数字温度传感器测温显示系统说明书
温度传感器的说明书
温度传感器的说明书尊敬的用户:感谢您购买我们的温度传感器产品。
为了确保您正确、安全地使用此产品,我们特别提供如下说明书,请仔细阅读并按照要求进行操作。
1. 产品概述温度传感器是一种用于测量温度的设备,可以将温度转化为电信号输出。
本产品采用高精度的数字温度传感器,并具备以下特点:- 超高精度:测量温度范围为-40℃至+125℃,精度可达±0.1℃。
- 快速响应:传感器具备快速响应时间,能够准确捕捉温度变化。
- 稳定可靠:采用优质材料和先进工艺制造,确保产品稳定可靠,长时间使用不易出现故障。
2. 使用方法本温度传感器为数字输出型产品,可通过以下步骤进行使用:步骤一:将传感器连接到计量仪器或控制系统的温度接口,确保接触良好。
步骤二:开启计量仪器或控制系统,并按照相关说明进行设置。
步骤三:进行温度测量,待测量结果稳定后,记录或进行进一步处理。
3. 注意事项为了保障您的安全和正常使用,请注意以下事项:- 请按照产品规定的工作温度范围使用,不要超出额定范围,以免影响测量准确性和传感器寿命。
- 请避免与水、油等液体直接接触,以免影响传感器性能和使用寿命。
- 请勿在高温、高湿度、强酸碱等恶劣环境中使用,以免损坏传感器。
- 避免传感器受到强磁场或电磁辐射的干扰,可能会导致测量偏差。
4. 维护保养- 定期清洁传感器外壳,可使用干净的软布轻擦,不要使用有机溶剂或大量水直接清洗。
- 如发现传感器接触异常或测量不准确,请及时联系售后服务,不要私自拆卸或修理。
5. 售后服务如有任何关于产品的使用问题或售后需求,请随时联系我们的客户服务团队,我们将竭诚为您提供技术支持和解决方案。
感谢您对我们产品的信任和支持,我们将一如既往地致力于为您提供高品质的产品和专业的服务。
祝您使用愉快!此致,敬礼。
厂商名称日期。
使用DS18B20温度传感器测温
第11章使用DS18B20温度传感器测温11.1 概述现实生产生活中,小到测量体温的温度计,大到航天飞机的温控系统,处处都离不开温度测量。
工业生产中的三大指标(流量、压力、温度)之一就是温度,温度测量可以说是无处不在,遍布了我们生活生产的方方面面。
DS18B20温度传感器是美国DALLAS半导体公司生产的数字化温度传感器,它与以往模拟量温度传感器不同,数字化是其一大特点,它能将被测环境温度直接转化为数字量,并以串行数据流的形式传输给单片机等微处理器去处理。
DS18B20温度传感器的另一个主要特点是它是单总线的,即它与单片机等微处理器连接时,只需占用一个I/O管脚,并且不再需要其它任何外部元器件,这大大简化了它与但单片机之间的接口电路。
11.2 DS18B20温度传感器介绍目前,使用最普遍的DS18B20温度传感器是三脚TO-92直插式封装这一种,这种封装的DS18B20实物如图11-1所示。
可以看到它体积很小,只有三只管脚,外形与一般的三极管极其相似。
图11-2是其三脚TO-92直插式封装图,表11-1列出了DS18B20各个引脚的定义。
如图11-1 如图11-2表11-1 DS18B20引脚定义。
1、DS18B20温度传感器特性简介◆独特的单总线(一条线)接口,与微处理器通信只需一个I/O管脚,且硬件连接无需其它外部元件;◆测量结果直接输出数字量,可直接与微处理器通信;◆供电电压范围3.0V~5.5V;在寄生电源方式下可有数据线供电;◆测温范围-55℃~+125℃;在-10℃~+85℃范围内,测量精度可达±0.5℃;◆可编程的9~12位测温分辨率,对应的可分辨温度值分别为0.5℃,0.25℃,0.125℃,0.0625℃;12位分辨率时的温度测量转换最长时间(上限)只有750ms;◆每一片DS18B20都有自己独一无二的芯片号码;多片DS18B20可以并联在一条数据总线上实现不同地点的多点组网;◆应用范围包括温度调控,工业现场测温,消费类产品,温度计及热敏系统等。
CN600温度传感器说明书
CN600系列是基于微处理器的扫描仪,它接受来自多达12个热电偶或RTD 的信号。
每个温区按照先后顺序进行扫描,并显示活动温区。
可锁定单个温区,以便进行监测。
每种仪器都可编程,以满足操作人员对热电偶类型、标度、锁定或非锁定以及上限、下限或上限/下限报警的需求。
断电时,存储内容和设定值都会保留。
RS232程序可监测多达10台仪器。
所有CN600系列扫描仪都有RS232三线制串行通讯接口。
最多可将10台扫描仪通过菊花链连接起来。
线路电压是120或240 Vac ,可通过外部跳线组件选择。
仪器背部是使用简便的螺钉接线端连接。
CN600系列采用安全密码来保护设置。
可以在前面板上启用或者禁用该密码,并且可以通过RS232更改密码。
校准通过前面板进行,并且单独受到密码保护。
可提供更高级别的密码。
这种仪器安装在1⁄4 DIN 面板开孔中,并用滑动托架予以固定。
不必将仪器从其外壳中拆下就可安装。
该仪器封装在1⁄4 DIN 铝质箱体内。
提供的可选型号有配备输出卡的6温区热电偶、12温区热电偶、6温区RTD 或12温区RTD 。
提供一个单输出继电器,以指示任何温区中的报警条件。
该仪器通过闪烁主温度显示屏,同时闪烁报警温区编号来指示报警条件。
当非锁定设置中的条件出现变化时或者在锁定设置中手动复位时,报警将自动关闭。
监测器可以设置以下2种模式: “RUN ”(运行)和“FUNCTION SELECT ”(功能选择)。
“RUN ”(运行)是基本工作模式。
“FUNCTION SELECT ”(功能选择)是受密码保护的设置选择和控制模式。
U 用户可编程U 上限、下限或者上限/下限 报警U 密码保护U 可调节扫描时间U 可编程°C 或°F 显示U 温区激活U 热电偶类型(J 、K 、E 、T 、S 、R 、B 、C )U RTD (2线或3线)U 前面板校准U 锁定或非锁定报警U RS232通讯接口和软件U 免费软件(兼容至Windows XP 操作系统)规格温区数:6个(标配)/12个(扩展)显示时间调整:1 ~ 40秒扫描时间:6温区型,约1⁄4 s ;12温区型,约1⁄2 s 输入范围:参见下表精度:量程的±4°C 分辨率:1°C 或°F 热电偶类型:J 、K 、E 、T 、S 、R 、B 、C 冷端补偿: 自动线性度:±1°C 可选温标:°C 或°F 热电偶开路警告:显示屏闪烁RTD (2线或3线):100 Ω Pt 、120 ΩNi 、10 Ω Cu经济型6温区或12温区 1⁄4 DIN 温度监测器CN606TC2,图片小于实际尺寸。
课程设计论文-数字温度传感器测温显示系统说明书.doc
数字温度传感器测温显示系统说明书学院:机械与电子控制工程学院班级:组长:组员:时间:2011-7-1目录任务书------------------------------------------------------------------------------3摘要---------------------------------------------------------------------------------4正文---------------------------------------------------------------------------------4总体设计方案第1章主控制器1.1AT89C51 特点及特性--------------------------------------------------------41.2管脚功能说明-----------------------------------------------------------------51.3振荡器特性--------------------------------------------------------------------71.4芯片擦除-----------------------------------------------------------------------7第2章温度采集部分设计技术性能描述----------------------------------------------------7管脚排列及内部结构-------------------------------------------8工作原理----------------------------------------------------------8控制原理----------------------------------------------------------11与单片机地接口电路-------------------------------------------12第3章硬件电路与系统软件的设计及分析3.1.主板电路-----------------------------------------------------------------------133.2.软件程序分析(流程图)--------------------------------------------------14第4章总结与体会----------------------------------------------------------19参考文献--------------------------------------------------------------------------20附录---------------------------------------------------------------------------------21 任务书扩展数字温度传感器DS18B20进行温度检测,显示器采用六位共阴极数码管显示,设计按键4个。
TR-10数字温度计使用说明书
TR-10数字温度计使用说明书TR-10便携式记录型测温仪使用说明一,概述:TR-10是一款具备数据记录功能的温度测量仪表,仪表可记录100个温度点和时间,摄氏华氏转换,超温报警等功能。
广泛应用于暖通制冷维修、食品、宠物等行业。
二,技术参数:1、温度传感器:NTC K=103,B=34352、测温范围:-40℃~+110℃,3、测温精度:±1℃(-20℃~+80℃),±2℃(-40℃~-20℃,+80℃~+110℃)4、记录点数:100个,5、采样周期:记录状态下为间隔时间,非记录状态下为10S6、显示未定要求—电磁兼容测试:(1)EFT干扰测试>2级(2)ESD测试>2级7、时间:2009年1月1日—2099年12月31日产品出厂参数值:日期为09 01 01,时间为12:00 00间隔时间为001,(1分钟)上限温度值都为:000.0度下限温度值都为:000.0度三,产品示意图:正面图片:要求有液晶屏全部显示,以及能看清按键上的字。
背面图片:要求说明有背面各个部分的功能,及按键的图片,必要时增加局部放大的图片液晶屏显示的说明:说明液晶屏各部分显示代表的参数四,按键操作说明:按键使用模式说明:按一下按键立即抬起为“时间按”,按住按键查过五秒后抬起为“长时间按”前置按键的使用说明:Record:功能二:在记录过程中或记录完成后,按此键可以查看温度记录点的参数。
▲▼:功能二:查看记录的温度点;Clear:清除所有已经记录的温度点值。
Set:功能二:短时间按可退出温度查看状态。
Time:功能二:长时间按此键五秒进入或退出时间或日期设置状态。
Switch:功能一:短时间按为摄氏华氏转换。
功能二:长按五秒为12/24小时转换功能。
Reset:复位键,产品在强干扰的情况下,可能会出现死机现象,表现为时间不跳动。
按此键可以让芯片复位。
因产品内部有储存芯片,复位后时间为复位前时间,不会回复到原始的起始时间。
数字温度仪表使用说明书
数字温度仪表使用说明书一、概述该仪表是由单片机控制的温度测量仪表,具有测量精度高,稳定可靠,自动量程转换,面板自校验功能。
可以使用任何K型热电偶作为温度传感器,能测量摄氏温度和华氏温度。
具有数据保持,低电压显示功能。
