液压传动基础知识
液压传动基本知识

第一讲液压传动基础知识一、什么是液压传动?定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。
液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。
二、液压传动系统由哪几部分组成?液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。
三、液压传动最基本的技术参数:1、压力:也叫压强,沿用物理学静压力的定义。
静压力:静止液体中单位承压面积上所受作用力的大小。
单位:工程单位kgf/cm 2法定单位:1MPa (兆帕)=106Pa (帕)1MPa (兆帕)~10kgf/ce2、流量:单位时间内流过管道某一截面的液体的体积。
单位:工程单位:L/min (升/分钟)法定单位:m 3/s四、职能符号:定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。
作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。
如图:过滤器 /VNX五、常用密封件:1.O 形圈:常用标记方法:公称外径(mm )截面直径(mm )2•挡圈(0形圈用):3. 常用标记方法:挡圈ADXdXa千斤顶双向锁 截止阀安全阀A 型(切口式);D 外径(mm );d 内径(mm );a 厚度(mm )第二讲控制阀;液控单向阀;单向锁一、控制阀:1. 定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。
2. 分类:根据阀在液压系统中的作用不同分为三类:压力控制阀:如安全阀、溢流阀流量控制阀:如节流阀方向控制阀:如操纵阀液控单向阀双向锁3. 对阀的基本要求:(1)工作压力和流量应与系统相适应;(2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象;(3)密封性能好,泄漏量小;(4)结构简单,制作方便,通用性大。
二、液控单向阀结构与原理:1. 定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。
液压传动理论知识

干式
湿式
电磁换向阀
特点:
(1)动作迅速,操作轻便,便于远距离控制; (2)因受电磁铁尺寸与推力的限制,仅能控制小
流量(小于63 l/min)的液流;
(3)电磁铁通断电需电信号控制:如设备中的按 钮开关、限位开关、行程开关等; (4)换向快,易产生液压冲击。
④液动换向阀
工作原理:
利用控制油路的油液压力来改变阀芯位置的换向阀。
四、常用的控制液压液污染的措施
1)严格清洗元件和系统。 2)防止污染物从外界侵入。 3)采用高性能的过滤器。 4)控制液压液的温度。 5)保持系统所有部位良好的密封性。 6)定期检查和更换液压液并形成制度。
第三章:液压泵
液压泵是一种能量转换装置,它把驱动 电机的机械能转换成输到系统中去的油液的 压力能,供液压系统使用。 液压泵按其在单位时间内所能输出油液 体积可否调节而分为定量泵和变量泵两类; 按结构形式可以分为齿轮式、叶片式和柱塞 式三大类。
按阀的安装方式分类 :管式、板式、法兰式
按操纵方式分类:重点记住有助于看懂图纸 手动、机动、电动、弹簧控制、液动、液压先导控制 电液动等。
。
3、 换 向 阀 主 体 结 构 与 工 作 原 理
结 构 图 和 图 形 符 号
二位二通
二位三通
二位四通
4、几种典型换向阀的结构
①手动换向阀
②机动换向阀(又称行程阀)
第二章:液压液
在液压系统中,液压液是传递动力和信号的工 作介质,有的还起到润滑、冷却和防锈的作用。液 压系统能否可靠、有效地工作,在很大程度上取决 于系统中所用的液压液。 目前90%以上的液压设备采用石油基液压液。基 油为精致的石油润滑油馏分。为了改善液压液的性 能,以满足液压设备的不同要求,往往在基油中加 入各种添加剂。添加剂有两类:一类是改善油液化 学性能的,如抗氧化剂、防腐剂、防锈剂等;另一 类是改善油液物理性能的,如增粘剂、抗磨剂、防 爬剂等。
液压基础知识详解(经典培训教材)

