捷联惯导的初始对准
捷联惯导初始对准以及姿态解算
![捷联惯导初始对准以及姿态解算](https://img.taocdn.com/s3/m/1feeff7b84254b35effd348f.png)
第三部分:基于“存储数据与迭代计算对准”罗经法对准
3.2 罗经法对准过程中的调整策略(以北向通道为例)
g
y
f
p N
1
VN
1
s
R
-
K1
K2 R
K3 s
Control algorithm
cE -
x
1
s
x
-
ie cos L
z
实线所示的北向通道:本质上是一个休拉回路,失准角作无阻尼振荡。
采取的策略:1)引入内反馈环节(虚线)实现衰减振荡;2)引入前馈环节(点画 线)缩短振荡周期;3)引入积分环节(双点画线)消除罗经项的影响。
3.5 SINS罗经法对准如何实现迭代计算?
fˆNn -
b ib
fb cU
Cˆbn
Cˆbn
b ib
Cnbine
Cnbc
cN
fˆ n Cˆbn f b
1
VN
s
1
cE
R
K1
K2 R
K3 s
Control algorithm
上述过程中,可以实现迭代计算。
Page 15
第三部分:基于“存储数据与迭代计算对准”罗经法对准
导航坐标系 n (b)SINS
GINS中的测量数据直接反映失准角的大小; SINS中的测量数据不直接反映失准角;只有投影数据能够反映失准角的大小;相同 的测量数据经过不同的姿态矩阵进行投影,可以获取不同的投影数据。 注:上述均不考虑仪表误差。
对于SINS而言,分析一种理想的情况:仪表无误差,载体无机动,此时在整个对准 过程中,仪表测量数据均相等。整个对准过程,其实只用了一组仪表参数。
3.6 SINS罗经法对准中存储数据如何使用?
-初始对准
![-初始对准](https://img.taocdn.com/s3/m/d989ed64f01dc281e53af083.png)
捷联惯导系统的 静基座初始对准1.初始对准惯性导航系统是根据测得的运载体的加速度,经过积分运算求得速度与位置的,因此,必须知道初始速度和初始位置。
此外,在以地理坐标系为导航坐标系的惯导系统中(包括平台式和捷联式),物理平台和数学平台都是测量加速度的基准,而且平台必须准确地跟踪地理坐标系,以避免由平台误差引起加速度测量误差。
在惯性系统加电启动后,平台的三轴指向是任意的,平台一般不在水平面内,又没有确定的方位,因此在系统进入导航工作状态前,必须将平台的指向对准,此过程便称为惯性系统的初始对准。
初始对准的精度直接关系到惯导系统的工作精度,初始对准的时间是惯导系统的重要战术技术指标。
因此,初始对准是惯导系统最重要的关键技术之一。
2.初始对准的分类(1)按对准的阶段来分惯导系统的初始对准一般分为两个阶段:第一阶段为粗对准:对平台进行水平与方位粗调,要求尽快地将平台对准在一定的精度范围内,为后续的对准提供基础,所以要求速度快,精度可以低一些。
第二阶段为精对准:它是在粗对准的基础上进行的,要求在保证对准精度的前提下尽量快。
(2)按对准的轴系来分在以地理坐标系为导航坐标系的情况下,初始对准可分为水平对准和方位对准。
在平台式惯导系统中,物理平台通常先进行水平对准,然后同时进行平台的水平与方位对准。
在捷联式惯导系统中,对数学平台进行对准时,一般情况下水平对准与方位对准是同时进行的。
(3)按基座的运动状态来分按照安装惯导系统所在基座的运动状态可分为静基座对准和动基座对准。
动基座对准通常是在运载体处于运动状态下进行的。
(4)按对准时对外信息的需求来分惯导系统只依靠重力矢量和地球速率矢量通过解析方法实现的初始对准称为自主式对准,此时不需要其它外部信息,自主性强,但精度不高。
非自主对准可通过机电、光学或其它方法将外部参考坐标系引入系统,使平台对准至导航坐标系。
3.初始对准的要求惯导系统不论用于运载体导航还是武器弹药中的制导,都要求初始对准保证必需的准确性与快速性。
2.捷联惯导系统初始对准——【惯性导航系统】
![2.捷联惯导系统初始对准——【惯性导航系统】](https://img.taocdn.com/s3/m/eb9385f6a5e9856a5712607b.png)
古典控制理论设计法、参数辨识法、卡尔曼滤波法 等。
‹#
精对准思路
‹#
精对准误差方程简化
x
Vg epy
R
z cos
ysin
g x
y
Vegpx
R
sin
x sin
g y
x
Vg epy
R
z cos
g x
wdx
y
Vg epx
R
g y
wdy
z
Vg epx
R
tg
cos
x cos
g z
z
Vg epx
‹#
0
cos
0
0
g
1
sin
0
1 g
tg
1 g
0
1 sec
0
1 g
sec
0
0
gp
T 1
fb T
Cbp
wp ie
T
wb T ib
rp
T
f b ωibb
T
另:
gb T g p T
wb ie
T
wp ie
1 T
T
0
f
p x
g
dt
z
1 T
T 0
w p ibx
cos
f
p x
g
tg
dt