二、一般特性显示:31/2位数字液晶显示存储环境:0℃~50℃(32℉~122℉)相对湿度<80%断偶显示:最高位显示“1”超量程显示:最高位显示“1“或“-1”电池:6F22 9VOLT体积:149×71×41(mm)重量:三、技术特性准确度表示为:±(a% ×读数 + 字数)准确度校准环境:23℃±5℃测量范围:-50℃~1300℃确度进行修正。
四、仪表自校方法(常温下自校)1.自校时所需物品1.冰水混合物一杯2.TP01热电偶一个3.被校仪表一台2.零点自校方法第一步:打开仪表电源开关,预热三分钟。
第二步:TP01热电偶与被校仪表连接,将探头插入冰水混合物中。
第三步:同时按下保持键(HOLD)和华氏转换键(℉)。
当显示2.0字符时,零点自校完成松开按键。
3.1000℃自校方法注:有直流校验仪或温度校验仪的用户可参考第一步:将校验仪的输出调整为DC39.8—39.9mv或1000℃输出。
第二步:对应TP01插头的正负极与被校仪表连接。
第三步:同时按下保持键(HOLD)和摄氏转换键(℃)。
当显示1.0字符时,1000℃点自校完成松开按键。
4.注意事项警告用户切记不可随意按自校对零点和1000℃校验。
输入端的输入必须满足校验要求,否则将发生不可知的错误。
如果发生错误请按正确自校验方法恢复即可。
五、K型热电偶的选择六、注意事项1.如果屏幕显示“-1”表示温度低于-55℃。
显示“1”表示热电偶未接入或超量程+1305℃。
2.显示电池符合时,表明电池电压在7.2V以下,应予更换。
3.为保证测量的准确度,应开机预热三分钟后进行测量。
有条件可先进行自校。
数字温湿度传感器 SHT 1x SHT 7x 产品手册说明书
数字温湿度传感器 SHT 1x / SHT 7x(请以英文为准,译文仅供参考)_ 相对湿度和温度测量 _ 露点测量 _ 全标定输出,无需标定即可互换使用 _ 卓越的长期稳定性 _ 两线制数字接口,无需额外电路 _ 基于请求式测量,低能耗 _ 表面贴片或4针引脚安装 _ 超小尺寸 _ 自动休眠 _ 超快响应时间 SHT1x / SHT7x 产品概述 SHTxx系列产品是一款高度集成的温湿度传感器芯片,提供全量程标定的数字输出。
它采用专利的CMOSens? 技术,确保产品具有极高的可靠性与卓越的长期稳定性。
传感器包括一个电容性聚合体湿度敏感元件和一个用能隙材料制成的温度敏感元件,这两个敏感元件与一个14位的A/D转换器以及一个串行接口电路设计在同一个芯片上面。
该传感器品质卓越、响应超快、抗干扰能力强、极高的性价比。
每个传感器芯片都在极为精确的恒温室中进行标定,以镜面冷凝式露点仪为参照。
通过标定得到的校准系数以程序形式储存在芯片本身的OTP内存中。
通过两线制的串行接口与内部的电压调整,使外围系统集成变得快速而简单。
微小体积、极低功耗等优点使其成为各类应用中的首选。
产品提供表面贴片LCC或4针单排引脚封装。
并可根据用户的不同需求,提供特殊封装形式。
SHT7xSHT1x1 传感器性能说明参数 条件 Min. Typ. Max. 单位 湿度 分辨率 (2) 0.5 0.03 0.03 %RH 8 12 12 bit 重复性 ±0.1 %RH 精度 (1) 不确定性 线性化 参见图 1 互换性 可完全互换 原始数据 ±3 %RH 非线性度 线性化 <<1 %RH 量程范围 0 100 %RH 响应时间 1/e (63%) 缓慢流动空气 4 s 迟滞 ±1 %RH 长期稳定性 典型值 < 1 %RH/yr 温度 0.04 0.01 0.01 °C 0.07 0.02 0.02 °F 分辨率 (2) 12 14 14 bit ±0.1 °C 重复性 ±0.2 °F 精度 参见图 1 -40 123.8 °C 量程范围 -40 254.9 °F 响应时间 1/e (63%) 5 30 s 表 1 传感器性能说明 2接口说明SHT1x(slave)图 2 典型应用电路 2.1电源引脚 SHTxx的供电电压为2.4 ̄5.5V。
课程设计论文-数字温度传感器测温显示系统说明书.doc
数字温度传感器测温显示系统说明书学院:机械与电子控制工程学院班级:组长:组员:时间:2011-7-1目录任务书------------------------------------------------------------------------------3摘要---------------------------------------------------------------------------------4正文---------------------------------------------------------------------------------4总体设计方案第1章主控制器1.1AT89C51 特点及特性--------------------------------------------------------41.2管脚功能说明-----------------------------------------------------------------51.3振荡器特性--------------------------------------------------------------------71.4芯片擦除-----------------------------------------------------------------------7第2章温度采集部分设计技术性能描述----------------------------------------------------7管脚排列及内部结构-------------------------------------------8工作原理----------------------------------------------------------8控制原理----------------------------------------------------------11与单片机地接口电路-------------------------------------------12第3章硬件电路与系统软件的设计及分析3.1.主板电路-----------------------------------------------------------------------133.2.软件程序分析(流程图)--------------------------------------------------14第4章总结与体会----------------------------------------------------------19参考文献--------------------------------------------------------------------------20附录---------------------------------------------------------------------------------21 任务书扩展数字温度传感器DS18B20进行温度检测,显示器采用六位共阴极数码管显示,设计按键4个。
温度传感器设置参数指南说明书
Cód.ParámetroU.M.TipoMín.Máx.VALOR/2Estabilidad de la medida -C 1154/3Deceleración visualización sonda-C 0150/4Sonda virtual-C 01000/5Selección °C o °F (0=°C, 1=°F)flag C 010/6Punto decimal (0=si 1=no)flag C 011/tI Visualización sobre el display -C 171/tE Visualización en terminal externo-C 060/P Selección tipo de sonda -C 020/A2Configuración de la sonda 2-C 042/A3Configuración de la sonda 3-C 040/A4Configuración de la sonda 4-C 040/A5Configuración de la sonda 5-C 040/c1Calibración de la sonda 1°C/°F C -20200/c2Calibración de la sonda 2°C/°F C -20200/c3Calibración de la sonda 3°C/°F C -20200/c4Calibración de la sonda 4°C/°F C -20200/c5Calibración de la sonda 5°C/°FC-2020St Set point (punto de consigna)°C/°F F r1r2-23rd Diferencial regulador°C/°F F 0.120 3.0rn Zona neutra°C/°F C 0604rr Diferencia inverso para control con zona neutra°C/°F C 0,1202r1SET mínimo admitido °C/°F C -50r2-23r2SET máximo admitido °C/°F C r120020TABLA DE PARÁMETROSCAREL: PUIFI0006 (MEMBRANA / ARMARIOS BT)/ PARÁMETROS SONDAr PARÁMETROS REGULADORr3Modalidad de funcionamientoflag C 020r4Variación automática del SET POINT nocturno °C/°F C -20200r5Habilitación de la monitorización de la temp.flag C 011rt Intervalo de monitorización de la temperaturahoras F 09990rH Máxima temperatura leída °C/°F F 000rLMínima temperatura leída°C/°FFc0Ret. arr. comp. y vent. en el mom. del encendido min C 0151c1Tiempo mínimo entre encendidos sucesivos min C 0151c2Tiempo mínimo de OFF del compresor min C 0150c3Tiempo mínimo de ON del compresormin C 0150c4Arranque forzado min C 01000cc Duración del ciclo continuohoras C 0150c6Tiempo exclusión de alarma después del ciclo continuohoras C 02502c7Tiempo máximo de Pump-Downs C 09000c8Retr. arr. comp. después de la ap. de la válvula PD s C 0605c9Habilitación función de autoarranque con func. en PDflag C 010c10Selección Pump-Down de tiempo o presiónflag C 010c11Retraso 2º compresorsC250d0Tipo de desescarche (0=resis. 