伸缩式液压缸
具有多级套筒结构,行 程长且收缩后体积小。
摆动式液压缸
输出扭矩大,可实现往 复摆动运动。
液压控制阀概述及分类
按功能分类
方向控制阀、压力控制阀、 流量控制阀。
按结构分类
滑阀式、锥阀式、球阀式 等。
按连接方式分类
管式连接、板式连接、法 兰连接等。
方向控制阀结构与工作原理
01
02
03
04
回路设计注意事项
元件选型
根据系统需求和性能参数选择合适的 液压元件,确保系统可靠运行。
回路布局
合理布局液压元件和管路,减少压力 损失和泄漏,提高系统效率。
安全保护
设计必要的安全保护措施,如过载保 护、超压保护等,确保系统安全运行。
调试维护
方便对系统进行调试和维护,留有必 要的检测点和维修空间。
回路优化策略探讨
应用
液压马达广泛应用于工程机械、农业机械、交通运输、石油采矿、船舶、机床等领域。不同类型的液 压马达具有不同的特点和适用场合,应根据具体需求选择合适的液压马达。
04 液压缸与液压控制阀
液压缸类型及结构特点
活塞式液压缸
由缸筒、活塞和活塞杆 等组成,结构简单,应
用广泛。
柱塞式液压缸
只能实现单向运动,回 程需借助其他外力或自
蓄能器
储存压力能,在需要时释放能量,补充系统 泄漏或提供瞬时大流量。
典型回路分析举例
压力控制回路
通过压力控制阀等元件实现对系 统压力的控制,包括调压、卸荷、
减压、增压等回路。
速度控制回路
通过流量控制阀等元件实现对执行 元件速度的控制,包括节流调速、 容积调速等回路。
方向控制回路
通过方向控制阀等元件实现对执行 元件运动方向的控制,包括换向、 锁紧等回路。
液压传动基础知识

第一章概论液压传动是以液体作为工作介质对能量进行传动和控制的一种传动形式,液压传动相对于电力拖动和机械传动而言,其输出力大、重量轻、惯性小、调速方便以及易于控制等优点而广泛应用于工程机械、建筑机械和机床等设备上。
近几十年来,随着微电子技术的迅速发展及液压传动许多突出的优点,其应用领域遍及各个工业部门。
第一节液压传动的工作原理及系统组成一、液压传动系统的工作原理(一)液压千斤顶图1-1是液压千斤顶的工作原理图。
大油缸9和大活塞8组成举升液压缸。
杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵。
如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力升高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物。
再次提起手柄吸油时,单向阀7自动关闭,图1-1液压千斤顶工作原理图使油液不能倒流,从而保证了重物不会自行下落1—杠杆手柄2—小油缸3—小活塞不断地往复扳动手柄,就能不断地把油液压入举4、7—单向阀5—吸油管6、10—管道升缸下腔,使重物逐渐地升起。
如果打开截止8—大活塞9—大油缸11—截止阀12—油箱11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动。
这就是液压千斤顶的工作原理。
通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传动的基本工作原理。
(1)液压传动以液体(一般为矿物油)作为传递运动和动力的工作介质,而且传动中必须经过两次能量转换。
首先压下杠杆时,小油缸2输出压力油,是将机械能转换成油液的压力能,压力油经过管道6及单向阀7,推动大活塞8举起重物,是将油液的压力能又转换成机械能。
(2)油液必须在密闭容器(或密闭系统)内传送,而且必须有密闭容积的变化。
如果容器不密封,就不能形成必要的压力;如果密闭容积不变化,就不能实现吸油和压油,也就不可能利用受压液体传递运动和动力。
2024年度-《液压基础知识培训》ppt课件

同步动作回路
使多个液压缸在运动中保持相同的位移或速 度。
多缸快慢速互不干扰回路
实现多个液压缸各自独立的速度调节,互不 干扰。
16
04
典型液压系统分析与应用
17
工业机械手液压系统
液压驱动机械手
01
通过液压缸和液压马达实现机械手的运动,具有驱动力大、运
动平稳等优点。
控制系统
02
采用液压伺服系统或比例控制系统,实现机械手的精确控制和
压力控制阀
控制液压系统中的压力,如溢流阀、 减压阀等
10
辅助元件:油箱、滤油器、冷却器等
01
02
03
04
油箱
储存液压油,起到散热、沉淀 杂质和分离空气的作用
滤油器
过滤液压油中的杂质,保证油 液的清洁度
冷却器
降低液压油的温度,保证系统 的正常工作温度
其他辅助元件
油管、管接头、密封件等,保 证液压系统的密封性和正常工
对油箱、管路等部件进行清洗,确保 内部无杂质、铁屑等污染物。
28
调试过程检查项目和方法
01
02
03
04
检查各液压元件的安装紧固情 况,防止松动或泄漏。
按照液压系统原理图,逐步检 查各回路的连通情况,确保油
路畅通。
启动液压泵,观察系统压力是 否正常,检查各液压元件的动
作是否灵活、准确。
对系统进行空载运行,观察系 统的稳定性,检查有无异常振
现代阶段
20世纪80年代至今,随着新材料、新工艺和新技术的不断涌现,液 压技术得到了更加广泛的应用和发展。
6
02
液压元件及工作原理
7
动力元件:液压泵
液压泵的工作原理
最全的液压传动基本知识图解

