的最小值为( ) A .11 B .9C .8D .7【答案】C 【详解】解:因为正实数a ,b ,且1a b +=,所以2241a b a b--+41a b a b =-+- 41()b a a b =+-+ 41()()1b a a b =+⋅+- 44b a a b =++4≥8=当且仅当4b a a b =即223a b ==时,取等号. 所以2241a b a b--+的最小值为8. 故选:C.7.【广东省佛山市禅城区2019-2020学年高一期末】若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1ab ≤B ≤C .22a b +≥D .223a b +≥【答案】A 【详解】对于A ,0a >,0b >,a b ∴+≥12a b+≤=,即1ab ≤,当且仅当1a b ==时取等号,故A 正确;对于B ,224a b =++=+≤2≤,当且仅当1a b ==时取等号,故B 错误; 对于C , 不妨设32a =,12b =时,23172244a b =+=<+,故B 错误; 对于D ,()2222422+=+-≥-=a b a b ab ,当且仅当1a b ==时取等号,故D 错误. 故选:A8.【广东省佛山市南海区2019-2020学年高一期末】若函数()()40,0af x x x a x=+>>当且仅当2x =时取得最小值,则实数a 的值为( ) A .12 B .24C .16D .36【答案】C 【详解】()4af x x x=+≥24x a =,∴22x ==,解得:16a =, 故选:C.9.【黑龙江省哈尔滨市第三十二中学2019-2020学年高一期末】已知0,0x y >>,231x y +=,则48x y+的最小值为( )A .8B .6C .D .【答案】C 【详解】∵00x y >>,,231x y +=,∴232482x y x y ≥+=+= 当且仅当2322x y =即11,46x y ==时,等号成立,所以48x y +的最小值为. 故选:C10.【安徽省合肥市第十一中学2019-2020学年高一期末】若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A .245B .285C .5D .6【答案】C 【详解】由已知可得31155x y +=,则3194123131234()(34)555555555y x x y x y x y x y +=++=+++≥+=,所以34x y +的最小值5,应选答案C .11.【山西省晋中市祁县第二中学2019-2020学年高一期末】若两个正实数,x y 满足112x y+=,且不等式2x y m m +<-有解,则实数m 的取值范围是( )A .()1,2-B .()4,1-C .()(),12,-∞-+∞D .()(),14,-∞-+∞【答案】C 【解析】正实数x ,y 满足112x y+=, 则()111112222224y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当1,y x x y ==+取得最小值2. 由2x y m m +<-有解,可得22m m ->, 解得m >2或m <−1. 本题选择C 选项.12.【安徽省宿州市十三所省重点中学2019-2020学年高一期末】已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3 B .4C .5D .6【答案】B 【详解】因为2m >,0n >,3m n +=,所以21m n -+=,则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n -=-且3m n +=,即51,22m n ==时取等号, 故选:B.13.【安徽省宣城市2019-2020学年高一期末】已知m ,0n >,4121m n+=+,则m n +的最小值为( ) A .72B .7C .8D .4【答案】A 【详解】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72.故选:A.14.【湖北省武汉市部分重点中学(武汉六中等)2019-2020学年高一期末】已知1x >,0y >,且1211x y+=-,则2x y +的最小值为( ) A .9 B .10 C .11D .726+【答案】B 【详解】1x >,10x ->,又0y >,且1211x y+=-, 2(1)21x y x y ∴+=-++[]12(1)211x y x y ⎛⎫=-+++ ⎪-⎝⎭22(1)61y x x y -=++- 22(1)621y x x y-+⋅-10=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故2x y +的最小值为10. 故选:B .15.【湖南省长沙市长沙县实验中学2019-2020学年高一期末】设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( )A .0B .3C .94D .1【答案】D 【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?3xy xy x y zx xy y x y y xy x===-++--,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D16.【广东省惠州市2019-2020学年高一期末】函数2241y x x =++的最小值为__. 【答案】3 【详解】函数2241y x x =++, 即()224111y x x =++-+1413≥=-=, 当且仅当212+=x ,即1x =±时,取等号, 则函数的最小值为3, 故答案为:3.17.【吉林省长春市实验中学2019-2020学年高一期末】已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________.【答案】(),1-∞ 【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞.18.【湖南省长沙市雨花区2019-2020学年高一期末】设1x >,则函数151y x x =++-的最小值为_____ 【答案】8【详解】 1x >,∴函数115(1)62(1)68111y x x x x x x =++=-++-+=---,当且仅当2x =时取等号. 因此函数151y x x =++-的最小值为8. 故选:A .19.【湖北省仙桃市、天门市、潜江市2019-2020学年高一期末】已知0a >,0b >,且24ab a b =++,则ab 的最小值为______. 【答案】4 【详解】0a >,0b >,,可得24ab ≥,当且仅当a b =时取等号.)120∴≥,∴2≥1≤-(舍去),4ab ∴≥.故ab 的最小值为4. 故答案为:4.20.【四川省凉山州2019-2020学年高一期末】已知0a >,0b >,1a b +=,则1aa b+的最小值为______. 【答案】3 【详解】依题意1113a a b a b a a b a b a b ++=+=++≥+=. 当且仅当12a b ==时等号成立. 故答案为:321.【河北省唐山市第一中学2019-2020学年高一期末】若441x y +=,则x y +的取值范围是____________.【答案】(],1-∞- 【详解】由基本不等式可得1144222x y x y x y +++=+≥=⨯=,10x y ∴++≤,解得1x y +≤-.所以,x y +的取值范围是(],1-∞-. 故答案为:(],1-∞-.22.【安徽省淮南市第一中学2019-2020学年高一期末】已知x ,0y >,且194x y+=,则x y +的最小值________. 【答案】4 【详解】因为x ,0y >,且194x y+=,所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y xx y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4, 故答案为:423.【山西省2019-2020学年高一期末】已知0a >,0b >,1a b +=,则161a b+的最小值为__________. 【答案】25 【详解】()1611611617b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭17172425≥+=+⨯= 当且仅当2216a b =,即45a =,15b = 时取等号. 故答案为:2524.【重庆市巴蜀中学2019-2020学年高一半期考试】设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.