1=gas 2=agua 3=gas a tiempo)flag C 041dI Intervalo entre dos desescarches horas F 02503dt1Temperatura fin desescarche evaporador °C/°F F -5020020dt2Temperatura fin desescarche evaporador auxiliar°C/°F F -5020020dt3Temperatura fin desescarche sonda 3°C/°F F -502004dP1Duración máx. del desescarche evaporador min F 125030dP2Duración máx. del desescarche evap. auxiliar min F 125030d3Retraso de activación del desescarche min C 02500d4Desescarche a la conexión del equipo flag C 010d5Retraso del desescarche a la conexion min C 02500d6Bloqueo del display durante el desescarche -C 021ddTiempo de goteo después del desescarcheminF154c PARÁMETROS COMPRESORd PARÁMETROS DE DESESCARCHEd8Exclusión alarmas después del desescarche horas F 02501d8d Tiempo exclusión de alarma tras puerta abierta min C 02500d9Prioridad del desescarche frente protecciones compresorflag C 010d/1Visualización de la sonda de desescarche °C/°F F 000d/2Visualización de la sonda de desescarche °C/°F F 000dC Base de los tiempos para desescarche flag C 010dC1Base de los tiempos para retardo de alarmas flag C 010d10Tiempo de funcionamiento del compresor min C 02500d11Umbral de temperatura para tiempo de funcionamiento°C/°F C -2020 1.0d12Desescarches avanzados -C 030dn Duración nominal del desescarche -C 110065dHFactor proporcional variación de ‘dI’-C10050A0Diferencial alarmas y ventiladores°C/°F C 0.120 1.0A1Tipo de umbral ‘AL’ y ‘AH’flag C 010AL Umbral de alarma de baja temperatura °C/°F F -5020010AH Umbral de alarma de alta temperatura °C/°F F -5020010Ad Retraso alarma baja y alta temperatura min F 0250120A4Configuración de la entrada digital 1-C 0120A5Configuración de la entrada digital 2-C 0120A6Bloqueo del compresor por alarma externa min C 01000A7Retraso de detección alarma externa min C 02500A8Habilitación alarmas ‘Ed1’ y ‘Ed2’ flag C 010A9Configuración salida digital 3flag C 0140Ado Configuración modo luz puerta flag C 010Ac Alarma alta temperatura del condensador °C/°F C 0.020070.0AE Difer. de la alarma de alta temp. cond.°C/°F C 0.12010Acd Retraso alarma alta temp. del condensadormin C 02500AF Tiempo apagado con sensor de luzseg C 02500ALF Umbral de alarma antihielo °C/°F C -50200-5AdFRetardo alarma antihielosegC250A PARÁMETROS DE ALARMAF0Control ventiladorflag C 022F1Temperatura encendido ventilador °C/°F F -50200 5.0F2Ventilador OFF con compresor OFFflag C 011F3Ventiladores en desescarche flag C 011Fd Ventiladores apagados después del goteo flag F 0150F4Temperatura ventilador condensador OFF°C/°F C -5020040F5Diferencial ventilador condensador°C/°FC0,1205Pw Contraseña -C 020022H0Dirección serial -C 02071H1Funcionalidad del relé 4flag C 0133H2Deshabilitación teclado/Infrared flag C 061H3Código habilitación telecomando -C 02550H4Deshabilitación zumbador flag C 010H5Funcionalidad del relé 5-C 0133H6Bloqueo teclas -C 025532H7Selección tecladoflag C 010H8Luz o salida aux conmutada con control horario-C 010H9Variación set point con control horario-C 010HPr Perfil de impresión-C 0150Hdn Num conjuntos de parámetros predeterminados disponibles-C 060Hdh Desfase de resistencia antivaho°C/°F C -502000HrL Control remoto de estado de relé de luz principal -C 010HrA Control remoto de estado de relé AUX principal -C 010HSA Control remoto de alarmas de controladores en ud principal-C 010In Tipo de unidad-C 060s_cLrH Orden baja humedad relativa-C 010s_cAUX Orden activar AUX -C 010s_cLUX Orden activar luz -C 010s_cONOFFOrden controlador ON/OFF-C1F PARÁMETROS VENTILADOR (solo para el modelo C)H OTRAS PREDISPOSICIONES。
亿学通电子 DS18B20 温度传感器使用手册
1) DS18B20 是DALLAS 公司生产的一线制数字温度传感器; 2) 具有3 引脚TO-92 小体积封装形式; 3) 温度测量范围为-55℃~+125℃; 4) 电源供电范围为3V~5.5V ; 5) 可编程为9 位~12 位数字表示;6) 测温分辨率可达0.0625℃,被测温度用符号扩展的16 位数字量方式串行输出;7) 其工作电源既可在远端引入,也可采用寄生电源方式产生;8) 多个DS18B20 可以并联到3 根(VDD、DQ 和GND)或2 根(利用DQ 线供电、GND)线上,CPU 只需一根端口线就能与总线上的多个串联的DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。
TO-92封装的DS18B20DS18B20 的管脚排列及不同封装形式如图 2所示,DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地,见),NC 表示无连接。
管脚图DS18B20内部结构如图3所示,主要由4 部分组成:64 位ROM 、温度传感器、非易失性存储的温度报警触发器TH 和TL 、配置寄存器。
DS18B20管脚DS18B20概述DS18B20内部结构图非常适用于远距离多点温度检测系统。
DQ-数据输入输出。
漏极开路1 线接口。
也在寄生电源模式时给设备提供电源。
访问DS18B20 的顺序如理初始化;DS18B20读写 连接图应用领域ROM 命令(接着是任何需要的数据交换);DS18B20 函数命令(接着是任何需要的数据交换)。
每一次访问DS18B20 时必须遵循这一顺序,如果其中的任何一步缺少或打乱它们的顺序,DS18B20 将不会响应。
(1)初始化时序所有与DS18B20 的通信首先必须初始化:控制器发出复位脉冲,DS18B20 以存在脉冲响应。
毕业设计72单片机数字温度传感器测温显示系统课程设计
微机原理与接口技术课程设计说明书课程名称:微机原理与接口技术设计题目:数字温度传感器测温显示系统院系:机械与电子控制工程学院班级:设计者:学号:指导教师:设计时间:2007.7.9~2007.7.17机电学院《微机原理与接口技术》课程设计任务书摘要随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术。
温度是一种最基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。
测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器,②模拟集成温度传感器,③智能集成温度传感器。
目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。
本文将介绍一种基于单片机控制的数字温度传感器测温显示系统,可以设置上下报警温度,当所测温度超过温度上限,蜂鸣器可以报警,当温度低于温度下限,发光二极管发光显示。
文章介绍了数字温度传感器DS18B20的结构特征及控制方法,并对以此传感器,89C51单片机为控制器构成的温度测量装置的工作原理及程序设计作了相关的介绍。
关键词:单片机AT89C51,数字温度传感器DS18B20,蜂鸣器,发光二极管,六位共阴极数码管目录正文总体设计方案一、主控制器 (8)二、温度传感器 (8)1.DS18B20的特性介绍 (9)2.DS18B29的内部结构 (9)3.DS18B29的存储器 (10)4.DS18B29的控制方法 (11)5.DS18B29的测温原理 (12)6.DS18B20与单片机的接口 (12)7.系统整体硬件电路 (13)8.系统软件算法 (13)三、结语 (21)总结与体会 (22)参考文献 (23)正文总体设计方案如下图一,主控制器单片机AT89C51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
STS4x数字温度传感器平台数据手册说明书