液压传动系统在工业领域的应用实例
轧机、连铸机等冶金机械中采用 液压传动系统,提供大扭矩、高 精度的动力输出。
飞机起落架、导弹发射装置等航 空航天设备中采用液压传动系统 ,满足高可靠性、高精度的要求 。
工程机械 冶金机械 农业机械 航空航天
挖掘机、装载机、叉车等工程机 械中广泛应用液压传动系统,实 现各种复杂动作。
02
液压传动基础知识
Chapter
液压油及其性质
01
02
03
液压油的作用
传递动力、润滑、冷却、 密封
液压油的性质
粘度、密度、压缩性、抗 磨性、抗氧化性、抗泡性
液压油的选用
根据系统工作压力、温度 范围、设备环境等因素选 择合适的液压油
液体静力学与动力学基础
液体静类
根据结构形式,液压马达可分为齿轮马达、叶片马达、柱塞马达等类型。根据 工作压力和排量大小,液压马达可分为低速大扭矩马达和高速小扭矩马达。
液压泵与液压马达的性能参数
01
液压泵的性能参数主要包括排量、压力、转速、效率和噪声等。排量是指泵每转 一周所排出油液的体积,压力是指泵出口处的油液压力,转速是指泵的旋转速度 ,效率是指泵输出功率与输入功率之比,噪声是指泵运转时产生的声音。
03
考虑液压缸和液压 阀的安装、调试和 维护的方便性。
04
在满足性能要求的 前提下,尽量选用 结构简单、性能稳 定、价格合理的产 品。
05
液压辅助元件及液压回路
Chapter
蓄能器、过滤器等辅助元件
储存能量
在液压系统中起到储存和释放能量的 作用,平衡系统压力。
吸收冲击
减小压力冲击对系统的影响,提高系 统稳定性。
,延长元件使用寿命。
液压传动基础知识

F p0dA ghdA pdA A
第一章 液压传动基础知识
三、伯努利方程
理想液体的伯努利方程
第三节
流体动力学
p v2 h 常数 g 2 g
F p0dA ghdA pdA A
第一章 液压传动基础知识
第三节 流体动力学
三、伯努利方程
2、实际液体的伯努利方程
,层流时取 当紊流时取 1
液压油
注:在静止液体中,du/dy=0,内摩擦力为零,所以液体在静 止状态下是不呈粘性的 (2)粘度
液体粘性的大小用粘度来表示
①动力粘度
F du A dy
物理意义——液体在单位速度梯度下流动时,接触液层间单位面积 上的内摩擦力单位为 (帕•秒,N•s/m2)
第一节
液压油
② 运动粘度
液压油使用一段时间后会受到污染,常使阀内的阀芯卡死,并使油封加速 磨耗及液压缸内壁磨损。造成液压油污染的原因有如下三个方面。
(1)污染 液压油的污染的一般可分为外部侵入的污物和外部生成的不纯物。 ①外部侵入的污物:液压设备在加工和组装时残留的切屑、焊渣、铁锈等 杂物混入所造成的污物,只有在组装后立即清洗方可解决。 ②外部生成的不纯物:泵、阀、执行元件、“O’’形环长期使用后,因磨损 而生成的金属粉末和橡胶碎片在高温、高压下和液压油发生化学反应所生成 的胶状污物。
1L= 1×10-3 m3
1m3/s=6×104L/min
从连续性方程可以看出,表明运动速度取决于流量,与流体的压力无关。
F p0dA ghdA pdA A
第一章 液压传动基础知识
第三节 流体动力学
二、连续性方程
如图所示为相互连通的两个液压缸, 已知大缸内径D=100 mm,小缸内径d=20 mm,大活塞上放一质量为5000 kg的物 体G。问: (1)在小活塞上所加的力F有多大才 能使大活塞顶起重物? (2)若小活塞下压速度为0.2 m/s, 大活塞上升速度是多少?
公共基础知识液压传动基础知识概述