【答案】20202019-【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b =时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 25.【四川省乐山市2019-2020学年高一期末】已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.【答案】10【详解】49abc a b =+4994a b c ab a b+∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号) 故答案为:1026.【湖北省仙桃市、天门市、潜江市2019-2020学年高一期末】一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比;若在距离车站2km 处建仓库,则1y 和2y 分别为10万元和1.6万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?并求出这个最小值.【答案】5km 处,最小值为8万元..【详解】解:设仓库建在距离车站km x 处时,两项费用之和为y 万元.根据题意可设1y x λ=,2y x μ=.由题可知,当2x =时,110y =,2 1.6y =,则20λ=,45μ=. 所以()20405y x x x =+>.根据均值不等式可得8y ≥=, 当且仅当2045x x =,即5x =时,上式取等号. 故这家公司应该把仓库建在距离车站5km 处,才能使两项费用之和最小,且最小值为8万元.27.【安徽省池州市2019-2020学年高一期末】已知函数2(4)()x f x x+=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.【答案】(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【详解】 (1)220(4)50()(4)5033x x f x x x x>⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >. (2)22(4)81616()8816x x x f x x x x x +++===++≥=, 当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16. 28.【浙江省宁波市慈溪市2019-2020学年高一期末】已知0a >,0b >且3a b +=.(Ⅰ)求11()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值.【答案】(Ⅰ)32a b==时,11a b⎛⎫+⎪⎝⎭取得最大值为2-;(Ⅱ)6a=-,3b=-+3+;【详解】解:(Ⅰ)1133224233333333333a b a b b a b aa b a b a b a b a b+++=+=+=+++=,当且仅当33b aa b=且3a b+=,即32a b==时取等号,311423loga b⎛⎫∴+=-⎪⎝⎭即最大值为2-,(Ⅱ)3a b+=,∴223313131(1)121111a ba b a ba b a b a b a b++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b b aba b a b b++=+++=+++=+++,当且仅当3(1)44(1)b aa b+=+且3a b+=,即6a=-3b=-+29.【黑龙江省哈尔滨市第三中学2019-2020学年高一期末】已知0a>,0b>.(1)求证:()2232a b b a b+≥+;(2)若2a b ab+=,求ab的最小值.【答案】(1)证明见解析;(2)1.【详解】证明:(1)∵()()222223220a b b a b a ab b a b+-+=-+=-≥,∴()2232a b b a b+≥+.(2)∵0a>,0b>,∴2ab a b=+≥2ab≥1,∴1≥ab.当且仅当1a b==时取等号,此时ab取最小值1.和分析法来一起证明,属于中档题.30.【安徽省合肥市第十一中学2019-2020学年高一期末】某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围;(2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.【答案】(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x 米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<; (2)()80016001600 4280828084S x x x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⋅⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .。
黑龙江省哈尔滨市第三中学2021-2021学年度下学期高一期中考试语文试题(含答案)
![黑龙江省哈尔滨市第三中学2021-2021学年度下学期高一期中考试语文试题(含答案)](https://img.taocdn.com/s3/m/16c0d897e43a580216fc700abb68a98271feaca5.png)
哈三中2021-2022学年度下学期高一学年期中考试语文试卷本试卷共150分,考试时间150分钟。
考生作答时,请将答案写在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整、笔迹清楚。
3.请按题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,无破损。
一、现代文阅读(30分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
作为文艺作品产生之后人类审美活动的产物,历史记载的最早的文艺评论可能出现在周景王元年,而南朝刘勰的《文心雕龙》作为我国第一部文艺评论著作,对我国古代文艺理论的发展产生了深远的影响,以至后来涌出了大量文艺评论家及佳作。
由此可见,文艺评论与文艺创作都拥有深厚的历史内涵,两者对繁荣文艺事业发挥着不可或缺的作用。
文艺评论对文艺创作的积极作用首先表现在对文艺作品的艺术价值的把控和遴选上。
一部好的文艺作品,应该经得住大众的评判,经得住历史时间的洗礼,经得住时代变换的考验。
虽然任何文艺作品都是当下时代文化的产物,但文化艺术终归代表着人对美好事物的追求,通过文艺评论工作可以把那些创作水准不高、艺术价值缺失的文艺作品筛选剔除,并达到提升文艺作品艺术价值的作用。
其次,文艺评论对文艺创作的积极作用更反映在对文艺作品创作的积极精神导向上。
文艺作品的灵魂在于其中蕴含的精神文化,好的文艺评论不仅会关乎文艺作品本身的创作技术问题,更会关乎文艺作品中蕴含的精神内核。
文艺评论可以通过审美导向和价值导向,使文艺创作朝着更合乎主流价值观、审美观的方向进行。
进入新时代以来,多样化媒介及市场经济环境催生了文艺作品创作和传播的热潮。
审视当下文艺作品的创作动因,既有当代文艺创作者为表达自身文化艺术理念价值而创作出来的作品,也有迎合商业市场创作的功利性产品。
高一下期末数学试卷(附答案)
![高一下期末数学试卷(附答案)](https://img.taocdn.com/s3/m/1b0542136ad97f192279168884868762caaebb44.png)
21.已知在 中,角A、B、C的对边分别为a、b、c,且满足 .
(1)求角C的大小;
(2)若 , 的面积等于 ,求c边长.
22.已知关于x,y的方程 .
(1)若方程C表示圆,求实数m的取值范围;
(2)若圆C与直线 相交于M,N两点,且 ,求m的值.
【详解】(1)由频率分布直方图的面积和为1,则
,得 ,
又由100人中 分数段的人数比 分数段的人数多6人
则 ,解得 ,
中位数中位数为
(2)设“抽取的2名同学的分数不在同一组内”为事件A,
由题意知,在分数为 的同学中抽取4人,分别用 , , , 表示,
在分数为 的同学中抽取2人,分别用 , 表示,
从这6名同学中抽取2人所有可能出现的结果有:
∴ , ,
∴ 面 , 面 ,
∵ ,∴平面 平面 ,
∵ 平面 ,∴ 平面 .
(2)因为底面ABCD为矩形,所以 ,
又因为平面 平面ABCD,
平面 平面 , 平面ABCD,所以 平面PAD.
因为 平面PAD,所以 .
又因为 , ,所以 平面PCD.
因为 平面PAB,所以平面 平面PCD.
25.【答案】(1)证明见解析;(2) ;(3) .
3.【答案】D
【详解】直线 的斜率为 ,直线 的斜率为3,由题意,