STS40-AD1B-R3STS40-BD1B-R3STS40-CD1B-R3SEK-STS40-CD1B-SENSORSSTS4x Datasheet4th Generation, High-Accuracy, Ultra-Low-Power, 16-bit Temperature Sensor PlatformFeatures• Temperature accuracy: up to ±0.2 °C • Supply voltage: 1.08 V … 3.6 V • Average current: 0.4 µA (at meas. rate 1 Hz) • Idle current: 80 nA• I 2C fast mode plus, CRC checksum• Available with multiple I 2C addresses• Operating range: -40…125 °C • NIST traceability• JEDEC JESD47 qualification• Mature technology from global market leaderGeneral DescriptionThe STS4x is a fully digital temperature sensor platform offering different accuracy classes, currently available is the STS40. The I 2C interface provides multiple preconfigured I 2C addresses and enables an ultra-low power budget. Designed to cost, this four-pin dual-flat-no-leads package is suitable for surface mount technology (SMT) processing.Device OverviewFunctional Block DiagramFull product list on page 11.0.5 m mContentsFeatures (1)General Description (1)Device Overview (1)Functional Block Diagram (1)1 Quick Start – Hello World (3)2 Sensor Specifications (4)2.1 Sensor Performance (4)3 Electrical Specifications (5)3.1 Electrical Characteristics (5)3.2 Timings (6)3.3 Absolute Maximum Ratings (6)4 Sensor Operation (6)4.1 I2C Communication (6)4.2 Data Type & Length (7)4.3 Checksum Calculation (7)4.4 Command Overview (8)4.5 Conversion of Signal Output (8)4.6 Serial Number (8)4.7 Reset & Abort (8)5 Physical Specification (8)5.1 Package Description (8)5.2 Package Outline (9)5.3 Land Pattern (9)5.4 Pin Assignment & Laser Marking (10)6 Quality and Material Contents (10)7 Tape and Reel Packaging (10)8 Product Name Nomenclature (11)9 Ordering Information (11)10 Revision History (11)1 Quick Start – Hello WorldFigure 1 shows a typical application circuit for the STS4x on the left-hand side. After reaching the minimal supply voltage and allowing for the maximal power-up time of 1 ms, the sensor is ready for I2C communication. The quickest way to measure temperature is pseudo-coded on the right-hand side of Figure 1. Using the conversion formulae given in equations ( 1 ) and ( 2 ), the digital signal can be translated into temperature readings.For Code resources, embedded drivers, and CAD files, please refer to the SHT4x files available on GitHub and SnapEDA.2 Sensor Specifications2.1 Sensor PerformanceTable 1. General temperature sensor specifications.Figure 2. STS40 typical and maximal temperature accuracy.1For definition of typ. and max. accuracy, please refer to the document “Sensirion Humidity Sensor Specification Statement”.2The stated repeatability is 3 times the standard deviation (3σ) of multiple consecutive measurement values at constant condit ions and is a measure for the noise on the physical sensor output. Different repeatability commands are listed in Table 6.3Resolution of A/D converter.4Specified range refers to the range for which the temperature sensor specification is guaranteed.5Depends on heat conductivity of sensor substrate and design-in of sensor in application.6Max. value is < 0.04°C/y.3 Electrical SpecificationsValid for all electrical specifications: Typical values correspond to V DD = 3.3 V and T = 25 °C. Min. and max. values are valid in the full temperature range -40 °C … 125 °C and at declared V DD levels.3.1 Electrical CharacteristicsTable 2. Electrical specifications.3.2 TimingsMax. values are measured at -40°C and 1.08 V supply voltage (based on characterization).Table 3. System timing specifications.3.3 Absolute Maximum RatingsStress levels beyond those listed in Table 4 may cause permanent damage or affect the reliability of the device. Kindly note that the reported values are stress ratings only, implying that functional operation of the device under these conditions is not guaranteed. Ratings are only tested separately.Table 4. Absolute maximum ratings.4 Sensor Operation4.1 I2C CommunicationI2C communication is based on NXP’s I2C-bus specification and user manual UM10204, Rev.6, 4 April 2014. Supported I2C modes are standard, fast mode, and fast mode plus. Data is transferred in multiples of 16-bit words and an 8-bit check sum (cyclic redundancy check = CRC). All transfers must begin with a start condition (S) and terminate with a stop condition (P). To finish a read transfer, send not acknowledge (NACK) and stop condition (P). Addressing a specific slave device is done by sending its 7-bit I2C address followed by an eighth bit, denoting the communicationdirection: “zero” indicates transmission to the slave, i.e. “write”, a “one” indicates a “read” request. Schematics of the I2C transfer types are sketched in Figure 3.Figure 3. I2C transfer types: First a write header is sent to the I2C slave, followed by a command, for example “measure T with highest precision”. After the measurement is finished the read request directed to this I2C slave will be acknowledged and transmission of data will be started by the slave.The I2C address is defined by Sensirion and selectable by choosing from a selection of 0x44, 0x45, or 0x46 before ordering. For ordering details, kindly refer to section 8 and 9.4.2 Data Type & LengthThe I2C bus operates with 8-bit data packages. Information from the sensor to the master has a checksum