生物医学工程相关试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Df

《生物医学工程进展》试题库

1. 试述组织光透明技术在生物医学成像的作用及应用前景?

作用:生物组织属于浑浊介质,具有高散射和低吸收的光学特性,这种高散射特性限制光在组织的穿透深度和成像的对比度,使得很多光学成像技术只能用于浅表组织,制约了光学手段检测诊断及治疗技术的发展和应用。生物组织光透明技术的作用就是通过向生物组织中引入高渗透、高折射、生物相容的化学试剂,来改变组织的光学特性,以此来暂时降低光在组织中的散射、提高光在组织中的穿透深度,从而提高光学成像的成像深度,推动成像技术的发展和新方法的产生。

前景:1、应用骨组织使得骨组织变得光透明,进而对骨组织下的组织成像,避免手术开骨窗照成的伤害,如应用于颅骨,用得当的成像方法获得皮层神经亚细胞结构与微血管信息;

2、解决皮肤角质层的天然阻挡作用,促进透皮给药系统的研究和应用;

3、皮肤光透明剂的发展推动光学相干断层成像技术的发展;

4、光透明剂使得光辐射能在生物组织达到一定深度之后,可以极大地推动光学显微成像、光学手段检测诊断及治疗技术的发展和应用。推进无损光学成像技术在临床上的发展。

2.请结合图示,描述如何通过单分子定位的方法,实现超分辨光学显微成像。

要通过单分子定位实现超分辨光学显微成像,首先需要利用光激活/光切换的荧光探针标记感兴趣的研究结构。成像过程中,利用激光对高标记密度的分子进行随机稀疏点亮,进而进行单分子荧光成像和漂白;不断重复这种分子被漂白、新的稀疏单分子不断被点亮、荧光成像的过程,将原本空间上密集的荧光分子在时间上进行充分的分离。随后,利用单分子定位算法对采集到的单分子荧光图像进行定位,可以准确得到分子发光中心位置;最后,利用这些分子位置信息,结合图像重建算法,获得最终的超分辨图像。超分辨图像质量的关键在于二点:一是找到有效的方法控制发光分子的密度,使同一时间内只有稀疏的荧光分子能够发光;二是高精度地确定每个荧光分子的位置。

以分辨两个相距20nm的点光源为例。如下图7,当两个点光源相距20nm 时,由于衍射极限(一个理想点物经光学系统成像,由于衍射的限制,不可能得到理想像点,而是得到一个艾里斑,这样每个物点的像就是一个弥散斑,两个弥散斑靠近后就不好区分,这样就限制了系统的分辨率,这个斑越大,分辨率越低)的限制,使得每一个点光源经过显微系统所成的像为一个光斑。为了简化起见,假定光斑为一个半径300nm 的圆斑(实际情况下,光斑不是均匀分布的,而是满足方程(1))。则在荧光显微镜下,两个点光源所成的像为图7(a)所示。在这个时候,两个点光源r1,r2 由于半径都在300nm,是无法区分的,几乎重叠在一起。所以分辨率为300nm。但是如果第一时刻,只有r1 光源发光,如图7(b)所示,

这时,r1 是可以分辨的,我们可以对r1 这个光源做中心定位,算出r1 实际的位置如图7(C)。此时相当于排除了衍射极限的限制,得到了点光源r1的较精确的位置,如图7(d)。这时,设法使r1不再发光(进入暗态),并使得r2 光源发光,其发光所成的像为一个圆斑(与图7(b)形状相同,位置偏移了约20nm),这时点光源r2是可分辨的。我们再用同样的方法可以得到点光源r2 的位置,从而得到了以上两个点的位置,如图7(f)。这时两个点就可以分辨出来。

3.简述组织工程的原理,并举例说明在组织工程中运用数字化制造技术的优势。

组织工程基本原理和方法:

是将体外培养扩增的正常组织细胞吸附于一种具有优良细胞相容性并可被机体降解吸收的生物材料上形成复合物,然后将细胞——生物材料复合物植入人体组织、器官的病损部位,在作为细胞生长支架的生物材料逐渐被机体降解吸收的同时,细胞不断增殖、分化,形成新的并且其形态、功能方面与相应组织、器官一致的组织,从而达到修复创伤和重建功能的目的。

