反应动力学方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于常见的固相反应来说,其反应方程可以表示为
A (s),B(s) C(g)
( 1)
其反应速度可以用两种不同形式的方程表示:
d 。
微分形式 k f(> ) (2)
dt
和
积分形式
G(> ) = k t
(3)
式中:a ——t 时物质A 已反应的分数;
t ――时间; k --- 反应速率常数;
f( a )反应机理函数的微分形式; G( a
反应机理函数的积分形式。
由于f (a)和G (a )分别为机理函数的微分形式和积分形式,它们之间的 关系为:
1 1 f C )
(4)
G'2 )
d[G(。
)] /d 。
k 与反应温度T (绝对温度)之间的关系可用著名的 Arrhenius 方程表示:
基本方程
热分析动力学
k 二A exp( - E / RT )(5)
式中:A――表观指前因子;
E 表观活化能;
R――通用气体常
方程(2)〜(5)是在等温条件下出来的,将这些方程应用于非等温条件
时,有如下关系式:
T = T o p t (6)即:dT /dt 二(3
式中:T o―― DSC曲线偏离基线的始点温度(K);
3 ------ 加热速率(K • min-1)。
于是可以分别得到:
非均相体系在等温与非等温条件下的两个常用动力学方程式:
d- / dt = Aexp( - E/RT)f( a ) ( 等温) (7)
d A f G )exp( - E / RT ) (非等温) (8)
dT 3
动力学研究的目的就在于求解出能描述某反应的上述方程中的
对于反应过程的DSC曲线如图所示。
在DSC分析中,a值等于H t/H°,这里H t为物质A '在某时刻的反应热,相当于DSC曲线下的部分面积,H。
为反应完成后物质A '的总放热量,相当于DSC曲线下的总面积。
微分法
2. 1 Achar、Brindley 和Sharp法:
对方程d A f C ) exp( - E / RT )进行变换得方程: dT (3
(3 d:
A exp( - E / RT ) (9)
f (: ) dT
对该两边直接取对数有:
3 d。
E
ln ln A (10)
f (: ) dT RT
由式(11)可以看出,方程两边成线性关系。
通过试探不同的反应机理函数、不同温度T时的分解百分数,进行线性回
归分析,就可以试解出相应的反应活化能E、指前因子A和机理函数f( a ).
2. 2 Kissin ger 法
Kissi nger在动力学方程时,假设反应机理函数为的动力学方程表示为:
n
f C ) = (1 -〉),相应d :
dt
Ae _E / RT
该方程描绘了一条相应的热分析曲线,对方程(
(11)12)两边微分,得
E / RT n
d d:n de- E/RT d(1「)
_l——厂|A(1 _□ ) ----------------- + Ae" ---------------------
dt I dt 」. dt dt 一A(1 -: __E / RT
e _E / RT
RT dt dt
d - E dT _E /RT
n」d :
-Ae n(1
dt RT 2dt dt
-dT 1
E 1
d : l dt 、n 1
1An(1 - -:) e
dt RT1
-
(12)
T=T p
d d: —I | = 0 dt - dt (13)
(14)
将上述边界条件代入(13)式有:
在热分析曲线的峰顶处,其一阶导数为零,即边界条件为:
Kissi nger 研究后认为:”1_宀)心与B 无关,其值近似等于1,因此,从方程 (16)可变换为:
对方程(15)两边取对数,得方程(18),也即Kiss in ger 方程:
线,从直线斜率求E k
,从截距求A k
,其线性相关性一般在0.9以上 2. 3两点法
Kissi nger 法是在有假定条件下得到的简化方程。
如果我们不作任何假设,只 是利用数学的方法进行,可以得到两点法。
由方程(2)、(5)知
dT E —— dt RT
n 1 E / RT
An (1 _ □ p ) _e_
(15)
E / RT p
Ae _ P
RT
(16)
In
方程(18)表明, E
k
ln
E k
1
,i=1, 2, , , 4
R T
p
(17)
2
T.