粗对准精度一般在数角分至数十角分,视基座晃动大小。 方位对准精度受基座运动干扰更大,且高纬度地区误差大。
‹#
四、精对准
目的:
在基座存在晃动干扰时,精确修正姿态矩阵。
思路:
在粗对准基础上,通过对惯性器件的输出和重力加 速度、地球自转角速度信息进行滤波,精确地确定姿 态矩阵。
捷联惯导与组合导航系统高精度初始对准技术研究
![捷联惯导与组合导航系统高精度初始对准技术研究](https://img.taocdn.com/s3/m/df35f6c70342a8956bec0975f46527d3240ca606.png)
捷联惯导与组合导航系统高精度初始对准技术研究捷联惯导与组合导航系统高精度初始对准技术研究引言捷联惯导与组合导航系统是一种集捷联惯导和其他导航传感器(如GPS、气压计、陀螺仪等)的优势于一体的导航系统,具有在惯导滞后情况下实现导航信息快速、准确更新的优势。
为了确保导航精度和可靠性,捷联惯导与组合导航系统的初始对准是不可或缺的关键技术之一。
本文将重点探讨捷联惯导与组合导航系统高精度初始对准技术的研究。
一、捷联惯导与组合导航系统概述捷联惯导与组合导航系统是一种通过融合多种导航传感器测量数据来计算导航解的导航系统。
其中,捷联惯导通过惯性导航算法利用加速度计和陀螺仪提供的姿态、速度和位移信息进行导航计算,而组合导航则通过融合GPS和其它传感器的信息来修正惯导的误差,提供更准确的导航结果。
二、初始对准技术的研究现状初始对准技术在捷联惯导与组合导航系统中起到了决定性的作用,对其精度和可靠性具有重大影响。
目前,针对初始对准技术的研究主要集中在以下几个方面:1. 惯性传感器标定:惯导系统的精度和准确性直接依赖于惯性传感器的性能。
因此,对于惯导系统而言,惯性传感器的标定至关重要。
传感器标定主要涉及惯性传感器的误差估计、参数校准和标定方法等。
2. 导航状态估计算法:捷联惯导与组合导航系统的核心是导航状态估计算法。
目前常用的算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)以及粒子滤波(PF)等。
这些算法通过融合多种传感器的信息,实现对导航状态的准确估计。
3. 高精度传感器融合:为了提高初始对准的精度和可靠性,可以考虑使用更高精度的传感器,如高精度的加速度计和陀螺仪。
此外,对于GPS系统而言,使用双频技术和高精度的差分GPS技术可以进一步提高导航精度。
三、捷联惯导与组合导航系统高精度初始对准技术研究在捷联惯导与组合导航系统高精度初始对准技术的研究中,可以采用以下方法来提高初始对准的精度和可靠性:1. 多目标标定方法:采用多目标标定方法来标定捷联惯导系统中的惯性传感器。
第六章光学捷联惯导系统初始对准要点
![第六章光学捷联惯导系统初始对准要点](https://img.taocdn.com/s3/m/8d743ecf77232f60ddcca1b9.png)
对准结果
零速
6.2 自对准技术
对准精度分析
N1 g(V& E2DVNE)
E1g(V& N2DVEN)
D g 1 N (V N 3 D V & E 2 2 D V N D E ) E N
6.2 自对准技术
N
E
E g
N
g
D
E
E
tgL
N g
光学惯性测量与导航系统
Optic Inertial Measurement & Navigation System
主 讲: 杨功流 教授 晁代宏 讲师 张小跃 讲师
电 话: 9664,6542-823
第六章 光学捷联惯导系统初始对准
6.1 捷联惯导系统初始对准基本原理 6.2 自对准技术 6.3 传递对准技术
6.2 自对准技术
解析式粗对准
粗对准阶段的首要要求是快速性,对精度的要求较低。在进 行解析式粗对准时,要求载车静止,同时要求当地的经度、纬 度为已知量。 这样,重力加速度g和地球自转角速率在导航坐 标系中的分量是确定的常值,在载体坐标系中的分量也可以通 过惯性器件测得。通过惯性器件的测量值可以直接计算出初始 捷联矩阵。
6.1 捷联惯导系统初始对准基本原理
惯性导航系统是一种积分推算系统,这就需要预先给定积 分初始值(包括位置、速度和姿态)。 载体的位置与速度初值较易得到,如在静止状态下开始导 航时,初始速度为零,也可利用外部数据直接装订。 初始姿态值相对而言较难得到,这时需依赖惯导系统的初 始对准过程来实现。 初始对准的精度、对准时间直接影响导航系统精度和准备 时间,所以初始对准技术一直是惯导系统的关键技术之一。
6.2 自对准技术
基于MEMS的捷联式惯导的初始对准研究的开题报告
![基于MEMS的捷联式惯导的初始对准研究的开题报告](https://img.taocdn.com/s3/m/464b2f45eef9aef8941ea76e58fafab069dc44ee.png)
基于MEMS的捷联式惯导的初始对准研究的开题报告一、课题名称:基于MEMS的捷联式惯导的初始对准研究二、课题背景:捷联式惯性导航系统(INS)是一种能够确定飞行器位置、姿态和速度等参数的关键技术。