,解得 。故选D
4.【答案】B
【详解】根据正弦定理: ,故 ,解得 .
故选:B.
5.【答案】A
【详解】 ,
当且仅当 ,即 时,取等号.
所以函数 的最小值为5
故选:A
6.【答案】C
黑龙江省哈尔滨市第三中学2024-2025学年高三上学期期中考试数学试题
![黑龙江省哈尔滨市第三中学2024-2025学年高三上学期期中考试数学试题](https://img.taocdn.com/s3/m/d2afb34159fb770bf78a6529647d27284a733717.png)
黑龙江省哈尔滨市第三中学2024-2025学年高三上学期期中考试数学试题一、单选题1.已知集合{}222M y y x x ==--∣,N x y ⎧==⎨⎩,则M N = ()A .[3,1)-B .[1,1)-C .(1,3)D .[1,4]2.已知向量a ,b 满足2a b a b -=+ ,其中b 是单位向量,则a 在b方向上的投影向量是()A .bB .34bC .14bD .12b- 3.已知函数()22()log 2,f x x ax a =-∈R ,则“1a ≤”是“函数()f x 在(1,)+∞上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若πcos 43α⎛⎫+= ⎪⎝⎭,则1tan sin αα-=()A .125-B .65C .125D .5125.已知圆221:(3)81C y x ++=和222:(3)1C y x -+=,若动圆P 与这两圆一个内切一个外切,记该动圆圆心的轨迹为M ,则M 的方程为()A .221167y x +=B .221259y x +=C .2212516y x +=D .221169x y +=6.如图,三棱柱111ABC A B C -中,E ,F 分别是AB 、AC 的中点,平面11EFC B 将三棱柱分成体积为12,V V (左为1V ,右为2V )两部分,则21:V V =()A .5:6B .3:4C .1:2D .5:77.专家表示,海水倒灌原因是太阳、月亮等星体的共同作用下,海水的自然涨落,如果天气因素造成的涨水现象赶上潮汐高潮的时候,这个时候水位就会异常的高.某地发生海水倒灌,未来24h 需要排水减少损失,因此需要紧急抽调抽水机.经测算,需要调用20台某型号抽水机,每台抽水机需要平均工作24h.而目前只有一台抽水车可立即投入施工,其余抽水机需要从其他施工现场抽调.若抽调的抽水机每隔20min 才有一台到达施工现场投入工作,要在24h 内完成排水任务,指挥部至少共需要抽调这种型号的抽水机()A .25台B .24台C .23台D .22台8.已知函数2()(2)ln 1()f x ax a x x a =-+++∈R ,若12,(0,)x x ∀∈+∞,当12x x ≠时,()()12122f x f x x x ->--恒成立,则a 的取值范围是()A .(,1)∞--B .(,1]-∞-C .(0,8]D .[0,8]二、多选题9.设12,F F 是椭圆2211612x y +=的两个焦点,P 是椭圆上一点,且122PF PF -=.则下列说法中正确的是()A .125,3PF PF ==B .离心率为12C .12PF F 的面积为6D .12PF F 的面积为1210.已知函数π()sin(2)2f x x ϕϕ⎛⎫=+< ⎪⎝⎭满足ππ43f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若()f x 在区间π,2t ⎛⎤ ⎥⎝⎦上恰有3个零点,则()A .()f x 的最小正周期是π2B .()7,π24x f x f ⎛⎫∀∈≤ ⎪⎝⎭R C .t 的最小值为37π24D .t 的最大值为49π2411.在ABC V 中,5,6,AB AC BC P ===为ABC V 内的一点,AP xAB yAC =+,则下列说法正确的是()A .若P 为ABC V 的重心,则12x y +=B .若P 为ABC V 的外心,则18PB BC ⋅=-C .若P 为ABC V 的垂心,则716x y +=D .若P 为ABC V 的内心,则58x y +=三、填空题12.已知i 为虚数单位,若复数z 满足|4i |2z -=,则|1i |z +-的最大值是.13.边长为1的正三角形ABC 的内心为O ,过O 的直线与边AB ,AC 交于P 、Q ,则2211||||OP OQ +的最大值为.14.已知数列{}n a 的前n 项和为n S ,满足231(,1)n n S a n N n =-∈≥,函数()f x 定义域为R ,对任意R x ∈都有1()(1)1()f x f x f x ++=-,若(2)3f =,则()21013f a 的值为.四、解答题15.记锐角ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a C C b c =+.(1)求A ;(2)求b ca+的取值范围.16.为了了解高中学生课后自主学习数学时间(x 分钟/每天)和他们的数学成绩(y 分)的关系,某实验小组做了调查,得到一些数据(表一).表一:编号12345学习时间x 3040506070数学成绩y65788599108(1)请用相关系数说明该组数据中变量y 与变量x 之间的关系可以用线性回归模型拟合(结果精确到0.001);(2)求y 关于x 的经验回归方程,并由此预测每天课后自主学习数学时间为100分钟时的数学成绩;(3)基于上述调查,某校提倡学生周六在校自主学习.经过一学期的实施后,抽样调查了220位学生.按照是否参与周六在校自主学习以及成绩是否有进步统计,得到22⨯列联表(表二).依据表中数据及小概率值0.001α=的独立性检验,分析“周六在校自主学习与成绩进步”是否有关.表二:没有进步有进步合计参与周六在校自主学习35130165未参与周六不在校自主学习253055合计60160220(参考数据:551122820,435,i ii i i i x y y x ====∑∑的方差为200,i y 的方差为230.81074≈)附:()()()()()121ˆˆˆ,nniiiii nii x x y y x x y y r b a y bx x x ==----===--∑∑∑,22()()()()()n ad bc a b c d a c b d χ-=++++.α0.100.050.0100.0050.001αχ 2.7063.8416.6357.87910.82817.已知等差数列{}n a 和等比数列{}n b ,满足1122331,4,7a b a b a b ==+=+=.(1)求数列{}{},n n a b 的通项公式;(2)求数列{}n n a b ⋅的前n 项和为n S ;(3)在(2)的条件下,设数列11n n n S a a +⎧⎫-⎨⋅⎩⎭的前n 项和为n T ,若对于任意的*N n ∈时,141n T n λ>++恒成立,求实数λ的取值范围.18.如图,在三棱柱111ABC A B C -中,已知1AA ⊥底面1111,3,A B C AA AB AC ==,2,BC D =为BC 的中点,点F 在棱1BB 上,且2,BF E =为线段A 上的动点.(1)证明:1C F EF ⊥;(2)若直线1C D 与EF 所成角的余弦值为156,求二面角1E FC D --的正弦值.19.设()y f x =是定义在区间D 上的连续函数,若存在区间0[,],(,)a b D x a b ⊆∈,使得()y f x =在[)0,a x 上单调递增,在(]0,x b 上单调递减,则称()y f x =为“含峰函数”,0x 为“峰点”,[,]a b 称为()y f x =的一个“含峰区间”.(1)判断下列函数是否为“含峰函数”?若是,请指出“峰点”;若不是,请说明理由:(i )1y x x=+;(ii )sin y x x =-.(2)已知*2,()ln(1)2t f x t x x x ∈=--+N 是“含峰函数”,且[]2,3是它的一个“含峰区间”,求t 的最大值;(3)设()()432,,324m n g x x mx nx m n x ∈=--++-R 是“含峰函数”,[],a b 是它的一个“含峰区间”,并记b a -的最大值为(),M m n .若()()12g g ≥,且()10g ≥,求的(),M m n 最小值.。
导数构造函数十二种题型归类(学生版)
![导数构造函数十二种题型归类(学生版)](https://img.taocdn.com/s3/m/fcfb54b4f71fb7360b4c2e3f5727a5e9856a272c.png)