丿
成线性关系,将二者作图可以得到一条直
T
pi
二
Ae RT
f C ) dt
方程(19)两边对T 微分,得
2 2
A
罟 E - 2ERT
—f"C )f C )e
RT
;4
(21)
B
R T
a d l —— dt Af C )e
_E / RT
E / RT
)e
「
(19)
dT
RT
当T=T p 时,反应速率达到最大, a =a 从边界条件有:
a d l dt .—
T
寺,口北
dT
我们得到第一个方程:
RT 2
p
(20)
方程(20)两边对T 微分,得
dt dT
_E/RT A
Af(:)e —f
I B
RT
3AE
B RT
f ( )e
—E / RT
d :
这相当于对DSC 曲线求二阶导,为的是求 DSC 曲线的拐点。
在DSC 曲线的拐 点处,我们有边界条件:
d 件]
dt dT
将该条件代入方程(22),从而得到第二个方程
聋 3 AE
R 「 O _E / RT.
)e j f ( )e +
B RT
i
E
Ee^ RT 2
f
':
m
式中:
A 2
2
'2
f (■
f "(:
E 2
- 2ERT
=0
2 E
RTi
—
---- --------- -------- i
)f C )e
— R T
i
(22)
联立方程(21)和(22),即得到只与反应温度 T 、 机理函数f ( 0有关的方
程如下:
丫 [E, 1
2 EU
f( : )] = (B C D)e
2RT i i
E 2
4 R T
i
' 2 2 2 f : m
R TmT
:
i
f :
'2
f : m
「- T i
RTT
通过解方程就可求出非等温反应动力学参数E和A的值。
在该方法中,只需要知道升温速率B,拐点的温度T i、分解百分数a,峰顶的温度T m、分解百分数術,就可以试算不同的f( a)以求解出对应于该f( a) 时的活化能E 值、指前因子A值。
三积分法
对于积分法)G(> )二kt
则由方程(8)求积分得
a d。
A T A T
GC )「。
二T0 exp( -E/RT)dT 二0 exp( -E / RT )dT
f (a )33
AE _u
u 一e AE AE _u
e
-- -----------
:: 2 du p(u)=(u) (23)
(3 R u 3 R 3 R u
R2T m4
exp( - u) E
式中:p(u) (u); u 二
u RT
对P (u)的不同处理)构成了一系列的积分法方程,其中最著名的方法和方
程如下:
3. 1 Ozawa 法
通过对方程(23)变换,得Ozawa公式:
(AE " E
log p = log 1-2.315 - 0.4567 (24)
I RG © )丿RT
方程(24)中的E,可用以下两种方法求得。
方法1:
由于不同p i下各热谱峰顶温度T P i处各a值近似相等,因此可用
1
“log p ---- ”成线性关系来确定E值。
令:
T
= log p
Z
i
—1/T p (i 二12 丄)
E a 二-0.4567 —
R
AE
b = log 2.315
RG © )
这样由式(24)得线性方程组
乙二ay i b (i = 1,2, ,L)
解此方程组求出a,从而得E值。
Ozawa法避开了反应机理函数的选择而直接求出E值,与其它方法相比,它避免了因反应机理函数的假设不同而可能带来的误差。
因此往往被其它学者用来检验由他们假设反应机理函数的方法求出的活化能值,这是Ozawa法的一个突出优点。
3. 2 Phadnis 法
2
RT d« GC ) f C ):
E dT
2 da
该方程由Phadnis 等人提出。
对于合适的机理函数, G ) f (?)与T
成线性
dT
关系,由此求出E 值,但无法求出A 值。
3. 3 Coats-Redfern 近似式
取方程(23)右端括号内前二项,得一级近似的第一种表达式
(1 -
T
_E /RT
°
e dT
E
P FK
(u)
_u
2
RT
_E / RT
e_
式中p
FK
(u)
二
_u
e _
2
u
(25)
Coats-Redfern 近似式:
°
e
_E / RT
dT
E
E e 」 ( 2 " E , u - 2、
P(u)二
2
1 1 -
= e _ 1 R
R u I u R V u 丿
(26)
RT
2RT
_E / RT
式中:
P CR
(U )
u 2
并设f (〉)二 (1 -
n
),则有
2RT
-E / RT
2
方程(4-4)和(4-5)右端第一项几乎都是常数,当心时,|n 1
一
(1
八厂
-T (1 - n)
图,而 n.1 时,ln _
ln
(i )
1