组织工程主要包括两方面内容:

(1)构建具有良好组织相容性的生物学支架,以提供移植细胞定向生长和器官修复的微环境。

(2)将细胞在体外扩增并使其在新生组织中进行定向分化与生长。

例如快速原型(RP)技术:与传统工艺相比,快速原型技术可以在较短的时间内完成,过程中无需人工参与,患者也可以在几个小时后看到相应的修复体的形态,节省了时间,提高了效率。另外,工程师利用CAD软件可以很快设计一个产品,而RP设备的快速性允许设计师在很短时间内多次验证并修改其设计,这样就在设计过程中节约了时间和金钱从而实现高通量的“面向市场设计”。再者,运用RP技术,设计师可以根据特定病人的CT或MRI数据而非标准的解剖学几何数据来设计并制作种植体,减少出错空间的同时,为患者提供了适合他本身解剖结构的更好的手术,也为外科医生缩短手术时间给予了有力的保证。

总的来说RP技术提高了诊断和手术水平,提高了效率,节省了金钱和时间。

组织工程中运用数字化技术的优势包括:快速、高效、高通量、更精密、低成本、可以为不同患者定制专属治疗等。

4.光学分子成像的特点是什么?可用于活体小动物光学成像的技术主要有哪几种?主流的分子成像技术有哪些?结合自己的研究方向,描述分子成像在本领域的应用及其发展前景。

光学成像具有分辨率高、灵敏度高、价格低等优点,特别是近红外线(nearinfrared, NIR)荧光成像分辨率1~2 mm,可以穿透厚8cm的组织,荧光成像信号强,可直接发出明亮的信号。此外,光学对比剂发展迅速,特别是随着纳米技术的深入,基于纳米颗粒、纳米壳和量子点研发出各种生物特异的分子探针。这些都使得光学分子影像学在生物学、医学和药学领域中有广泛的应用。

活体小动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶(luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP、Cyt及dye s等)进行标记。利用灵敏的光学检测仪器,可以直接检测活体生物体内的细胞活动和基因行为。

分子影像技术主要有磁共振成像(magneticresonance imaging,MRI)、核医学成像和光学成像三种成像方法。近年来,光学分子影像学被用来研究在体情况下胚胎发育过程中的细胞和分子变化,通过揭示这些变化,可以直观地看到胚胎在经历细胞迁移和细胞分化过程中的细胞分子层面的变化。一些自发荧光蛋白已经被用作报告基因来跟踪发育过程中的表达类型。一个荧光蛋白家族可以被激发发射出各种不同波长的光从而可以实现多标记。另外荧光染料和量子点等也被用来在这些研究中提供对比。转基因检测可利用分子成像技术开发合适的新探针,对转基因动物体内的转基因表达或内源性基因的活性和功能进行检测,可以对启动子或增强子的组织特异性及可诱导性进行评价

5.请论述纳米光学探针在活体动物成像中的应用

纳米光学探针中的如随着小动物成像技术的发展,成像探针种类越来越多,功能越来越强大。其中的量子点荧光标记是纳米技术和体内荧光成像技术结合的一种新技术,将直径只有15纳米的荧光粒子附着到DNA的特殊部分,随后分析荧光信号的强度以及其它特性。这些粒子称为量子点,具有独特的光电性质,使其比生物医学研究中常用的传统荧光标签更易检测到。NIST 的研究小组证明量子点释放的信号强度比另外两种传统荧光标签强2到11倍,暴露于光下时稳定性也更好。除了能够对活细胞进行长时间动态荧光观测与成像,对细胞间、细胞内及其细胞器间的各种相互作用的原位实时动态示踪外,还可以标记在其他需要研究的物质上,在长时间生命活动监测及活体示踪上有独到的应用优势。与传统的荧光标记方法比较,该方法在稳定性、灵敏度、应用范围等方面都有重要突破。

6.请举例论述荧光蛋白标记技术在神经科学中应用的原理。

荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对

相关文档
最新文档