导数构造函数十二种题型归类内容速递一、知识梳理与二级结论二、热考题型归纳【题型一】 导数四则运算基础【题型二】 幂函数与f(x)积型【题型三】 幂函数与f(x)商型【题型四】 指数函数与f(x)积型【题型五】 指数函数与f(x)商型【题型六】 正弦函数与f(x)型【题型七】 余弦函数与f(x)型【题型八】 对数函数与f(x)型【题型九】 一元二次(一次)与f(x)线性【题型十】 指数型线性【题型十一】对数型线性【题型十二】综合构造三、高考真题对点练四、最新模考题组练知识梳理与二级结论一、导数的运算(1)基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0 f(x)=xα(α∈Q,且α≠0)f′(x)=αxα-1 f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin x f(x)=a x(a>0,且a≠1)f′(x)=a x ln a f(x)=ex f′(x)=e xf(x)=log a x(a>0,且a≠1)f′(x)=1 x ln af(x)=ln x f′(x)=1 x(2)导数的四则运算法则法则和差[f(x)±g(x)]′=f′(x)±g′(x)积[f(x)g(x)]′=f'x g x +f x g'x ,特别地,[cf(x)]′=cf′(x) 商f(x)g(x)′=f(x)g(x)-f(x)g (x)g(x)2(g(x)≠0)(3)简单复合函数的导数一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 它的导数与函数y=f(u),u=g(x)的导数间的关系y ′x =y ′u ·u ′x即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.二、导数构造规律(1)、关系式为“加”型,常构造为乘法①fx +f x ≥0,构造F x =e xf x ,Fx =e xf x +fx ,②xfx +f x ≥0,构造F x =xf x ,Fx =xfx +f x ,③xfx +nf x ≥0,构造F x =x nf x ,Fx =x n -1xfx +nf x ;(2)、关系式为“减”型,常构造为除法①fx -f x ≥0,构造F x =f x e x ,F x =f x -f x ex,②xf x -f x ≥0,构造F x =f x x ,Fx =xfx -f x x 2,③xf x -nf x ≥0,构造F x =f x x n ,Fx =xf x -nf x xn +1.热点考题归纳【题型一】导数四则运算基础【典例分析】1(2022春·北京·高三模拟)若f x =e x ln x ,则f x =()A.e xln x +e xxB.e x ln x -e xxC.e x xD.e x ln x 2(2023春·黑龙江伊春·高三模拟)函数y =e x sin2x 的导数为()A.y =2e x cos2xB.y =e x sin2x +2cos2xC.y =2e x sin2x +cos2xD.y =e x 2sin2x +cos2x【提分秘籍】基础求导公式:C=0;x α=αx α-1;a x=axln a ;log a x=1x ln a ;sin x=cos xcos x=sin x【变式演练】3(2022春·北京·高三清华附中校考)函数f x =sin xx的导数是()A.x sin x +cos xx 2B.x cos x +sin xx 2C.x sin x -cos x x 2D.x cos x -sin xx 24(2023春·四川资阳·高三联考)已知函数y =x ⋅tan x 的导函数为()A.y =sin x cos x +xcos 2x B.y =sin x cos x +x cos2xcos 2xC.y =sin x cos x +1cos 2xD.y =sin x cos x +cos2xcos 2x【题型二】幂函数与f (x )积型【典例分析】1设函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且有2f x +xf x >0,则不等式x -20212f x -2021 -f 1 >0的解集为()A.2020,+∞B.0,2022C.0,2020D.2022,+∞2(黑龙江省大庆实验中学2020-2021学年高三数学试题)函数f x 是定义在区间0,+∞ 上的可导函数,其导函数为f x ,且满足xf x +2f x >0,则不等式(x +2020)f (x +2020)3<3f (3)x +2020的解集为()A.x |x >-2017 B.x |x <-2017C.x |-2020<x <0D.x |-2020<x <-2017【提分秘籍】若已知对于xf(x )+kf (x )>0(<0),构造g (x )=x k∙f (x )分析问题;【变式演练】3(江西省赣州市八校协作体2020-2021学年高三联考数学(理)试题)已知定义在R 上的奇函数f (x ),其导函数为f (x ),当x ≥0时,恒有x3f (x )+f (x )>0.则不等式x 3f (x )-(1+2x )3f (1+2x )<0的解集为().A.{x |-3<x <-1} B.x -1<x <-13C.{x |x <-3或x >-1}D.{x |x <-1或x >-13}4(山西省忻州市岢岚县中学2020-2021学年高三4月数学(理)试题)设函数f x 是定义在(-∞,0)上的可导函数,其导函数为f 'x ,且有2f x +xf 'x >x 2则不等式x +2019 2f x +2019 -4f -2 <0的解集为()A.(-2019,-2017)B. (-2021,-2019)C.(-2019,-2018)D.(-2020,-2019)5(安徽省黄山市屯溪第一中学2020-2021学年高三数学试题)已知函数f (x )是定义在R 上的奇函数,其导函数为f x ,若对任意的正实数x ,都有x f x +2f (x )>0恒成立,且f 2 =1,则使x 2f (x )<2成立的实数x 的集合为()A.-∞,-2 ∪2,+∞B.-2,2C.-∞,2D.2,+∞【题型三】幂函数与f (x )商型【典例分析】1(2022届湖南省衡阳市高三上学期期末考试数学试卷)函数f x 在定义域0,+∞ 内恒满足:①f x >0,②2f x <xf x <3f x ,其中f x 为f x 的导函数,则() A.14<f 1 f 2<12 B.116<f 1 f 2<18 C.13<f 1 f 2<12 D.18<f 1 f 2<142(黑龙江省哈尔滨市第三中学2021-2022学年高三第一次阶段性测试数学试题)已知偶函数f x 的导函数为f x ,且满足f 2 =0,当x >0时,xf x >2f x ,使得f x >0的x 的取值范围为【提分秘籍】对于x ∙f (x )-kf (x )>0(<0),构造g (x )=f (x )x k【变式演练】3(河南省郑州市示范性高中2020-2021学年高三阶段性考试(三)数学(理)试题)已知函数f x 的导函数为f x ,若f x <x ,f x <2,f x -x 对x ∈0,+∞ 恒成立,则下列个等式中,一定成立的是()A.f 2 3+12<f 1 <f 2 2 B.f 2 4+12<f 1 <f 2 2C.3f 2 8<f 1 <f 2 3+12D.f 2 4+12<f 1 <3f 2 84(江西省上高二中2021届高三上学期第四次月考数学试题)已知定义在R 上的偶函数f x ,其导函数为f x ,若y ,f -2 =1,则不等式f x x 2<14的解集是()A.-2,2B.-∞,-2 ∪2,+∞C.-2,0 ∪0,2D.-∞,0 ∪0,25设f x 是偶函数f x x ≠0 的导函数,当x ∈0,+∞ 时,y ,则不等式4f x +2019 -x +2019 2f -2 <0的解集为()A.-∞,-2021B.-2021,-2019 ∪-2019,-2017C.-2021,-2017D.-∞,-2019 ∪-2019,-2017【题型四】指数函数与f (x )积型【典例分析】1(【全国百强校】广东省阳春市第一中学2022届高三第九次月考数学(理)试题)已知函数f (x )(x ∈R )的导函数为f (x ),若2f (x )+f (x )≥2,且f (0)=8,则不等式f (x )-7e -2x >1的解集为()A.(-∞,0)B.(0,+∞)C.(-∞,-1)∪(0,+∞)D.(1,+∞)2(广东省普宁市华美实验学校2020-2021学年高三第一次月考数学试题)已知f x 是R上可导的图象不间断的偶函数,导函数为f x ,且当x>0时,满足f x +2xf x >0,则不等式e1-2x f x-1> f-x的解集为()A.12,+∞B.-∞,12C.-∞,0D.0,+∞【提分秘籍】对于f (x)+kf(x)>0(<0),构造g(x)=e kx∙f(x)【变式演练】3(2020届河南省八市重点高中联盟领军考试高三11月数学(理)试题)已知定义在R上的函数f x 的导函数为f x ,若f1 =1,ln f x +f x +1>0,则不等式f x ≥e1-x的解集为()A.