对一作图,都能得到一条直线,其斜率为
T
正确的n 值而言)。
该法无需对p(u)作近似处理,可以证明,对于一定的 E 值,-log p(u)与1/T 为线性关系, 并可表达为:
a - log p(u) = u _
T
而且,E 对a 也是线性关系,可表达为:
a = y bE
于是有
y + bE
-log p(u)二
u
T
虽然u 对E 不是线性关系,但是logu 对logE 是线性关系,即:
logu 二
logA c l og E
于是有
1 _n
当”时,屛一(
1"7
1
T 2
(1 - n)
一
I ― In(1 〜
")
丨
当n »时,In —
1 T
2
」
上述两个方程都称为Coats-Redfern 方
ln _
AR (
M 1
E
由于对一般的反应温区和大部分的 E 值而言,
- RT
>>
(27)
RT
RT
( 2RT
1,11- --------- I E
丿
(28)
1 ,所以
1
对一作
T E
—(对
R
3. 4 Mac Callum-Ta nner
近似式
y + bE -log p(u)二
AE
T
借助于附录A 中列出的logp(u)~u 表计算出相应的常数后,代入上式,得:
式中:E ----- 活化能,kcal/mol
T ―― 温度,K
上述方程称Mac Callum-Tanner 近似式。
4. 计算结果判据
提出的选择合理动力学参数及最可几机理函数的五条判据是
:
(1) 用普适积分方程和微分方程求得的动力学参数 E 和A 值应在材料热分解反应动力学参
数值的正常范围内,即活化能E 值在80~250kJ -mol "1之间,指前因子的对数(lgA/s -1) 值在7~30之间;
(2) 用微分法和积分法计算结果的线性相关系数要大于
0.98 ;
(3) 用微分法和积分法计算结果的标准偏差应小于 0.3 ;
(4) 根据上述原则选择的机理函数f ( a )应与研究对象的状态相符;
(5) 与两点法、Kissinger 法、Ozawa 法和其它微积分法求得的动力学参数值应尽量一致。
0 .4357
-log P MT
(u)二
0.4828 E
0.449 0.217 E
0.001 T
0.4828 E
0.4357
P M T
(u) = 10
0.449 -0.217 E 卜
0 .001 T
函数号 函数名称 机理
抛物线法则 Vale nsi 方程
枳分形式G ( a )
一维扩散,1D, D 1减速a
形a -t 曲线
二维扩散,园柱形对鳥::(1 - :•) ln ( 1
- ?) 称,2D, D 2,减速形
a -t
曲线
I- ln ( 1 _ :•) .F
Jan der 方程
二维扩散,2D, n = 1
2
Jan der 方程
二维扩散,2D , n=2
1
_|
Jan der 方程
三维扩散,3D ,nJ
2
三维扩散,球形对称,
3D ,D 3,减速形a 曲线,n=2
三维扩散,
球形对称, 3D ,D 4,减速形
a
曲线 反Jander 方程三维扩散,3D Jan der 方程
G-B 方程(*)
函数号 函数名称 -t 1
- -(1 - :)3
6(1 -:)3 1 一(1 • -.::
J
J
1
2
2
- 1
1 _ (1
_〉)3
1
1
2
3
(1 一:)「一(1 2
1 2
1
-t (―
_1
3
彳
1
(1 ::;';) 3 (1
匕)3 -1 2
- 机理 积分形式G ( a )
微分形式f
( a
) 9 Z.-L.-T.方程 (**) 三维扩散,3D 10
Avrami-Erofee 随机成核和随后生长, A 4,
v 方程
1 S 形a -t 曲线,n
=—,
m=4 11
Avrami-Erofee 随机成核和随后生长, A 3,
v 方程
1
S 形 a -t 曲线,n 二
一,
m=3 12
Avrami-Erofee 随机成核和随后生长,
v 方程 2 n 二
_
13
Avrami-Erofee 5
随机成核和随后生长,
A 2,
v 方程
-
1
f
(1 - :)3 -1
3 -(1
2
4
1
」 「)3
(1 -「)
3
-1
1
•T n ( 1 -<) I 4
4(1
-
3
--)Lln (1 -- )14
1
L ln ( 1 -「)I 3
3(1 -
2
-〉)L ln ( 1 - :■ ) I 3
2
L ln (1 - :)L
5
(1 2 3
-「)丨 - ln (1 -「)L
1
L ln ( 1 -「)L
2(1 -
1
-「)L ln ( 1 -「)L
1
S 形a -t 曲线,n , m=2
2
14 Avrami-Erofee