INS通常由陀螺仪和加速度计组成,通过测量飞行器在空间中的旋转和加速度来估计其位置和姿态。
传统的INS采用了机械式陀螺仪和加速度计,具有高精度和可靠性,但是成本昂贵且体积庞大。
近年来,基于MEMS技术的惯性传感器因其小型化、低成本和低功耗等优点而越来越受到关注。
因此,开发基于MEMS的捷联式INS在轻型飞行器中的应用具有重要意义。
初始对准是INS的一个重要过程,是使INS能够在没有先验信息的情况下确定其位置、速度和姿态的过程。
在初始对准中,通常需要使用地面测量设备或GPS等辅助手段来提供先验信息。
但是,在某些环境下,这些手段可能无法使用或精度不够高。
因此,开发无需外部辅助手段的初始对准算法,对于实现高精度的INS非常重要。
三、研究内容:本课题旨在研究基于MEMS技术的捷联式INS的初始对准问题,具体内容包括:1. 设计基于MEMS技术的捷联式INS硬件平台,包括陀螺仪、加速度计和数据采集系统等组件。
2. 提出基于MEMS技术的捷联式INS的初始对准算法,包括零偏校正、初始校正和姿态校正等环节。
3. 搭建实验平台,进行基于MEMS的捷联式INS初始对准算法的验证和实现。
四、研究意义:本课题的主要意义在于:1. 开发基于MEMS技术的捷联式INS对轻型飞行器进行导航和定位。
2. 通过研究基于MEMS的捷联式INS初始对准算法,降低INS对外部辅助手段的依赖,提高其精度和可靠性。
3. 探索MEMS技术在惯性导航领域的应用,促进相关技术的发展和应用。
五、研究方法和技术路线:本课题的研究方法和技术路线包括:1. 理论分析:通过分析MEMS技术的优点和缺点,结合已有的初始对准算法,提出基于MEMS技术的初始对准算法。
动基座条件下舰载武器捷联惯导系统初始对准研究
![动基座条件下舰载武器捷联惯导系统初始对准研究](https://img.taocdn.com/s3/m/febfc8f31b37f111f18583d049649b6649d7094f.png)
动基座条件下舰载武器捷联惯导系统初始对准研究1. 引言1.1 研究背景传统的捷联惯导系统在动基座条件下存在着诸多挑战,如基座的姿态变化、振动等因素会影响系统的捷联性能和初始对准精度。
研究动基座条件下舰载武器捷联惯导系统初始对准成为当前研究领域中的一个重要课题。
为了提高舰载武器系统的精确打击能力和战场生存能力,有必要深入研究动基座条件下捷联惯导系统的初始对准问题,探讨解决方案,优化系统性能。
这不仅对提升我国的军事实力具有重要意义,还对推动捷联惯导技术的发展和应用具有重要意义。
开展动基座条件下舰载武器捷联惯导系统初始对准研究具有重要的实践意义和战略意义。
1.2 研究意义本研究旨在探究动基座条件下舰载武器捷联惯导系统初始对准的问题,具有重要的实际意义和军事价值。
通过对捷联惯导系统的研究,可以提高舰载武器的打击精度和命中率,从而提升海军舰队的作战效能。
研究动基座条件下的挑战和解决方案,对于提升我国军事科技水平具有重要意义。
随着军事技术的不断发展和更新换代,对舰载武器系统的研究和改进势在必行,本研究将为我国海军现代化建设提供重要的技术支持。
本研究具有重要的实际意义和战略意义,对于提高海军舰队的作战效能和保障国家安全具有重要意义。
【内容结束】2. 正文2.1 动基座条件下舰载武器捷联惯导系统简介动基座条件下舰载武器捷联惯导系统是一种集成了捷联惯导技术的舰载武器系统,在对抗复杂环境下能够实现高精度打击目标的能力。
该系统由动基座、惯导系统和传感器组成,可以实现对目标的精确识别、跟踪和打击。
动基座可以根据目标的运动状态和环境变化实时调整武器的姿态,从而提高武器的打击精度和生存能力。
捷联惯导系统则能够利用惯性传感器和GPS等技术实现对目标的精确定位和引导,确保武器能够准确命中目标。
动基座条件下舰载武器捷联惯导系统是一种先进的武器系统,具有高度的精度和灵活性,能够有效应对复杂多变的作战环境,对提高舰载武器的作战效能具有重要意义。
捷联惯性导航系统初始对准原理
![捷联惯性导航系统初始对准原理](https://img.taocdn.com/s3/m/4d12cf208bd63186bdebbcb8.png)
第二章 捷联惯导系统的初试对准2.1引言惯导系统是一种自主式导航系统。
它不需要任何人为的外部信息,只要给定导航的初始条件(例如初始速度、位置等),便可根据系统中的惯性敏感元件测量的比力和角速率通过计算机实时地计算出各种导航参数。
由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要。
对于平台惯导系统,初试对准的任务就是要将平台调整在给定的导航坐标系的方向上。
若采用游动方位系统,则需要将平台调水平---称为水平对准,并将平台的方位角调至某个方位角处---称为方位对准。
对于捷联惯导系统,由于捷联矩阵T 起到了平台的作用,因此导航工作一开始就需要获得捷联矩阵T 的初始值,以便完成导航的任务。
显然捷联惯导系统的初始对准就是确定捷联矩阵的初始值。