-∞,1B.-∞,eC.1,+∞D.e,+∞4已知函数f x 的导函数为f x ,且对任意的实数x都有f x =e-x2x+5 2-f x (e是自然对数的底数),且f0 =1,若关于x的不等式f x -m<0的解集中恰有唯一一个整数,则实数m的取值范围是()A.-e2,0B.-e2,0C.-3e4,0D.-3e4,92e【题型五】指数函数与f(x)商型【典例分析】1定义在(-2,2)上的函数f(x)的导函数为f x ,满足:f x +e4x f-x=0,f1 =e2,且当x>0时,f (x)>2f(x),则不等式e2x f(2-x)<e4的解集为()A.(1,4)B.(-2,1)C.(1,+∞)D.(0,1)2已知定义在R上的函数f(x)的导函数为f'(x),且满足f'(x)-f(x)>0,f(2021)=e2021,则不等式f1 e ln x<e x的解集为()A.e2021,+∞B.0,e2021C.e2021e,+∞D.0,e2021e【提分秘籍】对于f (x)-kf(x)>0(<0),构造g(x)=f(x) e kx【变式演练】3(天一大联考高三毕业班阶段性测试(四)理科数学)定义在R上的函数f x 的导函数为f x ,若f x <2f x ,则不等式e4f-x>e-8x f3x+2的解集是()A.-12,+∞B.-∞,12C.-12,1D.-1,124已知定义在R上的函数f(x)的导函数为f (x),且满足f (x)-f(x)>0,f(2021)=e2021,则不等式f1 3ln x<3x的解集为()A.(e6063,+∞)B.(0,e2021)C.(e2021,+∞)D.(0,e6063)5(贵州省凯里市第三中学2022届高三上学期第二次月考数学(理)试题)已知函数f(x)是定义域为R,f (x)是f(x)的导函数,满足f (x)<f(x),且f(1)=4,则关于不等式f(x)-4e x-1>0的解集为()A.(-∞,1)B.1e ,1C.1e,eD.1e,+∞【题型六】正弦函数与f(x)型【典例分析】1(【衡水金卷】2021年普通高等学校招生全国统一考试高三模拟研卷卷四数学试题)已知定义在区间0,π2上的函数f x ,f x 为其导函数,且f x sin x-f x cos x>0恒成立,则()A.fπ2>2fπ6 B.3fπ4 >2fπ3C.3fπ6<fπ3 D.f1 <2fπ6 sin12(【市级联考】广西玉林市2018-2019学年高三上学期考试数学试题)已知f'(x)为函数y=f(x)的导函数,当x x∈0,π2是斜率为k的直线的倾斜角时,若不等式f(x)-f'(x)⋅k<0恒成立,则()A.{x22-m ln x2-2mx2=0x22-ln x2-m=0B.f(1)sin1>2fπ6C.f(x)=x2+6x-10D.3fπ6-fπ3 >0【提分秘籍】对于sin x∙f (x)+cos x∙f(x)>0(<0),构造g(x)=f(x)∙sin x对于sin x∙f (x)-cos x∙f(x)>0(<0),构造g(x)=f(x) sin x【变式演练】3(贵州省遵义航天高级中学222届高三第五次模拟考试数学试题)已知定义在0,π2上的函数,f(x)为其导函数,且f(x)sin x<f (x)cos x恒成立,则()A.f π2 >2f π6B.3f π4>2f π3 C.3f π6 <f π3 D.f (1)<2f π6 sin14已知奇函数f x 的导函数为f x ,且f x 在0,π2上恒有f (x )cos x -f (x )sin x <0成立,则下列不等式成立的()A.2f π6>f π4 B.f -π3 <3f -π6 C.3f -π4 <2f -π3D.22f π3 <3f π4 5(广东省七校联合体2021届高三下学期第三次联考(5月)数学试题)设f x 是定义在-π2,0 ∪0,π2 上的奇函数,其导函数为f x ,当x ∈0,π2 时,f x -f x cos xsin x<0,则不等式f x <233f π3sin x 的解集为()A.-π3,0 ∪0,π3 B.-π3,0 ∪π3,π2C.-π2,-π3 ∪π3,π2D.-π2,-π3 ∪0,π3【题型七】余弦函数与f (x )型【典例分析】1(2023春·新疆克孜勒苏·高三模拟)已知函数y =f x 对于任意的x ∈-π2,π2满足f x cos x +f x sin x >0(其中fx 是函数f x 的导函数),则下列不等式成立的是()A.f 0 >2f π4 B.2f -π3 >f -π4 C.2f π3 >f π4D.f 0 >2f π3 2(2023·全国·高三专题练习)定义在0,π2上的函数f x ,已知f x 是它的导函数,且恒有cos x ⋅f x +sin x ⋅f x <0成立,则有()A.3x -y -1=0B.3f π6>f π3C.f π6>3f π3D.2f π6<3f π4【提分秘籍】对于cos x ∙f (x )-sin x ∙f (x )>0(<0),构造g (x )=f (x )∙cos x ,对于cos x ∙f (x )+sin x ∙f (x )>0(<0),构造g (x )=f (x )cos x【变式演练】3(四川省成都市第七中学2022-2023学年高三上学期10月阶段考试理科数学试题)已知偶函数f (x )是定义在[-1,1]上的可导函数,当x ∈[-1,0)时,f (x )cos x +f (x )sin x >0,若cos (a +1)f (a )≥f (a +1)cos a ,则实数a 的取值范围为()A.[-2,-1]B.-1,-12C.-12,0D.-12,+∞ 4(四川省南充高级中学2021-2022学年高三考试数学试题)已知偶函数f (x )的定义域为-π2,π2,其导函数为f '(x ),当0<x <π2时,有f (x )cos x +f (x )sin x <0成立,则关于x 的不等式f (x )<2f π3 cos x 的解集为()A.0,π3B.π3,π2C.-π3,0 ∪0,π3D.-π2,-π3 ∪π3,π2【题型八】对数与f (x )型【典例分析】1已知函数f ′(x )是奇函数f (x )(x ∈R )的导函数,且满足x >0时,ln xf (x )+1xf (x )<0,则(x -2019)f (x )>0的解集为()A.(-1,0)∪(1,2019)B.(-2019,-1)∪(1,2019)C.(0,2019)D.(-1,1)2(【全国百强校】重庆市巴蜀中学20-20学年高三下考试理科数学试题)定义在0,+∞ 上的函数f x 满足x ⋅f 'x ⋅ln x +f x >0(其中f 'x 为f x 的导函数),则下列各式成立的是()A.ef e>π-f 1π>1 B.ef e<π-f 1π<1 C.ef e>1>π-f 1πD.ef e<1<π-f 1π【提分秘籍】对于f (x )ln x +f (x )x>0(<0),构造g x =ln x ∙f (x )【变式演练】3(江西省新余市第四中学2023届高三上学期第一次段考数学试题)已知定义在[e ,+∞)上的函数f (x )满足f (x )+x ln xf ′(x )<0且f (2018)=0,其中f ′(x )是函数f x 的导函数,e 是自然对数的底数,则不等式f (x )>0的解集为()A.[e ,2018)B.[2018,+∞)C.(e ,+∞)D.[e ,e +1)4(山东省招远一中2019届高三上学期第二次月考数学试题)定义在(0,+∞)上的函数f (x )满足xf '(x )ln x +f (x )>0(其中f '(x )为f (x )的导函数),若a >1>b >0,则下列各式成立的是()A.af (a )>bf (b )>1 B.af (a )<bf (b )<1 C.af (a )<1<bf (b )D.af (a )>1>bf (b )5(2023重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数f x 是奇函数f x x ∈R 的导函数,且满足x >0时,ln x ⋅f x +1x f x <0,则不等式x -985 f x >0的解集为()A.985,+∞B.-985,985C.-985,0D.0,985【题型九】一元二次(一次)与f (x )线性【典例分析】1(2021届云南省昆明第一中学高中新课标高三第三次双基检测数学试题)函数y =f (x )的定义域为R ,其导函数为f (x ),∀x ∈R ,有f (x )+f (-x )-2x 2=0在(0,+∞)上f (x )>2x ,若f (4-t )-f (t )≥16-8t ,则实数t 的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,2]2(2020届黑龙江省实验中学高三上学期期末考试数学(理)试题)设函数f x 在R 上存在导函数f x ,∀x ∈R ,有f x -f -x =x 3,在0,+∞ 上有2f x -3x 2>0,若f m -2 -f m ≥-3m 2+6m -4,则实数m 的取值范围为()A.