《液压传动基础知识概述》一、引言液压传动作为一种重要的传动方式,在现代工业中发挥着举足轻重的作用。
从重型机械到精密仪器,从航空航天到汽车制造,液压传动技术的应用无处不在。
它以其独特的优势,如功率密度高、响应速度快、控制精度高等,成为众多领域中不可或缺的关键技术。
本文将对液压传动的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势等方面,为读者提供一个系统而深入的了解。
二、液压传动的基本概念1. 定义与原理液压传动是利用液体作为工作介质,通过液体的压力能来传递动力和进行控制的一种传动方式。
其基本原理是帕斯卡定律,即密闭容器内的静止液体,当某一部分受到压力作用时,这个压力将通过液体传递到容器的各个部分,且压力的大小不变。
在液压传动系统中,通常由液压泵将机械能转化为液压能,通过管道将高压液体输送到执行元件(如液压缸、液压马达等),执行元件再将液压能转化为机械能,实现各种机械运动。
2. 组成部分液压传动系统主要由以下几个部分组成:(1)动力元件:即液压泵,其作用是将原动机(如电动机、内燃机等)的机械能转化为液体的压力能,为系统提供动力。
(2)执行元件:包括液压缸和液压马达,它们将液体的压力能转化为机械能,实现直线运动或旋转运动。
(3)控制元件:如各种阀门,用于控制液体的压力、流量和方向,以满足系统对执行元件运动的要求。
(4)辅助元件:包括油箱、过滤器、油管、管接头、密封件等,它们为系统的正常运行提供必要的辅助功能。
(5)工作介质:通常为液压油,它在系统中起到传递能量、润滑、冷却和密封等作用。
3. 特点与优势液压传动具有以下特点和优势:(1)功率密度高:能够在较小的体积和重量下传递较大的功率,适用于重型机械和大功率设备。
(2)响应速度快:由于液体的可压缩性很小,液压传动系统能够快速响应控制信号,实现精确的位置和速度控制。
(3)控制精度高:通过各种控制元件,可以实现对执行元件运动的高精度控制。
液压传动的基础知识

▪ 6.液压元件已实现标准化、系列化和通用化,所 以液压系统的设计、制造和使用都比较方便。
.
16
4.2 液压传动的缺点
▪ 1.液压传动不能保证严格的传动比。这是由于液 压油的可压缩性和泄漏等因素造成的。
▪ 2.液压传动中,能量经过二次变换及传动过程中 压力损失,能量损失较多,系统效率较低。
4、辅助元件—油箱、油管、滤油器 、压力表 在系统中起储存油液、连.接、滤油、测量等作用 9
(1)动力元件:液 压泵——能量转换, 提供压力油
.
10
(2)执行元件: ---能量转换带动 机构做功
.
11
(3)控制调节元 件:各种——控制压 力、方向、流量
.
12
(4)辅助元件-各种液压辅件
.
13
▪ 3.液压传动对油温的变化比较敏感(主要是粘 性),系统的性能随温度的变化而改变。
▪ 4.液压元件要求有较高的加工精度,以减少泄漏, 从而成本较高。
▪ 5.液压传动出现故障时不易找出。
.
17
第二节 液压油
油液种类
{ 机械油
石油型 汽轮机油 液压油
{ {{ 难燃型
乳化液 合成型
水包油 油包水 水-乙二醇液 磷酸酯液
由上式可得:G 由于 A2 ,所A以1
F
AA,G 故12 千斤F顶有(力1-的4)放大作用。
.
6
1.3.2、负载的运动速度取决于流量
液压传动中传递运动时,速度传递按照容积变化
相等的原则进行。故有: A1S1A (21-S52)
由于速度:V1
S1 t
V2
S2 t
液压传动基础知识