在静基座条件下,捷联惯导系统的加速度计的输入量为---b g ,陀螺的输入量为地球自转角速率b ie ω。
因此b g 与b ie ω就成为初始对准的基准。
将陀螺与加速度计的输入引出计算机,通过计算机就可以计算出捷联矩阵T 的初始值。
由以上的分析可以看出,陀螺与加速度计的误差会导致对准误差;对准飞行器的干扰运动也是产生对准误差的重要因素。
因此滤波技术对捷联系统尤其重要。
由于初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,因此研究初始对准的误差传播方程也是非常必要的。
2.2 捷联惯导系统的基本工作原理捷联式惯性导航系统,陀螺仪和加速度计直接与载体固联,加速度计测量是载体坐标系轴向比力,只要把这个比力转换到导航坐标系上,则其它计算就与平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵n b C ,姿态矩阵也称为捷联矩阵。
一般选择地理坐标系为导航坐标系,那么捷联矩阵n b C 也可表示为t b C , 其导航原理图如图2.1所示。
由惯导系统的工作原理可以看出,捷联式惯性导航系统有以下几个主要优点: 1.惯性敏感器便于安装、维修和更换。
动基座条件下舰载武器捷联惯导系统初始对准研究
![动基座条件下舰载武器捷联惯导系统初始对准研究](https://img.taocdn.com/s3/m/c1ec004f00f69e3143323968011ca300a7c3f67b.png)
动基座条件下舰载武器捷联惯导系统初始对准研究摘要:在舰载武器系统中,捷联惯导系统具有重要的作用。
捷联惯导系统的初始对准是系统正常工作的关键。
本文通过分析捷联惯导系统的工作原理,介绍了动基座条件下捷联惯导系统的初始对准方法,并对其影响因素进行了研究。
1. 引言舰载武器系统中的捷联惯导系统是一种通过惯性测量单元和全局导航卫星系统接收机联合工作,使武器系统能够在没有外界参考的情况下进行精确定位、导航和打击的系统。
捷联惯导系统的初始对准是保证系统有效工作的重要环节。
2. 捷联惯导系统的工作原理捷联惯导系统由惯性导航单元、全球定位系统接收机以及姿态传感器等部件组成。
惯性导航单元通过测量加速度和角速度信息来计算舰艇的位置和姿态。
全球定位系统接收机通过接收卫星信号,确定舰艇的位置。
姿态传感器用于检测舰艇的姿态角。
3. 动基座条件下捷联惯导系统的初始对准方法在动基座条件下,舰载武器系统的捷联惯导系统初始对准可以通过以下步骤完成:步骤一:舰艇静止时,进行GPS和惯性泌言的初始对准。
通过接收全球定位系统的信号,确定舰艇的粗略位置,并使用惯性传感器测量舰艇的加速度和角速度信息。
步骤二:舰艇开始运动后,启动捷联惯导系统,并利用姿态传感器获取舰艇的姿态角。
然后,通过惯性导航单元计算舰艇在初始位置的惯性坐标系中的位置。
步骤三:根据舰艇的惯性坐标系和全球定位系统的坐标系之间的坐标变换关系,可以确定舰艇在全局坐标系中的位置。
然后,将舰艇的位置信息与导航指令进行比较,利用闭环控制算法对舰艇进行修正。
4. 影响因素分析动基座条件下捷联惯导系统的初始对准精度受多个因素影响,主要有以下几点:舰艇运动状态:舰艇运动过程中,加速度和角速度的变化会对捷联惯导系统的初始对准精度产生影响。
舰艇运动越大,精度越低。
姿态传感器精度:姿态传感器用于检测舰艇的姿态角,其精度将直接影响到捷联惯导系统的初始对准精度。
全球定位系统精度:全球定位系统接收机的精度也是影响捷联惯导系统初始对准精度的一个重要因素。
车载捷联惯导初始对准技术研究
![车载捷联惯导初始对准技术研究](https://img.taocdn.com/s3/m/841cd558ff4733687e21af45b307e87101f6f84b.png)
摘要捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)已经在军事、民用等领域得到了广泛应用。
初始对准作为整个捷联惯导系统工作前的关键步骤,其精度决定了整个导航系统的精度。
车载捷联惯导初始对准分为静基座初始对准和动基座初始对准,其技术指标主要包括对准精度和对准时间。
本课题针对车载捷联惯导系统实际工作环境中出现的惯性器件启动漂移、静基座初始对准过程中人为噪声干扰以及动基座初始对准过程中全球定位系统(Global Positioning System,GPS)速度误差和噪声失配等问题,提出相应的解决办法,具体研究内容如下:首先,针对车载捷联惯导系统初始对准情况下光纤陀螺和加速度计出现启动漂移的问题,通过采集分析光纤陀螺和加速度计在不同温度下启动的实测数据,研究了光纤陀螺和加速度计漂移与温度及温度变化率之间的关系,通过对目前光纤陀螺和加速度计漂移补偿模型进行简化,减小了计算量,实测数据验证了简化的模型能够有效补偿惯性器件启动漂移并缩短系统初始对准时间。