after every second 8-bit data package. Therefore, the temperature data will always be transmitted in the following way (2 * 8-bit data + 8-bit CRC).4.3 Checksum CalculationFor read transfers each 16-bit data is followed by a checksum with the following propertiesTable 5. Data check sum properties.The master may abort a read transfer after the 16-bit data, if it does not require a checksum.4.4 Command OverviewTable 6. Overview of I 2C commands. If the sensor is not ready to process a command, e.g. because it is still measuring, it will response with NACK to the I2C read header.4.5 Conversion of Signal OutputThe digital sensor signal S T corresponds to temperatures, as described in Eqs. (1), and (2).4.6 Serial NumberEach sensor has a unique serial number that is assigned by Sensirion during production. It is stored in the one-time-programmable memory and cannot be manipulated after production. The serial number is accessible via I 2C and is transmitted as two 16-bit words, each followed by an 8-bit CRC.4.7 Reset & AbortA reset of the sensor can be achieved in three ways:• Soft reset: send the reset command described in Table 6.• I 2C general call: all devices on the I 2C bus are reset by sending the command 0x06 to theI 2C address 0x00. • Power down (incl. pulling SCL and SDA low)Any command that triggers an action at the sensor can be aborted via I 2C general call reset or soft reset.5 Physical Specification5.1 Package DescriptionThe STS4x is provided in a dual flat no lead (DFN) package, and comprises the silicon sensor chip made of silicon, which is hosted on a copper lead frame and overmolded by an epoxy-based mold compound. The exposed bottom side of the leadframe with the metallic contacts is Sn plated, while the side walls are bare copper.While moisture sensitivity level (MSL) 1 according to IPC/JEDEC J-STD-020 is met, we recommend to process the sensors within one year after date of delivery.T =(−45+175∙S T216−1)°C( 1 ) T =(−49+315∙S T216−1)°F( 2 )5.2 Package OutlineFigure 4. Dimensional drawing of the STS4x including package tolerances (units mm). The Pin 1 is identified by the laser dot on the top side and the cutout of the die pad, visible from the bottom.5.3 Land PatternWe recommend designing the land pattern to the used PCB and soldering process together with the physical outer dimensions of the sensor. For reference, the land pattern used with Sensirion’s PCBs and soldering processes is given in Figure 5.Soldering of the central die pad is optional.Figure 5. Recommended land pattern (inmm). Details can vary and depend onused PCBs and solder processes. Thereshall be no copper under the sensor otherthan at the pin pads.5.4 Pin Assignment & Laser MarkingFigure 6. Pin assignment (transparent top view). Dashed lines are only visible if sensor is viewed from below. The die pad is not directly connected to any pin. Pin-1 is indicated by the cutout of the die pad from the bottom side (see dashed lines) and the top side laser marking (dot in upper left corner).6 Quality and Material ContentsQualification of STS4x is performed based on the JEDEC JESD47 qualification test method (currently pending). The device is fully RoHS and WEEE compliant, e.g. free of Pb, Cd, and Hg.7 Tape and Reel PackagingAll specifications for the tape and reel packaging can be found in Figure 7. The reel diameter for the 10k packaging is 13 inches.Figure 7. Tape and reel specifications including a depiction of two sensors in their corresponding pockets. In this orientation, Pin 1 is in the upper right corner, as indicated by the dot on the sensor and in the drawing.12348 Product Name NomenclatureTable 7. STS4x product nomenclature.9 Ordering Information10 Revision HistoryImportant NoticesWarning, Personal InjuryDo not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product. ESD PrecautionsThe inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product. See application note “ESD, Latchup and EMC” for more information.WarrantySENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION’s pub lished specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION’s discretion, free of charge to the Buyer, provided that:•notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;•such defects shall be found, to SENSIRION’s reasonable satisfaction, to have arisen from SENSIRION’s faulty design, material, or workmanship;•the defective product shall be returned to SENSIRION’s factory at the Buyer’s expense; and•the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED.SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer’s applications by customer’s technical experts. Recommended parameters can an d do vary in different applications.SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.Copyright© 2022, by SENSIRION. CMOSens® is a trademark of Sensirion. All rights reservedHeadquarters and SubsidiariesSensirion AG Laubisruetistr. 50CH-8712 Staefa ZH Switzerlandphone: +41 44 306 40 00 fax: +41 44 306 40 30 ****************** Sensirion Inc., USAphone: +1 312 690 5858*********************Sensirion Korea Co. Ltd.phone: +82 31 337 7700~3*********************/krSensirion Japan Co. Ltd.phone: +81 3 3444 4940*********************/jpSensirion China Co. Ltd.phone: +86 755 8252 1501*********************/cnSensirion Taiwan Co. Ltdphone: +886 3 5506701******************To find your local representative, please visit /distributorsSTS40-AD1B-R3STS40-BD1B-R3STS40-CD1B-R3SEK-STS40-CD1B-SENSORS。