无物理意义,但它却是工程实际分析中经常用到的物理量。
工程上用运动粘度来表示油的粘度等级。 我国生产液压油采用40℃时的运动粘度值(mm2/s)为其粘 度等级标号,即油的牌号。 例如牌号为L-HL32的液压油,就是指这种油在40℃时的运动 粘度平均值为32mm2/s。
第一节 液压油
(3)温度对粘度的影响
第一节 液压油
二、液压油的种类及选用
(1)种类 可燃型液压油(矿物油型、合成烃型)、 耐火型液压油(包括乳化型、水、水—乙二醇型及合成型) 专用液压油(航空用、舰船用、炮用及车辆制动用液压油等)
第一节 液压油
(2)选用
选用的液压油粘度过高,将使系统因摩擦力而引起的功率损失过大 (机械效率下降);选择液压油的粘度过低,将使系统因泄漏而引起的 功率损失增大(容积效率下降)。
A 第一章 液压传动基础知识
三、伯努利方程
2、实际液体的伯努利方程
第三节 流体动力学
当紊流时取 ,1层流时取 2
p1
gh1
1 2
1v12
p2
gh2
1 2
2v22
pW
动动能能修修正正系系数数
单位体积液 体在两断面 间流动的能
量损失
在用平均流速代替实际 流速计算动能时,必然 会产生误差。为了修正 这个误差,需引入动能 修正系数α
第一节 液压油
2.闪火点
油温升高时,部分油会蒸发而与空气混合成油气,此油气所能点 火的最低温度称为闪火点,如继续加热,则会连续燃烧,此温度 称为燃烧点。
3.粘度
(1)粘性的物理意义
液体在外力作用下流动时,分 子间的内聚力要阻止分子间的 相对运动,因而产生一种内摩 擦力,这一特性称为液体的粘 性。
液压传动基础知识

温度 ↓→ 分子间内聚力 ↑→ 油液粘度↑→压力损失↑。
并且变化十分敏感,说明温度对粘度的影响很大。 油液的粘温特性: 油液粘度随温度变化的特性称为油的粘温特性。
②压力:
压力↑→ 分子间距↓ →分子间内聚力 ↑→ 油液粘度有所↑。 a.当压力较低时,压力变化对粘度影响较小,一般不考虑。 b.当压力很高时,压力变化对粘度影响较大。
3.压力的单位
1 Pa(帕) = 1 N/m2
1MPa (兆帕)= 106 Pa
压力单位及其它非法定计量单位的换算关系: 1at(工程大气压)=1kgf/cm2=9.8×104 Pa 1mH2O(米水柱)=9.8×103 Pa 1mmHg(毫米汞柱)=1.33×102 Pa 1bar(巴) = 105 Pa≈1.02kgf/cm2
1、酸值:中和1克油液所需 KOH 的毫克数。
2、热稳定性:自身裂化、聚合 。
3、氧化稳定性:与空气及其它氧化物进行化学反应的能力 4、相容性:油液与系统中各种密封材料、涂料等非金属材 料相互接触时抵抗化学反应的能力。如不起作用或很少起 作用则相容性好。
5、抗乳化性:油液中混入水并搅动成乳化液后,水从其中 分离出来的能力。
点组成的 面称等压面,显然在重力场中静止液体的等压面
为水平面。
P0
P0
⒉静压力基本方程的物理意义
P = P0 + ρg h = P0 + ρg ( z0 - z ) = P0 + ρg z0-ρg z
h1
P0 A Z0
h
B
Z1
Z
P0 + ρg z0 = P + ρg z
0
X(基准水平面)
或
Z: 单位重量液体相对于基准平面的位能, ∴ Z 称为比位能 (位臵水头)
第2章 液压传动基础知识