其次,针对车载捷联惯导系统静基座初始对准过程中人为噪声干扰的问题,通过采集车载捷联惯导静基座下人员上下车、驻车发动机启动等情况的惯性器件数据输出,分析了其噪声特性,提出了改进的基于小波阈值策略的经验模态分解降噪算法,实测数据验证了该方法的降噪效果以及对提高静基座下初始对准算法稳定性的有效性。
然后,针对动基座初始对准过程中GPS速度误差导致量测矢量误差增大的问题,提出了基于鲁棒反馈策略的惯性系初始对准算法,该方法基于前一个时刻估计的姿态预测当前时刻的量测矢量,并根据当前时刻的量测矢量求得当前时刻的方差,对前一个时刻的方差和当前时刻的方差进行比较并基于鲁棒控制的策略对当前量测矢量进行调整和反馈,仿真和实测数据验证了该方法能够有效提高动基座对准精度。
最后,针对动基座初始对准过程中噪声失配的问题,通过对姿态误差进行分析建立系统状态空间模型,并引入无偏有限冲击响应(Unbiased Finite Impulse Response,UFIR)滤波的思想,提出了基于UFIR的惯性系初始对准算法,UFIR滤波器不需要像卡尔曼滤波器(Kalman Filter,KF)一样设置Q阵和R阵,其利用观测窗长内的有限测量数据进行无偏状态估计,降低了系统噪声和量测噪声特性未知或者改变时对姿态估计的影响,仿真和实测数据验证了该方法的有效性。
捷联式惯导系统初始对准方法研究
![捷联式惯导系统初始对准方法研究](https://img.taocdn.com/s3/m/796c659b3086bceb19e8b8f67c1cfad6195fe9a6.png)
捷联式惯导系统初始对准方法研究一、本文概述随着导航技术的不断发展,捷联式惯导系统(StrapdownInertial Navigation System, SINS)已成为现代导航领域的重要分支。
由于其具有自主性强、隐蔽性好、不受外界电磁干扰等优点,被广泛应用于军事、航空、航天、航海等领域。
然而,捷联式惯导系统的初始对准问题是其实际应用中的一大难题。
初始对准精度的高低直接影响到系统的导航精度和稳定性。
因此,研究捷联式惯导系统的初始对准方法具有重要意义。
本文旨在深入研究和探讨捷联式惯导系统的初始对准方法。
对捷联式惯导系统的基本原理和组成进行简要介绍,为后续研究奠定基础。
对初始对准的定义、目的和重要性进行阐述,明确研究的重要性和方向。
接着,重点分析现有初始对准方法的优缺点,包括传统的静基座对准、动基座对准以及近年来兴起的智能对准方法等。
在此基础上,提出一种新型的初始对准方法,并对其进行详细的理论分析和仿真验证。
通过实验验证所提方法的有效性和优越性,为捷联式惯导系统的实际应用提供有力支持。
本文的研究内容对于提高捷联式惯导系统的初始对准精度、增强其导航性能和稳定性具有重要意义。
所提出的新型初始对准方法有望为相关领域的研究提供新的思路和方向。
二、捷联式惯导系统初始对准理论基础捷联式惯导系统(Strapdown Inertial Navigation System,SINS)的初始对准是其正常工作的前提,对于提高导航精度和长期稳定性具有重要意义。
初始对准的主要目的是确定惯导系统载体在导航坐标系中的初始姿态,以便为后续的导航计算提供准确的基准。
捷联式惯导系统的初始对准过程涉及多个理论基础知识,包括载体运动学、动力学模型、误差分析以及滤波算法等。
载体运动学模型描述了载体在三维空间中的姿态、速度和位置变化,是初始对准过程中姿态解算的基础。
动力学模型则用于描述载体在受到外力作用下的动态行为,为误差分析提供了依据。
在初始对准过程中,误差分析是至关重要的。
9-初始对准
![9-初始对准](https://img.taocdn.com/s3/m/4c87039583d049649b6658a2.png)
1.初始对准
惯性导航系统是根据测得的运载体的加速度,经过积分运算求得速 度与位置的,因此,必须知道初始速度和初始位置。此外,在以地理坐 标系为导航坐标系的惯导系统中(包括平台式和捷联式),物理平台和 数学平台都是测量加速度的基准,而且平台必须准确地跟踪地理坐标 系,以避免由平台误差引起加速度测量误差。
7 状态变量可观测性的分析
7.1 古卓夫柯夫定义的可控性和可观性
考虑定常系统
x& = Ax + Bu
[ ] [ ] 式中, A = aij ∈ Rn×n,B = bij ∈ Rn×m。
设初始条件为零,对上式进行拉氏变换,由克莱姆法则可以得到
xi
(s)
=
∆i ∆
(i = 1,L,n)
式中
(s − a11) − a12 L − a1n
振荡误差有三种:
(1)休拉振荡 周期为 84.4 分。
(2)地球振荡 周期为 24 小时。
(3)傅科振荡 周期为 51 小时,频率为ωe sinϕ 。
傅科振荡周期随纬度而变,纬度越低,周期越长,在赤道上,傅科 振荡频率为零,傅科振荡消失;在两极,傅科振荡退化为地球振荡。
傅科振荡对休拉振荡起调谐作用。
在惯性系统加电启动后,平台的三轴指向是任意的,平台一般不在 水平面内,又没有确定的方位,因此在系统进入导航工作状态前,必须 将平台的指向对准,此过程便称为惯性系统的初始对准。