-1,1B.-∞,1C.1,+∞D.-∞,-1 ∪1,+∞【提分秘籍】二次构造:f (x )×÷r (x )±g (x ),其中r (x )=x n,e nx,sin x ,cos x 等【变式演练】3(江苏省盐城中学2020-2021学年高三上学期第二次阶段性质量检测数学试题)已知定义在R 上的函数f (x )的导函数为f (x ),且对任意x ∈R 都有f (x )>2,f (1)=3,则不等式f (x )-2x -1>0的解集为()A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)4(吉林省蛟河市第一中学校2021-2022学年高三下学期第三次测试数学试题)已知定义在R 上的可导函数f (x ),对于任意实数x 都有f (-x )=f (x )-2x 成立,且当x ∈(-∞,0]时,都有f '(x )<2x +1成立,若f (2m )<f (m -1)+3m (m +1),则实数m 的取值范围为()A.-1,13B.(-1,0)C.(-∞,-1)D.-13,+∞ 5(【市级联考】福建省龙岩市2021届高三第一学期期末教学质量检查数学试题)已知定义在R 上的可导函数f (x )、g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g 1 =3,g (x )=f (x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =()A.-2B.2C.-3D.3【题型十】指数型线性【典例分析】1(安徽省阜阳市第三中学2021-2022学年高三上学期第二次调研考试数学试题)设函数f x 定义域为R ,其导函数为f x ,若f x +f x >1,f 0 =2,则不等式e x f x >e x +1的解集为()A.-∞,0 ∪0,+∞B.-∞,0C.2,+∞D.0,+∞2(黑龙江省哈尔滨市第六中学2020-2021学年高三3月阶段性测试数学试题)已知函数f x =e 2x -ax 2+bx -1,其中a ,b ∈R ,e 为自然对数底数,若(0,1],f x 是f x 的导函数,函数f x 在0,1 内有两个零点,则a 的取值范围是()A.2e 2-6,2e 2+2B.e 2,+∞C.-∞,2e 2+2D.e 2-3,e 2+1【提分秘籍】对于f (x )-f (x )>k (<0),构造g x =e x f x -k【变式演练】3(金科大联考2020-2021学年高三10月质量检测数学试题)设函数f (x )的定义域为R ,f (x )是其导函数,若f (x )+f (x )>-e -x f (x ),f 0 =1,则不等式f (x )>2e x +1的解集是()A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)4(2023春·福建龙岩·高三联考)∀x ∈R ,f x -f x =-2x +1 e x ,f 0 =-3,则不等式f x >-5e x 的解集为()A.-2,1B.-2,-1C.-1,1D.-1,25(2023春·四川眉山·高三模拟)函数f x 的定义域是R ,f 1 =2,对任意x ∈R ,f x +f x >1,则不等式e x f (x )>e x +e 的解集为()A.x |x >1B.x |x <1C.{x |x <-1或0<x <1}D.{x |x <-1或x >1}【题型十一】对数型线性【典例分析】1(2023春·安徽合肥·高三合肥一中校考)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,若xf x -1<0,f e =2,则关于x 的不等式f e x<x +1的解集为()A.0,1B.1,eC.1,+∞D.e ,+∞2(2022春·江西赣州·高三赣州市赣县第三中学校考阶段练习)定义在(0,+∞)的函数f (x )满足xf x -1<0,f 1 =0,则不等式f e x-x <0的解集为()A.(-∞,0)B.(-∞,1)C.(0,+∞)D.(1,+∞)【提分秘籍】y =ln (kx +b )与y =f (x )的加、减、乘、除各种结果逆向思维【变式演练】3(2023·全国·高三专题练习)若函数f x 满足:x -1 fx -f x =x +1x-2,f e =e -1,其中f x 为f x 的导函数,则函数y =f x 在区间1e,e的取值范围为()A.0,eB.0,1C.0,eD.0,1-1e4(2021年全国高中名校名师原创预测卷新高考数学(第八模拟))已知函数f (x )的定义域为R ,且f (x +2)是偶函数,f (x )>12x -1+ln (x -1)(f (x )为f (x )的导函数).若对任意的x ∈(0,+∞),不等式f -t 2+2t +1 ≥f 12 x-2 恒成立,则实数t 的取值范围是()A.[-2,4]B.(-∞,-2]∪[4,+∞)C.[-1,3]D.(-∞,-1]∪[3,+∞)【题型十二】综合构造【典例分析】1(河北省沧州市沧县中学2020-2021学年高三数学)已知定义在R 上的可导函数f (x )的导函数为f '(x ),对任意实数x 均有(1-x )f (x )+xf '(x )>0成立,且y =f (x +1)-e 是奇函数,不等式xf (x )-e x >0的解集是()A.1,+∞B.e ,+∞C.-∞,1D.-∞,e2(江西省吉安市重点高中2020-2021学年高三5月联考数学试题)已知函数f x 是定义域为0,+∞ ,fx 是函数f x 的导函数,若f 1 =e ,且xfx -1+x f x >0,则不等式f ln x <x ln x 的解集为()A.0,eB.e ,+∞C.1,eD.0,1【变式演练】3(2022·高三测试)已知定义在R 上的函数f (x )的导函数是f (x ),若f (x )+xf (x )-xf (x )>0对任意x ∈R 成立,f 1 =e .则不等式f (x )<e xx 的解集是()A.(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)D.(0,1)4(2023·四川·校联考模拟预测)定义在0,+∞ 上的函数f x 的导函数为f x ,且x 2+1 f x <x -1x f x ,若θ∈0,π4 ,a =tan θ,b =sin θ+cos θ,则下列不等式一定成立的是()A.f 1 <f a B.f 1 >2bf b2+sin2θC.f 1 >f a sin2θD.f a 2+sin2θ <f b 1sin θ+1cos θ5(2023春·江西吉安·高三模拟)若定义在R 上的可导函数f (x )满足(x +3)f (x )+(x +2)f (x )<0,f (0)=1,则下列说法正确的是()A.f (-1)<2eB.f (1)<23eC.f (2)>12e 2D.f (3)>25e 3高考真题对点练一、单选题1(浙江·高考真题)设f x 是函数f x 的导函数,y =f x 的图象如图所示,则y =f x 的图象最有可能的是()A .B .C .D .2(江西·高考真题)已知函数y =xf (x )的图象如图所示(其中f (x )是函数f (x )的导函数),则下面四个图象中,y =f x 的图象大致是()A. B.C. D.3(陕西·高考真题)f x 是定义在(0,+∞)上的非负可导函数,且满足xf ′x +f x ≤0.对任意正数a ,b ,若a <b ,则必有()A.af b ≤bf aB.bf a ≤af bC.af a ≤f bD.bf b ≤f a4(湖南·高考真题)设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f (x )g (x )+f (x )g (x )>0.且g (-3)=0,则不等式f (x )g (x )<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)5(2015·福建·高考真题)若定义在R 上的函数f x 满足f 0 =-1,其导函数f x 满足f x >k >1,则下列结论中一定错误的是()A.f 1k<1kB.f 1k>1k -1C.f 1k -1<1k -1D.f 1k -1>kk -16(2013·辽宁·高考真题)设函数f x 满足x 2fx +2xf x =e x x ,f 2 =e 28,则x >0时,f x ()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值7(2015·全国·高考真题)设函数f '(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf '(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)8(辽宁·高考真题)函数f x 的定义域为R ,f -1 =2,对任意x ∈R ,f x >2,则f x >2x +4的解集为()A.