STI-1062A说明书(pdf) rev2.0
目录1.产品介绍 (1)2.技术指标及使用维护 (2)2.1技术指标 (2)2.2使用维护 (3)3.操作指南 (3)3.1传感器连接 (3)3.2通电及初始化 (3)3.3首次开机操作流程 (3)4.仪器设置 (4)4.1按键说明 (4)4.2显示单位及显示通道切换 (5)4.3类型及参数配置 (5)4.4传感器参数设置 (6)5.仪器校准及温度修正 (9)5.1仪器校准 (9)5.2温度修正 (11)6.通讯 (12)图图一传感器连接 (3)图二首次开机操作流程 (4)图三显示单位切换 (5)图四类型及参数配置 (5)图五传感器参数设置 (6)图六工业铂电阻参数设置 (7)图七标准铂电阻参数设置 (8)图八校准及修正设置 (9)图九校准参数设置 (10)图十温度修正参数设置 (11)图十一 RS232通讯连接 (12)表表一校准系数对应关系表 (9)表二串口设置表 (12)表三串口通讯协议 (13)1.产品介绍STI-1062A型精密数字测温仪采用了先进的温度测量技术,结合了国内在温度测量及计量应用中的实际需求,广泛适用于实验室和工业过程中的精密温度测量。
主要具有以下特点:1.采用四线制测量2.可测量工业铂电阻温度传感器和标准铂电阻温度传感器温度3.可分别存储两组工业铂电阻温度传感器和标准铂电阻温度传感器参数4.可显示摄氏温度、开尔文温度、华氏温度和电阻值5.支持仪器校准和温度传感器修正6.高精度、高分辨率7.符合ITS-1990国际温标8.符合IEC-751国际标准9.8位高亮度LED显示10.RS232通讯2.技术指标及使用维护2.1技术指标传感器类型工业铂电阻、标准铂电阻连接方式四线制电阻测量范围0Ω~2000Ω电阻显示分辨率0.0001Ω温度测量范围-200℃~800℃温度显示分辨率0.001℃电阻测量准确度±(%读数+%量程)0.0020+0.0010 (24小时)0.0040+0.0010 (一年)温度测量准确度-100℃ ±0.008℃0℃ ±0.010℃100℃ ±0.012℃200℃ ±0.014℃300℃ ±0.016℃400℃ ±0.018℃500℃ ±0.020℃600℃ ±0.022℃通讯 RS-232显示8位LED使用温度0℃~55℃(16℃~30℃保证满量程精度)电源 220V AC±10%,50/60Hz外形尺寸 250mm×160mm×76mm2.2使用维护使用仪器需满足以下条件:℃30℃使用)1.环境温度范围0~℃55℃(为了保证满量程精度,请在16~2.相对湿度小于80%rh(30℃条件下)3.大气压力75KPa~106KPa4.电源电压220 V AC±10%5.避免仪器振动6.海拔小于2000米7.室内使用3.简易操作指南3.1传感器连接如图一所示,传感器接线端子的接线孔1和接线孔2连接传感器的一组引线,接线孔3和接线孔4连接传感器的另一组引线。
温度传感器操作手册说明书
MODEL 061/063 TEMPERATURE SENSOR OPERATION MANUAL Document No 061-9800061/063 TEMPERATURE SENSORSOPERATION MANUAL1.0 GENERAL INFORMATION1.1 Models 061 and 063 are precision thermistor temperature sensors. For the mostaccurate air temperature measurements, the sensors are always mounted in aradiation shield, which minimizes errors caused by solar and terrestrial radiationheating. Sensors produce resistance change inversely proportional to temperature.Model 061 is designed for air temperature measurement. The Model 061 has a time constant of only 10 seconds.Model 063 is designed for the direct measurement of air, soil, and watertemperature. The 063 sensor is completely sealed in stainless steel housing, filledwith silicone oil. The Model 063 has a time constant of 60 seconds.1.2 Sensor Cable and ConnectionsAll sensors are supplied with signal leads one foot in length. Dependent onparticular applications, longer cable length and cable connectors may be provided as an option.2.0 INSTALLATION2.1 Temperature Sensor InstallationA. AIR TEMPERATUREFor maximum accuracy, it is desirable to mount the temperature sensor in a radiation shield. The radiation shield will minimize effects of solar and terrestrial radiation and will additionally provide adequate air flow over the sensor. Mechanical mountinginformation is given in the radiation shield manual.B. SOIL TEMPERATUREThe Model 063 is used for soil temperature measurements. Installation of the soiltemperature probe requires the digging of a small hole to the required measurement depth in firm, undisturbed soil. The probe is inserted horizontally into this firm soil,and the soil is replaced in the hole and packed firmly.C. WATER TEMPERATUREThe Model 063 Temperature Sensor should be placed in water, free from heatradiation sources.D. These sensors are durable, field proven devices; however,DO NOT DROP OR EXPOSE THE SENSOR TO HEAVY SHOCK2.2 Wiring ConnectionsThe output of the thermistor sensor is a relatively high resistance that variesaccording to temperature. It is important not to introduce any parallel resistancepaths. A parallel resistance path may be established by a dirt/moisture build-upbetween two sensor leads. This may occur in poorly made splices and unprotected connections. It is advisable to always use a protective coating on exposed sensor connections. Use a coating such as silastic rubber (RTV).2.3 Direct Wiring to a Met One Instruments TranslatorWhen the sensor is connected directly to a Met One Instruments Translator Module the sensor is loaded with the appropriate resistor to provide a linear output.2.4 Direct Connection to a Data LoggerWhen the sensor is connected to a data logger the data logger must have aterminating resistor to provide a linear output. Refer to Figure 2-1.3.0 OPERATIONAL CHECK-OUT AND CALIBRATION3.1 Temperature Sensor Check-outCompare sensor readings against a precision mercury thermometer. Use a LoCurrent Digital Ohmmeter and compare readings of temperature vs. resistance. 4.0 MAINTENANCE AND TROUBLESHOOTING4.1 General Maintenance Schedule*6 – 12 Month Intervals:A. Inspect sensor for proper operation per Section 3.1.