初始对准的精度直接关系到惯导系统的工作精度,初始对准的时间 是惯导系统的重要战术技术指标。因此,初始对准是惯导系统最重要的 关键技术之一。
4.1 粗对准
在静基座上,加速度计测得的是重力加速度矢量在飞行器坐标系 b 中的分量,陀螺仪测得的是地球自转角速度矢量在 b 系中分量。而这两 个矢量在导航坐标系——地理坐标系 E 中的分量是已知的
9-初始对准教程
![9-初始对准教程](https://img.taocdn.com/s3/m/25c72941ddccda38366baf00.png)
(4)按对准时对外信息的需求来分
惯导系统只依靠重力矢量和地球速率矢量通过解析方法实现的初 始对准称为自主式对准,此时不需要其它外部信息,自主性强,但精度 不高。 非自主对准可通过机电、光学或其它方法将外部参考坐标系引入系 统,使平台对准至导航坐标系。
3.初始对准的要求
惯导系统不论用于运载体导航还是武器弹药中的制导,都要求初始 对准保证必需的准确性与快速性。 用于舰船与飞机的惯导系统,对准时间可略长些,如装备民航飞机 用的惯导系统的对准时间容许为 15~20min。 用于舰炮武器系统的捷联式航姿系统,基于对其快速反应的要求, 静基座对准时间要求在 10min 左右,动基座对准时间要求在 20min 左 右。 对于战术导弹的空中对准, 初始对准则要求在数十秒或数秒内完成。 平台式惯导系统的水平对准精度达到 10”以内,方位对准精度达 2’~5’以内。 为了使初始对准达到精而快的要求,陀螺仪与加速度计必须具有足 够高的精度和稳定性,系统的鲁棒性要好,对外界的干扰不敏感。
4.静基座对准
捷联式惯导系统初始对准的任务就是确定从机体坐标系到导航坐 标系的初始变换矩阵。对准过程分为两个阶段:粗对准和精对准。
4.1 粗对准
在静基座上,加速度计测得的是重力加速度矢量在飞行器坐标系 b 中的分量,陀螺仪测得的是地球自转角速度矢量在 b 系中分量。而这两 个矢量在导航坐标系——地理坐标系 E 中的分量是已知的
(2)按对准的轴系来分
在以地理坐标系为导航坐标系的情况下,初始对准可分为水平对准 和方位对准。 在平台式惯导系统中,物理平台通常先进行水平对准,然后同时进 行平台的水平与方位对准。 在捷联式惯导系统中,对数学平台进行对准时,一般情况下水平对 准与方位对准是同时进行的。
(3)按基座的运动状态来分
捷联式惯导系统初始对准
![捷联式惯导系统初始对准](https://img.taocdn.com/s3/m/d95ff724a5e9856a56126061.png)
捷联式惯导系统初始对准惯性技术是惯导(惯性导航与惯性制导)技术、惯性仪表技术、惯性测量技术以及有关设备和装置技术的统称。
惯性导航与惯性制导是当今非常重要的综合技术之一,它广泛用于航空、航海、航天及陆地各领域。
惯性导航系统是和用陀螺与加速度计通过最初的方向基准和位置信息来确定运载体在一特定坐标系内的姿态、位置、速度和加速度的自主式导航系统。
惯性制导系统是利用运载体内部的陀螺、加速度计测量其运动参数,经过计算机发出控制指令,从而把运载体按照预定的路线准确地引导到目的地的制导系统。
自主性是惯性系统最重要的特点。
确定运动对象导航参数的方法和仪器有许多,例如磁、天文、无线电、水声、全球卫星定位系统等等,然而它们都有一个致命的弱点,即不是自主的,不是要向外界发出信息,就是要依赖对外观测信息,而惯性系统与上述诸方法的基本区别就在于是完全自主的,即导弹、潜艇、飞船等可以在一个完全与外界条件以及电磁波隔绝的假想“封闭”空间内实现精确导航。
因此,惯导系统具有隐蔽性好、抗干扰、不受任何气象条件限制的优点,且数据更新速率高,可以提供连续实时的导航参数。
惯性系统在国防科学技术中占有非常重要的地位,因而是世界各工业强国重点发展的技术领域之一。
随着惯性技术的不断发展,许多国家已将其应用领域扩大到现代化交通运输,海洋开发,大地测量与勘探,石油钻井,矿井、隧道的掘进与贯通,机器人控制,现代化医疗器械,摄影技术以及森林防护,农业播种、施肥等民用领域。
惯性技术的发展表明:从传统的机械转子型陀螺向固态陀螺仪(激光、光纤陀螺仪)转移,并进一步向以半导体硅为基本材料的微机械振动陀螺发展;从框架式平台系统向捷联系统转移,从纯惯性捷联系统向以惯性系统为基础的多体制组合导航系统发展,成为今后惯性技术发展的总趋势。
捷联式惯性导航系统,导航用的加速度计是直接捆绑在运载体上,它测量的是运载体坐标系轴向比力,只要把这个比力转换到惯性坐标系上,则其他计算就和空间稳定的平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵bC,有些资料上称姿态矩阵g为捷联矩阵或方向余弦矩阵bC。
光学捷联惯导系统初始对准教程课件
![光学捷联惯导系统初始对准教程课件](https://img.taocdn.com/s3/m/6fd2ab67b5daa58da0116c175f0e7cd18525186b.png)
基于滤波理论的初始对准方法