的相对变化量。
1 V p V0
常用液压油的压缩系数仅为(5~7)×10-10,一般可忽 略不计。
17
四、液体的其它性质 1.粘度和压力的关系 ∵ P↑,F↑,μ↑
∴μ随p↑而↑,压力较小时忽略,32Mpa以上才考虑。 2.粘度和温度的关系 ∵ 温度↑,内聚力↓,μ↓ ∴粘度随温度变化的关系叫粘温特性,粘度随温度的 变化较小,即粘温特性较好。
成流束。
3.通流截面:流束中所有与流线正交的截面(垂直
于液体流动方向的截面)。
46
三、流量和平均流速 1.流量:单位时间内流过某通流截面的液体体积q, 单位m3/s。工程上也用L/min。对于微小流束通过该 通流截面的流量为:
dq udA
dA:微小流束的通流截面面积。
u:液体流过该通流截面的速度。对于微小流束可
动粘度为20 cst。
新牌号——L—HL32号液压油,指这种油在40℃时的 平均运动粘度为32cst。
13
3.相对粘度°E 恩氏度0E —— 中国、德国、前苏联等用 赛氏秒SSU —— 美国用 雷氏秒R —— 巴氏度0B —— 英国用 法国用
14
被测定的液体在某一温度下从恩氏粘度计小孔 (φ2.8mm)流出200ml所需的时间t1(s)与蒸馏水在20℃ 流出相同体积所需时间t2(s)的比值,称为恩氏粘度。
26
液体静压力的定义 液体在单位面积上所受的内法线方向的法向力称为压 力。(物理学中称压强)单位为牛顿/平方米(N/m2), 也称帕(Pa)。
F p=lim A0 A
在液压技术中,还采用工程大气压、千克力每平方米 (kgf/m2 )等为单位。
1at 工程大气压 1kg / cm2 9.8 104 N/m2 105 Pa 0.1MPa
液压传动基础知识

1.2.1 液压传动的工作原理及特征
特征一:力(或力矩)的传递是按照帕斯卡定律(静压传递定律)进行的。
p
F1 W A1 A2
压力取决于负载
压力的国际单位是帕斯卡(Pa), 实际中常用兆帕(MPa)这一单 位,1MPa=106Pa,另外在工程 中也常用单位巴(bar), 1bar=1kgf/cm2≈0.1MPa,欧美国 家习惯使用psi(磅/平方英寸)作 单位,1psi=0.069bar =0.0069MPa。
1.传动方式的分类
◦ 原动机→传动机→工作机 ◦ 传动通常分为机械传动、电气传动和流体传动以及 它们的组合—复合传动等。 ◦ 机械传动—发展最早、目前应用最普遍的传动形式 ◦ 电气传动—在有交流电源的场合得到了广泛的应用
◦ 流体传动—液体传动(液压传动和液力传动)和气 体传动
• 以液体为工作介质进行能量传递和控制的传动方式 称为液体传动,它包括液压传动和液力传动。
1.3 液压传动的优缺点及应用
2.液压传动的主要缺点
◦ 1)液压传动不可避免地存在泄漏,同时,液 体又不是绝对不可压缩的,因此不宜在传动比 要求严格的场合采用。 ◦ 2)液压传动在工作过程中存在能量损失,如 摩擦损失、泄漏损失等,因此其传动效率较低, 一般为75%~80 %,故不宜用于远距离传动。而 且泄漏要及时妥善处理,否则不仅污染场地, 而且若附近有火种存在时,还可能引起火灾和 爆炸事故。
◦ 3)液压传动对油温的变化比较敏感,原因是 温度变化会引起液体茹性发生变化,使系统泄 漏增加,执行元件的工作性能也变坏,因此, 不宜在低温和高温条件下工作。 ◦ 4)为了减少泄漏,液压元件的制造精度要求 较高,因此,液压元件的制造成本较高,而且 对油液的污染比较敏感。 ◦ 5)液压系统故障的诊断比较困难,因此对维 修人员提出了更高的要求,既需要系统地掌握 液压传动的理论知识,又要具有一定的实践经 验。
液压传动基础知识