*Schedule is based on average to adverse environments.4.2 Troubleshooting ProceduresA. Incorrect sensor signal: check sensor input connections: check temperature vs.sensor output signal using Table 3-1. Verify that the sensor has the correctterminating resistor if not used with a Met One Translator.4.3 Temperature Sensor CalibrationThe sensors are tested for calibration conformity at the factory. Field calibration may be verified by testing and sensors against themselves or against a known standard.It is not possible to make alterations to the sensor’s c alibration, as it is fixed.4.4 Ice Bath (0︒C Calibration Test)This calibration test requires that a practical reference point of 0︒C be obtained by the preparation of a mixture of shaved or finely cracked ice and enough water to coverbut not float the ice. To create a precision ice bath (± 0.002︒C), distilled water mustbe used for the bath and to make the ice. This mixture is made and contained in alarge wide-mouth Dewar flask with a capacity of about one quart or more. The Dewar flask is stopped up with a cork or other suitable material, with two holes provided for the insertion of both the temperature and a glass thermometer. Both the probe andthermometer are inserted into the Dewar flask so that the tips of each are at least 4 ½ inches below the surface of the mixture, ½ inch from the sides of the Dewar with aminimum of one inch remaining below. Using a precision volt-ohmmeter: measurethe resistance vs. temperature as given in Table 3-1.061063-3Figure 2-1Connections of 061/063 Temperature SensorTo DataloggerTEMP DEG C RCAL TEMP DEG C RCAL0 20516 51 46491 19612 52 45472 18774 53 44483 17996 54 43524 17271 55 42585 16593 56 41666 15960 57 40767 15365 58 39898 14806 59 39039 14280 60 382010 13784 61 373911 13315 62 365912 12872 63 358113 12451 64 350514 12052 65 343115 11673 66 335816 11312 67 328717 10969 68 321818 10641 69 315019 10328 70 308320 10029 71 301821 9743 72 295422 9469 73 289123 9206 74 283024 8954 75 276925 8712 76 271026 8479 77 265327 8256 78 259628 8041 79 254029 7833 80 248630 7633 81 243231 7441 82 238032 7255 83 232833 7075 84 227834 6902 85 222835 6734 86 217936 6572 87 213137 6415 88 208438 6263 89 203839 6115 90 199240 5973 91 194841 5834 92 190442 5700 93 186143 5569 94 181844 5443 95 177645 5320 96 173546 5200 97 169547 5084 98 165548 4970 99 161649 4860 100 157850 4753*VALUE WITH 3200 OHM RESISTOR IN PARALLEL WITH SENSORRANGE 0︒C TO 100︒CTHERMISTOR BEAD 44201TEMP DEG F RCAL TEMP DEG F RCAL32 20516 84 785633 20005 85 774434 19516 86 763335 19047 87 752636 18596 88 742037 18164 89 731638 17748 90 721439 17349 91 711540 16964 92 701741 16593 93 692142 16236 94 682743 15892 95 673444 15559 96 664345 15238 97 655446 14928 98 646747 14627 99 638148 14337 100 629649 14056 101 621350 13784 102 613251 13520 103 605152 13265 104 597353 13017 105 589554 12776 106 581955 12543 107 574456 12316 108 567057 12095 109 559858 11881 110 552759 11673 111 545660 11470 112 538761 11273 113 532062 11081 114 525363 10894 115 518764 10712 116 512265 10535 117 505866 10362 118 499567 10193 119 493368 10029 120 487369 9868 121 481270 9712 122 475371 9559 123 469572 9409 124 463873 9263 125 458174 9121 126 452575 8981 127 447076 8845 128 441677 8712 129 436278 8582 130 431079 8454 131 425880 8329 132 420681 8207 133 415682 8088 134 410683 7971 135 4057*VALUE WITH 3200 OHM RESISTOR IN PARALLEL WITH SENSORRANGE 32︒F TO 212︒FTHERMISTOR BEAD 44201Table 3-1B (continued)Model 063-2 RESISTANCE CHART DEG FTEMP DEG F RCAL TEMP DEG F RCAL136 4008 178 2426137 3960 179 2397138 3913 180 2368139 3866 181 2340140 3820 182 2311141 3775 183 2283142 3730 184 2255143 3685 185 2228144 3642 186 2201145 3599 187 2174146 3556 188 2147147 3514 189 2121148 3472 190 2094149 3431 191 2069150 3390 192 2043151 3350 193 2018152 3311 194 1992153 3272 195 1967154 3233 196 1943155 3195 197 1918156 3157 198 1894157 3120 199 1870158 3083 200 1846159 3046 201 1823160 3010 202 1800161 2975 203 1776162 2940 204 1754163 2905 205 1731164 2870 206 1708165 2836 207 1686166 2803 208 1664167 2769 209 1642168 2737 210 1621169 2704 211 1599170 2672 212 1578171 2640172 2608173 2577174 2547175 2516176 2486177 2456*VALUE WITH 3200 OHM RESISTOR IN PARALLEL WITH SENSORRANGE 32︒F TO 212︒FTHERMISTOR BEAD 44201For RCAL: Where: Tc = Temp (deg C) Tc = ((((Rt ‾1) + 3200 ‾1)) ‾1 – 2768.23) ∕-17.115 RT = RCALRt = ((((-17.115Tc) + 2768.23) ‾1) – (3200) ‾1) ‾1Table 3-1CModel 061, 063-3 RESISTANCE CHART DEG C TEMP DEG C RCAL TEMP DEG C RCAL -30 110236 10 26155 -29 104464 11 25436 -28 99187 12 24739 -27 94344 13 24064 -26 89882 14 23409 -25 85760 15 22775 -24 81939 16 22159 -23 78388 17 21561 -22 75079 18 20980 -21 71988 19 20416 -20 69094 20 19868 -19 66379 21 19335 -18 63827 22 18816 -17 61424 23 18311 -16 59157 24 17820 -15 57014 25 17342 -14 54986 26 16876 -13 53064 27 16421 -12 51240 28 15979 -11 49506 29 15547 -10 47856 30 15126 -9 46284 31 14715 -8 44785 32 14314 -7 43353 33 13923 -6 41985 34 13541 -5 40675 35 13167 -4 39421 36 12802 -3 38218 37 12446 -2 37065 38 12097 -1 35957 39 117560 34892 40 114231 33868 41 110972 32883 42 107773 31934 43 104654 31019 44 101595 30136 45 98596 29284 46 95667 28462 47 92798 27667 48 89979 26899 50 8450*VALUE WITH 18.7K RESISTOR IN PARALLEL WITH SENSORRANGE –30︒C TO +50︒CTHERMISTOR BEAD 44203Table 3-1DModel 061, 063-3 RESISTANCE CHART DEG FTEMP DEG F RCAL TEMP DEG F RCAL -22 110236 33 34319-21 106964 34 33757-20 103855 35 33207-19 100895 36 32669-18 98075 37 32141-17 95385 38 31625-16 92816 39 31119-15 90361 40 30622-14 88011 41 30136-13 85760 42 29659-12 83602 43 29192-11 81532 44 28733-10 79543 45 28283-9 77632 46 27841-8 75794 47 27408-7 74025 