概述
基于滤波理论的初始对准方法主要利用滤波 算法对系统状态进行估计,通过最优估计来 达到初始对准的目的。
优点
滤波算法相对简单,易于实现,且具有一定的鲁棒 性。
缺点
对于非线性系统,滤波算法的精度和稳定性 可能受到影响。
基于机器学习的初始对准方法
概述
基于机器学习的初始对准方法主要利用机器学习算 法对系统状态进行预测和估计,通过学习来达到初 始对准的目的。
优点
机器学习算法可以处理大规模数据,且具有较强的 自适应能力。
缺点机器学习算法的训练和优化过程较复杂,且需要 大量的数据支持。
04
光学捷联惯导系统初始对准实验
实验设备与环境
实验设备
光学捷联惯导系统、计算机、数据采 集卡、电源等。
实验环境
室内、室外均可,需要保证环境光线 的充足,避免强光直射。
实验步骤与操作流程
02 精1. 度分和析稳系定统性输;出的姿态角、速度等数据的
03
2. 比较不同初始条件下系统输出的差异;
04
3. 分析系统误差来源,提出改进措施。
05
常见问题与解决方案
初始对准精度问题
总结词
初始对准精度问题通常表现为对准结 束后系统输出的姿态、位置与真实值 存在较大偏差。
详细描述
解决方案
采取一系列措施来提高初始对准精度, 包括使用高性能的陀螺仪和加速度计、 优化算法以减小误差、实施抗干扰设 计等。
提高初始对准精度的研究重点
优化算法
研究更高效、稳定的算法,提高初始对准的精度 和速度。
硬件优化
改进和优化硬件设备,提高其稳定性和精度,为 初始对准提供更好的基础。
光学捷联惯导系统初始对准详解
![光学捷联惯导系统初始对准详解](https://img.taocdn.com/s3/m/026182d86137ee06eff91888.png)
VN
VU
E N
U
b b b Bx By Bz
Cbn
北京航空航天大学仪器科学与光电工程学院
6.2 自对准技术
把上式改写成矩阵形式:
g b T g n T n b T n T ie ie Cb b n b T n T g ie g ie
北京航空航天大学仪器科学与光电工程学院
6.2 自对准技术
对准中仅将陀螺漂移和加速度零偏的 随机常数部分列入状态:
b Bi 0,(i x, y, z )
b i 0,(i x, y, z )
北京航空航天大学仪器科学与光电工程学院
6.2 自对准技术
取状态变量为:
X VE
按基座运动状态的不同:
静基座对准
动基座对准
北京航空航天大学仪器科学与光电工程学院
6.1 捷联惯导系统初始对准基本原理
初始对准的分类及要求
按对外信息需求的不同:
自主式对准
非自主式对准
北京航空航天大学仪器科学与光电工程学院
6.1 捷联惯导系统初始对准基本原理
初始对准的分类及要求
自主式对准指惯导系统依靠重力矢量和地球自
b 的测量值 b 由于在载体系中只能得到 g b 和 ie g
b 和 ie ,按照上式只能计算出 Cbn 的估计值 Cbn 。
北京航空航天大学仪器科学与光电工程学院
6.2 自对准技术
精对准
经过粗对准后,得到的初始捷联矩阵还不准确,即存在姿 态误差,精对准阶段就是要对姿态角误差做出估计并进行修正, 从而获得准确的捷联矩阵。可以基于第四章和第五章述及的误 差方程和卡尔曼滤波进行姿态误差估计和修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前有关初始对准问题的研究 主要集中在误差模型的建立、模 型求解方法和误差模型的可观性 分析三个方面。
1.初始对准误差模型:
捷联惯导系统初始对准的误差模型及常用 算法研究的基础模型有Ψ角误差模型和Φ角误 差模型。
2.求解误差模型的方法: (1)古典方法 (2) Kalman滤波 (3) H∞鲁棒控制理论 (4)神经网络
图2中,常规方法约200s的 时间δΦU才能收敛理论精度εE/ ΩN附近,而快速算法用约50s 的时间δΦU就能收敛到εE/ΩN。 由于εE具有很小的可观测度,使 得δΦU随着时间推移会逐渐下降, 但是对对准精度影响不明显。仿真 实验结果说明该快速算法与常规算 法的精度相当,而ΦU估计速度大 大优于常规算法,有效提法的精度相当,而对准时间 大大优于常规算法。
1、捷联惯导系统初始对准技术综述( 作者:洪慧慧 李杰 马幸 曲芸 ) 2、一种新的捷联惯导快速对准方法 黄湘远,汤霞清,郭理彬 (装甲兵工程学院,北京 100072) 3、 万德钧,房建成.惯性导航初始对准[M].南京:东南大 学出版社,1998. [2] 徐晓苏,孙学慧,扶文树.弹载捷联惯导系统快速两位置 自对准[J].中国惯性技术学报,2007,15(2):139 -142. 4、 ZHANG Ting,WANG Bo.Analysis on obserability of SINS/GPS[C]//Proceedings of 5th W orld Congress of Intelligent Control and Automatio n,IEEE,2004:1584 -1587.