• 这里我们主要讲液压传动。因为现阶段工 程机械(包括路面机械、土方机械、起重 机械等)能量传递多数采用液压传动。
液压传动基础知识
第二节液压传动工作原理
一、 液压传动的定义:
借助于处于密闭容积内的液体的压
液压传动基础知识
第三节液压系统的组成和特点
●液压系统的组成:
液压系统由四个部分组成,即液压能 源元件,液压执行元件,液压控制元件和 液压辅助元件。 1. 液压能源元件
液压能源元件主要是液压泵,他将原 动机的机械能转换为液体的压力能,给液 压系统供给流量。
液压传动基础知识
2. 液压执行元件
液压执行元件是将液体的压力能 转换为机械能,带动工作负载作功。 液压执行元件包括液压缸和液压马达。
从上述液压千斤顶的工作原理中可以看出, 力从活塞1传到活塞8是通过液体进行的。因此, 活塞与液体间有力的作用,单位面积上所受的 力成为液体压力,如果不考虑液压损失和认为 活塞的运动是稳定运动,根据帕斯卡原理,油 室Ⅰ和油室Ⅱ的液体压力相等。
因此,我们可以清楚地看到,液压传动是用 液体作为工作介质,靠液体压力能来传递能量。
3. 液压控制元件
液压控制元件是各种控制阀,在 液压系统中起控制液体压力、流量和 液流方向的功能,以满足工作机构对 力、速度、位置和运动方向的要求。 液压控制阀包括压力控制阀、流量控 制阀和方向控制阀。
液压传动基础知识
4. 液压辅助元件
液压辅助元件包括密封件、油管、管 接头、蓄能器、滤油器、油箱、冷却器、 加热器等。虽然他们在液压系统中起辅 助作用,但对液压系统的正常工作、效 率、寿命等都有较大的影响。
液压传动基础知识

液体的流动状态是层流还是紊流,可以通过无量纲 值雷诺数来判断。实验证明,液体在圆管中的流动 状态可用下式来表示
Re
d
v
常见管道的临界雷诺数
2.3.2 流体连续性方程
流体连续性方程是质量守恒定律在流体力学中的表达方式。 液体在管内作恒定流动, 任取1、2两个通流截面,根据 质量守恒定律,在单位时间内 流过两个截面的液体质量相等, 即: ρ 1v1 A1 = ρ2v2 A2 不考虑液体的压缩性则得 q = v A = 常量
2.流线、流束、流管和通流截面
流线 某一瞬时液流中一条条标志其各处质点运动状态的 曲线。在流线上各点处的瞬时液流方向与该点的切 线方向重合,在恒定流动状态下流线的形状不随时 间而变化。对于非恒定流动来说,由于液流通过空 间点的速度随时间而变化,因而流线形状也随时间 变化而变化。液体中的某个质点在同一时刻只能有 一个速度,所以流线不能相交,不能转折,但可相 切,是一条条光滑的曲线 。 许多流线组成的一束曲线。
2.4.3 管路系统的总压力损失
整个管路系统的总压力损失是系统中所有直管中的沿程压力 损失和所有局部压力损失之和。
减小液压系统压力损失的措施: 减小流速 缩短管道长度 减小管道截面的突变 提高管道内壁的加工质量
例1:某液压泵装在油箱油面以下,液压泵的流量q=25L/min,所用 液压油的运动粘度为20mm2/s,油液密度为900kg/m3 ,吸油管为光滑 圆管,管道直径为20mm,过滤器的压力损失为0.2x105pa,试求油泵 入口处的绝对压力。
例4:如图,水箱两侧壁开一个小孔,水箱自由液面1-1与小孔22处的压力分别为P1和P2,小孔中心到水箱自由液面的距离为h,且 h基本不变,如果不计损失,求水从小孔流出的速度。
液压传动基础知识