-1,1B.-1,+∞C.-∞,-1D.-∞,+∞最新模考真题一、单选题1(2023·西藏日喀则·统考一模)如图,已知函数f x 的图象在点P 2,f 2 处的切线为直线l ,则f 2 +f 2 =()A.-3B.-2C.2D.12(2023·陕西榆林·统考三模)定义在0,+∞ 上的函数f x ,g x 的导函数都存在,f x g x +f (x )g x =2x -1x ln x +x +1x2,则曲线y =f x g x -x 在x =1处的切线的斜率为()A.12 B.1 C.32D.23(2023·四川成都·统考模拟预测)已知定义在R 上的函数f x 的导函数为f x ,若f x <e x ,且f 2 =e 2+2,则不等式f ln x >x +2的解集是()A.0,2B.0,e 2C.e 2,+∞D.2,+∞4(2023·陕西咸阳·校考模拟预测)已知函数f x 是定义在R 上的可导函数,其导函数记为f x ,若对于任意实数x ,有f x >f x ,且f 0 =1,则不等式f x <e x 的解集为()A.-∞,0B.0,+∞C.-∞,e 4D.e 4,+∞5(2023·河南·校联考模拟预测)已知函数f x 的定义域为R ,f x 为函数f x 的导函数,当x ∈0,+∞ 时,sin2x -f x >0,且∀x ∈R ,f -x +f x -2sin 2x =0,则下列说法一定正确的是()A.f π3-f π6 >12 B.f π3-f π4 <14C.f π3 -f 3π4 <14 D.f π3 -f -3π4 >146(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知函数f x 的定义域为0,+∞ ,f x 为函数f x 的导函数,若x 2f x +xf x =1,f 1 =0,则不等式f 2x -3 >0的解集为()A.0,2B.log 23,2C.log 23,+∞D.2,+∞7(2023·山东烟台·统考二模)已知函数f x 的定义域为R ,其导函数为f x ,且满足f x +f x =e -x ,f 0 =0,则不等式e 2x -1 f x <e -1e的解集为( ).A.-1,1eB.1e ,e C.-1,1 D.-1,e8(2023·安徽·校联考模拟预测)已知函数f x 、g x 是定义域为R 的可导函数,且∀x ∈R ,都有f x >0,g x >0,若f x 、g x 满足f x f x <g xg x ,则当x 1<x <x 2时下列选项一定成立的是()A.f x 2 g x 1 >f x 1 g x 2B.f x g x 1 >f x 1 g xC.f x 2 -g x 2 f x 1 -g x 1 <g x 2 g x 1 D.f x 2 g x 2 <f x 1 +f x 2g x 1 +g x 2二、多选题9(2022·重庆九龙坡·重庆市育才中学校考模拟预测)已知函数f (x )对于任意的x ∈0,π2都有f (x )cos x -f (x )sin x >0,则下列式子成立的是()A.3f π6>2f π4 B.2f π4<f π3 C.2f (0)<f π4 D.2f (0)>f π3 10(2020·山东泰安·校考模拟预测)定义在0,π2 上的函数f (x ),f x 是f (x )的导函数,且fx <-tan x ⋅f (x )恒成立,则() A.f π6>2f π4B.3f π6 >f π3C.f π6>3f π3D.2f π6>3f π411(2023·黑龙江·黑龙江实验中学校考三模)已知函数f x 在R 上可导,其导函数为f x ,若f x 满足:x -1 fx -f x >0,f 2-x =f x e 2-2x ,则下列判断不正确的是()A.f 1 <ef 0B.f 2 >e 2f 0C.f 3 >e 3f 0D.f 4 <e 4f 012(2023·辽宁锦州·校考一模)定义在R 上的函数f x 满足xf x -f x =1,则y =f x 的图象可能为()A. B.C. D.三、填空题13(2024·四川成都·石室中学校考模拟预测)已知函数f x 的定义域为-π2 ,π2,其导函数是f x .有f x cos x+f x sin x<0,则关于x的不等式f(x)>2fπ3cos x的解集为.14(2023·广东佛山·统考模拟预测)已知f x 是定义在R上的偶函数且f1 =2,若f x <f x ln2,则f x -2x+2>0的解集为.15(2023·广东广州·广州市从化区从化中学校考模拟预测)设函数y=f x 在R上存在导数y=f x ,对任意的x∈R,有f x -f-x=2sin x,且在0,+∞上f x >cos x.若fπ2-t-f t >cos t-sin t.则实数t的取值范围为.16(2023·山东·模拟预测)定义在0,π2上的可导函数f x 的值域为R,满足f x tan x≥2sin x-1f x ,若fπ6=1,则fπ3 的最小值为.。
黑龙江省哈尔滨市第三中学校2024-2025学年高二上学期10月月考数学试卷
![黑龙江省哈尔滨市第三中学校2024-2025学年高二上学期10月月考数学试卷](https://img.taocdn.com/s3/m/015ebca3710abb68a98271fe910ef12d2af9a9ed.png)
黑龙江省哈尔滨市第三中学校2024-2025学年高二上学期10月月考数学试卷一、单选题1.已知随机变量X 服从正态分布()24,,(5)0.3N P X σ>=,则(34)P X <<=( ) A .0.1 B .0.2 C .0.3 D .0.42.在5(2)x -的展开式中,2x 项的系数为( )A .10-B .10C .80-D .803.用0、1、2、3、4、5组成没有重复数字的六位数,要求数字1和4相邻,则这样的六位数的个数为( )A .192B .240C .360D .7204.如图,三个元件123,,T T T 正常工作的概率均为13,且是相互独立的,将它们接入电路中,则电路不发生故障的概率是( )A .19B .127C .527D .7275.如图,一个质点从原点0出发,每隔一秒随机等可能地向左或向右移动一个单位,共移动4次,在质点第一秒位于1的位置的条件下,该质点共经过两次2的位置的概率为( )A .14 B .18 C .38 D .166.如图是函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,则下列说法错误的是( )A .2ω=B .π3ϕ= C .()f x 的图象关于点5π,012⎛⎫- ⎪⎝⎭中心对称 D .()f x 在2ππ,32⎛⎫-- ⎪⎝⎭上单调递减 7.有一道数学题,不知道答案的概率为0.6,如果知道答案则本题答对的概率为0.9,不知道答案则本题答对的概率为0.2,在答对本题的条件下,则不知道答案的概率为( ) A .0.75 B .0.52 C .0.48 D .0.258.在四棱锥P ABCD -中,PA ⊥平面,ABCD AB BC ⊥,二面角P CD A --的大小为45,2AD CD ︒+=,若点P A B C D ,,,,均在球O 的表面上,则球O 的表面积最小值为( )A .3πBC .8π3 D二、多选题9.近年来,我国持续释放旅游消费潜力,推动旅游业高质量发展,如图所示,是我国从2014年到2023年的国内游客出游花费统计,下列说法正确的是( )A .从2014年到2023年,这10年的国内游客出游花费的第75百分位数为4.9B .从2014年到2023年,这10年的国内游客出游花费的中位数为3.4C .从2014年到2023年,这10年的国内游客出游花费的极差为2.7D .从2014年到2019年,国内游客出游花费呈现上升趋势10.学校分别对高一学年和高二年学开展体育水平抽样测试,测试成绩数据处理后,得到如下频率分布直方图,则下面说法正确的是( )A.样本中高二学年成绩的众数是85B.样本中高二学年成绩在80分以上的人数高于高一学年成绩在80分以上的人数C.样本中高二学年成绩的方差高于高一学年成绩的方差D.样本中高二学年成绩的中位数高于高一学年成绩的中位数11.某学校共有4000人,其中高一1000人,高二1500人,高三1500人,现采用抽样调查的方式调查学生平均身高,则下列说法正确的是()A.若采用简单随机抽样的方式,抽取容量为200的样本,则高一25班的小明同学被抽入样本的概率为1 200B.若采用按比例分层抽样的方式,抽取容量为200的样本,则应从高一中抽取的人数为50C.若采用按比例分层抽样,发现高一、高二、高三学年的样本平均身高分别为167,169,173,则总体平均身高的估计值为170D.