5、 秦永元.惯性导航[M].北京:科学出版社,2006. 6、 高伟熙,缪玲娟,倪茂林.一种引入陀螺角速度信息的快 速对准方法[J].宇航学报,2010,31(6):1597 -1601. 7、 熊剑,刘建业,赖际舟,等.一种陀螺量测信息辅助的快 速初始对准方法[J].宇航学报,2009,30 (4):14 55-1459. 8、 汪滔,吴文启,曹聚亮,等.基于转动的光纤陀螺捷联系 统初始对准研究[J].压电与声光,2007,29(5):5 19-522.
捷联惯导的初始对准
一、捷联惯导系统初始对准概念:
初始对准一般分为两个阶段:第一阶段为粗对准,第 二阶段为精对准。粗对准的任务是得到粗略的捷联矩阵, 为后续的精对准提供基础,此阶段精度低,速度快。精对 准是在粗对准的基础上进行的,通过处理惯性敏感元件的 输出信息,精确校正真实导航坐标系与计算的导航坐标系 之间的失准角,使之趋于零,从而得到精确的捷联矩阵。 在捷联惯性导航系统的粗对准阶段,可以通过引入主惯导 系统的航向姿态信息,通过传递对准,迅速的将数学平台 对准导航坐标系,减小初始失准角。在精对准阶段,可以 通过组合导航的方法,利用其它导航设备(如GPS,计程 仪等)提供的信息(如速度和位置)作为观测信息,通过 卡尔曼滤波实现精确对准。
使用仿真数据,采用两种进行初始对准,得到对 准结果(见图1),利用协方差分析方法对估计误 差进行分析(见图2)。从图1可以看出,两种方 法中,水平失准角ΦE、ΦN,约20s就能稳定, 精度相当,其中ΦE稳定在0.06°(21″)附近, ΦN稳定在-0.0052°(-19″)附近,说明两种 方法对水平失准角估计速度快,精度高,这可以从 图2中δΦE、δΦN曲线得到佐证。 从图1可以看出,常规方法中方位失准角ΦU约20 0s才能稳定,但是快速算法中只需要约50s就 能稳定。两种算法中,ΦU都能稳定在 0.105°(6.3′)附近。
按照捷联惯性导航系统初始对准时载体的运行状态 来分,可分为静基座对准和动基座对准。静基座对准 是运载体是不动的,动基座对准是在运载体运动状态 下完成的。对于静基座捷联惯导系统的初始对准问题 的研究已取得不少成果,但是动基座的初始对准技术 仍不成熟。 按照初始对准时是否取得外部信息,可分为自对准 和非自对准。惯性导航系统的自对准是利用重力矢量 和地球自转角速率矢量通过解析的方法实现的初始对 准,优点是自主性强,缺点是所需的对准时间长。非 自主式对准可以通过机电或光学方法将外部参考坐标 系引入系统,实现惯性系统的初始对准。
反舰 鱼叉
空空 法 米卡
空空
空空AIM-120
英军 海狼 反舰
鱼叉 反舰
战斧反舰巡航导弹 BGM-109B
长矛 地地
一种新的捷联惯导快速对准方法
为了提高初始对准的速度,将等效加速度计 和陀螺误差作为观测量,提出一种快速对准的 新方法。在常规方法的基础上,建立了等效加 速度计和陀螺误差方程及新的观测方程,并分 析了状态可观测度,推导了最优估计及对准精 度。最后,进行了仿真,结果表明两者对准精 度相当,时间上远远优于常规方法。该方法通 过引入陀螺信息,充分利用了外部测量信息, 加快了方位失准角的估计速度,有效缩短对准 时间,具有重要的应用参考价值。
(5)基于信息融合理论
3.初始对准的可观性分析: 东南大学在研究客观性分析方面, 万德钧提出一种时变动态系统可观 测性矩阵的奇异值分解分析方法, 应用于捷联惯导系统初始对准过程 中系统状态的可观测度分析取得显 著效果,该方法为初始对准中载体 最佳机动方案选择提供了依据。
ANS 反舰 德法
GBU-27激光制导炸 弹