液压传动基础知识1.液压传动的工作原理液压传动是以油液作为工作介质,依靠密封容积的变化来传递运动,依靠油液内部的压力来传递动力。
2.液压系统的主要组成(1)驱动元件指液压泵,它可以将机械能转换为液压能。
(2)执行元件指液压缸或液压马达,它是将液压能转换为机械能并分别输出直线运动和旋转运动。
(3)辅助元件辅助元件有管路与管接头、油箱、过滤器和密封件等,分别起输送、贮存液体,对液体进行过滤、密封等作用。
(4)控制和调节元件指各种阀,如压力控制阀、流量控制阀、方向控制阀等,用以控制液压传动系统所需的力、速度、方向等。
(5)工作介质如液压油等。
3.液压传动的特点及应用(1)优点1)易获得很大的力或力矩,并易于控制。
2)在输出同等功率下,采用液压传动具有体积小、重量轻、惯性小、动作灵敏、便于实现频繁换向等优点。
3)便于布局,操纵力较小。
(2)缺点1)由于液压传动本身的特性,易产生局部渗漏而造成能量损失较大,致使系统效率降低。
2)液压传动故障点不易查找。
(3)应用液压传动被广泛采用于冶金设备、矿山机械、钻探机械、起重运输机械、建筑机械、航空等领域中。
4.液压油的物理性质(1)密度单位体积的油液所具有的质量称为密度。
(2)重度单位体积的油液所具有的重量称为重度。
(3)粘度流体、半流体或半固体状物质抵抗流动的体积特性,它表示上述物质在受外力作用而流动时,分子间所呈现的内摩擦或流动内阻力。
(4)压缩性一般情况下油液的可压缩性可忽略不计。
5.液压油的选用选用液压油时,首先要考虑液压系统的工作条件,同时参照液压元件的技术性能选择液压油。
选择液压油时主要是确定合适的粘度,并考虑以下几点:1)液压系统的工作条件,如工作压力。
2)液压系统的环境条件,如系统油温与环境温度。
3)系统中工作机构的速度,如油液流速对传动效率及液压元件功能的影响。
6.静止液体的性质式中 Q 一一进入液压缸的流量Ci?/s);(1)液体的静压力液体在静止状态下单位面积上所受到的作用力,即p=F∕A(1-6)式中p ——液体的静压力(N∕ι112);F ——作用力(N);A ——有效作用面积(in?)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压传动基础知识 Revised by Jack on December 14,2020
1章液压传动基础知识
1、液压油的密度随温度的上升而,随压力的提高而。
2、在液压系统中,通常认为液压油是不可被压缩的。
()
3、液体只有在流动时才会呈现出,静止液体是粘性的。
4、液体的黏度是指它在单位速度梯度下流动时单位面积上产生的。
5、液压油压力增大时,粘度。
温度升高,粘度。
6、进入工作介质的固体污染物有四个主要根源,分别是、、
和。
7、静止液体是指液体间没有相对运动,而与盛装液体的容器的运动状态无关。
8、液体的静压力具有哪两个重要的特性
9、液体静压力的基本方程是p=p0+ρgh,它说明了什么(如何看待液体静压力基本方程)
10、液体静压力基本方程所包含的物理意义是:静止液体中单位质量液体的和
可以互相转换,但各点的总能量却保持不变,即。
11、液体中某点的绝对压力是,大气压为 Mpa,则该点的真空度为 Mpa,相对压力Mpa
12、帕斯卡原理是在密闭容器中,施加于静止液体上的压力将同时传到各点。
13、液压系统中的压力是由决定的。
14、流量单位的换算关系:1m3/s=( )L/min A 60 B 600 C 6×104 D 1000
15、既无粘性又不可被压缩的液体称为。
16、液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这种流
动称为。
A 二维流动 B 时变流动 C 非定常流动 D 恒定流动
17、单位时间内通过某通流截面的液体的体积称为。
A 流量B 排量C 流速D 质量
18、在液压传动中,能量损失主要表现为损失。
A 质量B 泄露C 速度 D 压力
19、压力损失主要有压力损失和压力损失两类。
液体在等直径管中流动时,
产生压力损失;在变直径、弯管中流动时,产生压力损失。
20、液体在管道中流动时有两种流动状态,即和,前者力起主导作用;后者
力起主导作用。
液体的流动状态可用来判别。
21、当小孔的通流长度l与孔径d之比l/d≤时称之为小孔。
22、小孔的长径比l/d>4时称之为小孔。
23、在液体流动中,因某点处的压力低于空气分离压而产生气泡的现象,称之为。
25、在液压系统中,由于某种原因,液体压力在一瞬间突然升高,产生很高的压力峰
值,这种现象称为。
26、小孔的类型有三种:薄壁小孔、细长小孔、短孔,三种小孔的流量公式为。
27、作用在液压缸活塞上的压力越大,活塞运动的速度越快。
()
28、在液压传动中,工作液体不起作用。
A 升温 B传递动力 C 传递速度 D 润滑液压元件
29、如图所示圆管,管中液体有左向右流动,已知管中通流断面的直径分别为
d1=200mm,d2=100mm,通过通流断面1的平均流速v1=1.5m/s,求流量是多少通过通流断面2的平均流速是多少。