若采用按比例分层抽样,发现高一、高二、高三学年的样本平均身高分别为167,169,173,方差分别为50,60,40,则总体身高方差的估计值为50三、填空题12.对于随机事件,A B有111(),(),(),() 462P A P AB P A B P B ==+==.13.随机变量ξ的分布列如下表所示,则()Dξ=.14.哈三中2024-2025年度上学期高二年级十月月考中有这样一道题目:已知A,B是两个随机事件,且0()1,0()1P A P B <<<<,给出5个命题如下:①若()()1P A P B +=,则事件A ,B 对立;②若事件A 与B 独立,则()()()P AB P A P B =成立;③若()()()()P AB P AB P AB P AB ===,则事件A ,B 相互独立,且1()4P AB =;由于印刷原因,其中命题④⑤漏印了.若老师说某考生在5个命题中任选两个命题,其中真命题的个数X 的方差为925,则④⑤中真命题的个数为.四、解答题15.李老师使用频数分布表、频率分布直方图与扇形图来统计两个班学生某次数学考试的分数,已知所有学生考试成绩均位于[85,145)内,问:(1)求频率分布直方图中a 的值及分数的平均值(每组数据用该组区间中点值代表);(2)若李老师决定对[85,95)与[95,105)这两组的学生采用按比例分层抽样,抽取6名同学进行谈话,再从这6人中随机选择两人进行试卷分析,求选中的2人来自不同组的概率. 16.在ABC V 中,,,A B C 的对边分别为,,,a b c 且满足_______________.请在①2sin()2C A B +=;②()sin()()(sin sin )a b A C a c A C -+=-+,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若AB 边上的高为1,ABC V ABC V 的周长. 17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面,,ABCD AD PA AD CD ⊥⊥,//,AD BC 2PA AD CD ,===150,BAD E ︒∠=为PD 的中点.(1)求证:AE ⊥平面PCD ;(2)求平面PAB 与平面ECD 夹角的余弦值.18.如图,在研究某种粒子的实验装置中,粒子从A 腔室出发,到达C 腔室,粒子从A 室经过1号门进入B 室后,等可能的变为上旋或下旋状态,粒子从B 室经过2号门进入C 室后,粒子的旋转状态发生改变的概率为13.粒子间的旋转状态相互独立.现有两个粒子从A 室出发.(1)求两粒子进入C 室都为上旋状态的概率;(2)若实验装置出现故障,两个粒子进入C 室后,共裂变为m 个粒子,裂变后的每个粒子再经过2号门返回B 室的概率为23,各粒子返回B 室相互独立. ①4m =时,写出返回B 室的粒子个数X 的分布列、期望、方差;②30m =时,记有r 个粒子返回B 室的概率为()f r ,则r 为何值时,()f r 取最大值. 19.随着新中考英语人机测试的推行,为了确保学生能够有效应对这一新的考试形式,某中学决定展开深入调查,组织一次模拟测试,对学生的英语水平能力进行准确评估,并据此制定针对性的教学方案.该校从初二学年学生中随机抽取40人将进行模拟测试.现将40人分成,,A B C 三个小组,其中A 组15人,B 组15人,C 组10人.(1)第一轮测试按小组,,A B C 顺次进行.若一切正常,则该小组完成测试的时间为10分钟,若出现异常情况,则该小组需要延长5分钟才能完成测试.已知每小组正常完成测试的概率均为45,且各小组是否正常完成测试互不影响.记3个小组完成测试所需时间为X ,求X 的分布列;(2)第二轮测试将3组同学一起排序,每一位同学顺次上机操作.①求最后一名同学来自A 组的条件下,B 组同学比C 组同学提前完成测试的概率; ②若每名同学完成测试的时间都是为3分钟,求A 组和B 组同学全部完成测试所需时间的期望.。
专题1.3 以棱柱、棱锥与球的组合体为背景的选择题——新高考数学专项练习题附解析
![专题1.3 以棱柱、棱锥与球的组合体为背景的选择题——新高考数学专项练习题附解析](https://img.taocdn.com/s3/m/8c34746bad51f01dc381f100.png)
何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补
形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.本
题可以利用补体法,将四棱锥补体为直三棱锥,利用直三棱柱的外接球半径求法确定其外接球半径.
【举一反三】【贵州省贵阳第一中学、云南师大附中、广西南宁三中 2019 届高三“333”高考备考诊断联考数
BC=8,AA1=4,则 V 的最大值是
ቤተ መጻሕፍቲ ባይዱ
A.4π
9
B.
2
C.6π
32
D.
3
12. 【 2018 河 南 漯 河 中 学 三 模 】 已 知 三 棱 锥 S ABC 的 底 面 是 以 AB 为 斜 边 的 等 腰 直 角 三 角 形 ,
AB 4, SA SB SC 4 ,则三棱锥的外接球的球心到平面 ABC 的距离为( )
类型一 四面体的外接球问题 典例 1.【2019·山东师范大学附中高考模拟(文)】已知三棱锥 S ABC 中,SA 平面 ABC ,且 ACB ,
6 AC 2 AB 2 3, SA 1.则该三棱锥的外接球的体积为( )
A. 13 13 8
【答案】D 【解析】
B.13
C. 13 6
D. 13 13 6
C.若 AD=3,则 BD=4;
D.四面体 ABCD 体积的最大值为 4 5 . 3
2.(多选题)【2019·广东高三月考(理)】已知矩形 ABCD , AB 1, BC 3 ,将 ADC 沿对角线 AC
进行翻折,得到三棱锥 D ABC ,则在翻折的过程中,有下列结论, 其中正确的是( ) A.三棱锥 D ABC 的体积最大值为 1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市第三中学2019-2020学年高一下
学期期末考试数学试卷
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列说法正确的是()
A.通过圆台侧面上一点可以做出无数条母线
B.直角三角形绕其一边所在直线旋转一周得到的几何体是圆锥
C.圆柱的上底面下底面互相平行
D.五棱锥只有五条棱
2. 如果,那么下列不等式中正确的是()
A.B.C.D.
3. 已知一个水平放置的平面四边形ABCD的直观图是面积为2的正方形,则原四边形ABCD的面积为()
A.2
B.
C.D.
4. 已知是公差为2的等差数列,且,则()
A.12 B.14 C.16 D.18
5. 在ΔABC中,若,则ΔABC是()
A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形
6. 已知m,n为两条不同的直线,,,为三个不同的平面,下列命题正确的是()
①若,,则;
②若,,,则;
③若,,则;
④若直线m用与平面内的无数条直线垂直,则.
A.①②B.②③C.①③D.②④7. 某几何体的三视图如图所示,则该几何体的体积为()
A.B.4 C.2
D.
8. 函数的最小值是()
A.4 B.6 C.8 D.10
9. 已知圆锥的轴截面为正三角形,且边长为2,则圆锥的表面积为()A.
B.C.D.
10. 在正方体中,,则点到平面的距离为()
A.B.C.D.
11. 已知A,B,C为直线l上的不同三点,O为l外一点,存在实数
,使得成立,则的最小值为
()
A.36 B.72 C.144 D.169
12. 锐角△中,角A、B、C所对边分别为a、b、c,若,则
范围为()
A.B.
C.
D.
二、填空题
13. 已知,满足,,的夹角为,则__________.
14. 在三棱锥中,平面,,
则该三棱锥的外接球的表面积为__________.
15. 空间四边形ABCD的两条对角线AC、BD所成角为,设,
,则过AB的中点E且平行于BD、AC的截面四边形的面积为__________.
16. 已知数列的前n项和为,点在的图
像上,,数列通项为__________.
三、解答题
17. 已知,.
(1)求证:;
(2)若,求ab的最小值.
18. 在正方体中,求证:
(1)求异面直线与所成角;
(2)平面平面.
19. 已知数列满足,.
(1)数列通项,证明:为等比数列;
(2)求前n项和.
20. 在平行六面体中,,,
.
(1)求证:平面平面;
(2)求直线AC与平面所成角的大小.
21. 中,角A、B、C所对边分别为a、b、c,
.
(1)求的值;
(2)若,,求△的面积.
22. 已知直角三角形的两直角边,,点P是斜边AB上一点,现沿CP所在直线将折起,使得平面平面ACP;当AB的长度最小时,求:
(1)四面体ABCP的体积;(2)二面角的余弦值.。