v方程随机成核和随后生长,
2
n=—
2
1- ln( 1 - :■) I3
3
2
(1 _ :•)丨_
ln( 1
1
-:■) I3
15 Avrami-Erofee
3
随机成核和随后生长,1- ln( 1 3
-:■ ) I4
4 (1 _「)丨_ 1
n( 1 1 I4
v方程
3 n 二一
A
3
16 Mample单行
4
随机成核和随后生长,假设-ln( 1 --■) 1 -Ct
法则,一级每个颗粒上只有一个核心,
A1 , F1 , S 形a -t 曲线,n =1,
m=1
17 Avrami-E 随机成核和随后生长,
1- ln( 1 3
-:■ ) I22
(1 _ :•)I _
ln( 1 1
-:jl_2
rofeev方程 3 3
n 二一
2
函数号函数名称机理积分形式G
(a )微分形式f(a )
18 Avrami-Erofeev 随机成核和随后生长,n = 2L ln(1 ■ ■ ■ ) ^—(1 - :•) L ln( 1 - :■ ) .F
方程 2
19 Avrami-Erofeev 随机成核和随后生长,n = 3 L ln(1 -<-)3-(1 T.:) L ln( 1 —r:.)尸
方程 3
20 Avrami-Erofeev 随机成核和随后生长,n = 4 —n(1 -?) r丄(1 - :•) l_ ln( 1 - ? ) F
方程 4
21 P.-T 方程(***) 自催化反应,枝状成核,A u, ln :-1:-(1 _「)
B1 (S形a -t曲线)H-1
22 Mampel Power 法 1
n 二一
1
:-4
3
4-4
则(幕函数法则) 4
23 Mampel Power 法 1
n 二一 1
:-3
2 3川3
则(幕函数法则) 3
24 Mampel Power 法 1
n 二
1
:-2
1
2用2
则(幕函数法则) 2
25 Mampel Power法相边界反应(一维),R
1, n=1 1 -(1 -
1
:-)1 - ?
1
则(幕函数法则)
26 Mampel Power 法
3 n =—
3
•工2
2 丿
—:-2
则(幕函数法则) 2 3 27 Mampel Power 法n=2 、£ 2 1
1则(幕函数法则) 2 续表
续表 函数号 函数名称 机理
积分形式G ( a )
微分形式f ( a )
41
三级 化学反应,F 3,减速形a (1 7一)丄
1 (1 - )3
-1曲线
2
42 S-B 方程(****) 固相分解反应SB (m ,n )
J. m (1 _
「)n
43
反应级数
化学反应,RO (n ),
1 -(1 -二)2
(1 _ :)"
1 R
1 — n
J-n
44
J-M-A 方程(***** )随机成核和随后生长,An ,
1- ln(1 - ? ) l /n
1
n(1 - : )" - ln( 1 - > ) 1 n
JMA (n )
45 幕函数法则
P 1,加速型a -1曲线
用1 /n
n(:. )(2)/n
28 29
30 31
32 33 反应级数
1 n =— 4
收缩球状(体积)相边界反应,球形对称,R 3,
1
减速形a -t 曲线,n =
3
收缩园柱体 积)
n=3 (三维)
(面相边界反应,园柱形对称, R 2,减速形a -t 曲线,
反应级数 1
n , n=2 (二维) 2
n=2
1-(1
-:■) 4
4(1 — :•)
1-(1 1
-? )3
3(1 八)
1
2
3 1 - (1 一 :(1—a )3
L J
1
1-(1 1
-? ) 2
2(1 - :•)
-
1 1
2 1 - (1 一 :(1—"
(1
八)」
34 反应级数 n=3
1 - (1 - : )3 35 反应级数 n=4
1 - (1 - : )4
36
二级 化学反应, F 2,减速形a -t
(1 - :)」
曲线
37 反应级数 化学反应
(1 )」_1
38
2/3级
化学反应 1
(1 -〉)2 39 指数法则
E 1,n=1,
加速形a -t 曲线
In :■
40 指数法则
n=2
In : 2
1 (1 -「)
3 1 (1 - :
•)
4
(1 -: )2
3
2(1 _ -■ )2
a
1 — a
2
1
2
3
1
2
1 1 -(1 - :)2
*, Ginstling-Brounstein 方程
**, Zhuralev-Lesokin-Tempelman 方程
***,Prout-Tompkins 方程
****, ?estok- Berggren 方程
*****, Johnson-Mehl-Avrami 方程
注:函数No.1 和27 称谓不同,形式相同。