48 26983-6 72321 49 26565-5 70678 50 26155-4 69094 51 25753-3 67565 52 25357-2 66088 53 24969-1 64661 54 245870 63281 55 242121 61946 56 238432 60654 57 234813 59402 58 231254 58190 59 227755 57014 60 224306 55874 61 220917 54768 62 217588 53694 63 214309 52651 64 2110810 51637 65 2079011 50652 66 2047812 49695 67 2017013 48763 68 1986814 47856 69 1957015 46974 70 1927616 46114 71 1898717 45277 72 1870318 44461 73 1842219 43666 74 1814620 42890 75 1787421 42134 76 1760622 41395 77 1734223 40675 78 1708124 39972 79 1682525 39285 80 1657226 38614 81 1632227 37958 82 1607628 37317 83 1583429 36691 84 1559530 36078 85 1535931 35479 86 1512632 34892 87 14897Table 3-1D (Continued)Model 061, 063-3 RESISTANCE CHART DEG FTEMP DEG F RCAL TEMP DEG F RCAL88 14670 106 1106189 14447 107 1088390 14227 108 1070791 14009 109 1053492 13794 110 1036293 13583 111 1019394 13374 112 1002595 13167 113 985996 12963 114 969697 12762 115 953498 12564 116 937499 12368 117 9215 100 12174 118 9059 101 11983 119 8904 102 11794 120 8751 103 11607 121 8600 104 11423 122 8450 105 11241*VALUE WITH 18.7K RESISTOR IN PARALLEL WITH SENSORRANGE -22˚F TO +122˚FTERMISTOR BEAD 44203Tc= -(R*18700/(18700+R)-12175)/127.096Rt = -(127.096*Tc-12175)*18700/(127.096*Tc-12175+18700)。
CHT11 数字温湿度传感器产品规格书说明书
CHT11(兼容DHT11)数字温湿度传感器产品规格书(V1.0)版本:V1.0 发行时间:2019年7月编制:植国明日期:2019年6月审核:植新明日期:2019年6月批准:李玉林日期:2019年7月一、产品概述CHT11数字型温湿度传感器是一款小体积,高性能,含有已校准数字信号输出(单总线)的高可靠,高精度温湿度传感器。
特点:硬件精良:传感器内部采用高可靠,高精度感湿敏感元件和外置的高精度NTC温度感知元件,并与一个高性能,宽电压供电(2.7-5.5Vdc)数模混合微处理器(MCU)相连接,内部具有模拟对数线性处理电路,并内置高精度14位ADC,自带加强型单总线硬件驱动输出,驱动及抗干扰能力强,低功耗模式。
高精度,高可靠:CHT11产品采用多点宽范围在线自动标定工艺,通过独特的算法(多点标定,多阶拟合,线性修正等),确保证产品的精度及一致性,内部电路均做三防处理,产品经过高温高湿环境的老化与测试,确保产品的可靠性与长期稳定性。
输出:CHT11产品通信方式采用单总线(见说明六),使用方便,可兼容DHT11,并可直接替代其他类型的数字型温湿度传感器。
数字直读:CHT11系列产品采用数字直读输出,即内部已经对温度,湿度以及温飘进行补偿,用户无需对数字输出进行二次计算,所读数据即实际真实温湿度,无需计算,应用方便。
(具体例程见附件一)二、应用范围※空调、除湿器、加湿器、冰箱等家电行业※恒温恒湿机,环境测试设备及仪器※智能家居,智慧城市,物联网应用※数据记录器、气象站※工业、农业、食品,化工、医疗、汽车、暖通空调等相关环境温湿度检测及控制三、外观尺寸引脚说明1、VDD 供电(POWER) : 2.7-5.5Vdc2、SDA 串行数据(DATA):双向3、NC 空脚4、GND 电源负极:地四、传感器性能参数4.0 温湿度测量范围及精度示意图4.1 相对湿度测量范围及精度参数条件min typ max 单位分辨率 0.1 %RH量测范围 10 95 %RH精度25℃±5 ±4±5%RH重复性 ±1 %RH互换性 完全互换响应时间 2 6 8 S迟滞 ±0.5 ±1 ±2 %RH漂移 ±0.5 ±1 ±1.5 %RH/yr4.2 温度测量范围及精度参数条件min Typ max 单位分辨率 0.1 ℃精度 ±0.2 ±0.5 ±1 ℃量测范围 -40 125 ℃重复性 ±0.3 ℃互换性 完全互换响应时间 2 S漂移 0.3 ℃/yr五、电气特性参数条件min typ max 单位电压VDD 2.7 5 5.5 V5V-休眠 3 uA 功耗5V-量测 1.5 mAI/O低电平输入电 0 0.2VDD V压I/O高电平输入电 0.8VDD VDD V压I/O灌电流5V 34 68 mAI/O源电流5V -11 -22 mA 六、引脚定义引脚名称描述1 VDD 电源(2.7Vdc-5.5Vdc)2 SDA 串行数据,双向3 NC 空脚4 GND 地七、通讯协议CHT11采用简化的单总线通信。
数字温度计说明书
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数字温度计说明书地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容单片机课程设计题目:数字温度计院别:机电学院专业:机械电子工程班级:姓名:学号:指导教师:二〇一三年十二月二十一日摘要本设计即用单片机对温度进行实时检测与控制,本文所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,本次课程设计采用51单片机以及锁存器74HC573N、四位共阴数码管、DS18B20温度传感器、蜂鸣器、三极管等组成的自动过温报警器,该过温报警器测温准确,使用方便,显示清晰,最高精度可达到0.0625度,最长温度转换时间不到1秒,应用范围广泛。
用四位共阴数码管实现温度显示,能准确达到设计要求。
本温度计属于多功能温度计,功能较强,可以设置上下限报警温度,且测量准确、误差小。
当测量温度超过设定的温度上下限时,启动蜂鸣器和指示灯报警。
关键词过温报警;锁存器;单片机;温度传感器目录TOC \h \z \t "样式1,1,样式2,2" HYPERLINK \l "_Toc377156219" 前言 PAGEREF _Toc377156219 \h 1HYPERLINK \l "_Toc377156220" 一.本次课程设计实践的目的和意义 PAGEREF _Toc377156220 \h 2HYPERLINK \l "_Toc377156221" 二.设计任务和要求 PAGEREF _Toc377156221 \h 2HYPERLINK \l "_Toc377156222" 2.1 设计题目 PAGEREF_Toc377156222 \h 2HYPERLINK \l "_Toc377156223" 2.2 主要技术性能指标 PAGEREF _Toc377156223 \h 2HYPERLINK \l "_Toc377156224" 2.3 功能及作用 PAGEREF_Toc377156224 \h 2HYPERLINK \l "_Toc377156225" 三. 系统总体方案及硬件设计PAGEREF _Toc377156225 \h 2HYPERLINK \l "_Toc377156226" 3.1查阅相关资料后有以下两个方案可供选择 PAGEREF _Toc377156226 \h 2HYPERLINK \l "_Toc377156227" 3.2元件采购 PAGEREF_Toc377156227 \h 3HYPERLINK \l "_Toc377156228" 3.3系统总体设计 PAGEREF_Toc377156228 \h 3HYPERLINK \l "_Toc377156229" 四.接口电路设计 PAGEREF_Toc377156229 \h 6HYPERLINK \l "_Toc377156230" 4.1模块简介 PAGEREF_Toc377156230 \h 6HYPERLINK \l "_Toc377156231" 4.2 主控制器 PAGEREF_Toc377156231 \h 6HYPERLINK \l "_Toc377156232" 4.3 显示电路 PAGEREF_Toc377156232 \h 7HYPERLINK \l "_Toc377156233" 4.4温度传感器 PAGEREF_Toc377156233 \h 7HYPERLINK \l "_Toc377156234" 4.5温度报警电路 PAGEREF_Toc377156234 \h 9HYPERLINK \l "_Toc377156235" 五. 系统软件算法分析 PAGEREF _Toc377156235 \h 10HYPERLINK \l "_Toc377156236" 5.1主程序流程图 PAGEREF_Toc377156236 \h 10HYPERLINK \l "_Toc377156237" 5.2读出温度子程序 PAGEREF_Toc377156237 \h 11HYPERLINK \l "_Toc377156238" 5.3温度转换命令子程序 PAGEREF _Toc377156238 \h 11HYPERLINK \l "_Toc377156239" 5.4 计算温度子程序 PAGEREF _Toc377156239 \h 12HYPERLINK \l "_Toc377156240" 5.5 显示数据刷新子程序 PAGEREF _Toc377156240 \h 12HYPERLINK \l "_Toc377156241" 5.6按键扫描处理子程序 PAGEREF _Toc377156241 \h 13HYPERLINK \l "_Toc377156242" 六. 电路仿真 PAGEREF_Toc377156242 \h 14HYPERLINK \l "_Toc377156243" 七.焊接好的电路实体图 PAGEREF _Toc377156243 \h 15HYPERLINK \l "_Toc377156244" 八.检查与调试 PAGEREF_Toc377156244 \h 16HYPERLINK \l "_Toc377156245" 九.作品的使用 PAGEREF_Toc377156245 \h 16HYPERLINK \l "_Toc377156246" 十.设计心得 PAGEREF_Toc377156246 \h 20HYPERLINK \l "_Toc377156247" 参考文献 PAGEREF_Toc377156247 \h 20HYPERLINK \l "_Toc377156248" 附录 PAGEREF_Toc377156248 \h 21前言温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。
德州仪器DS1620数字温度传感器用户手册说明书
BENEFITS AND FEATURES▪ Simply Adds Temperature Monitoring andControl to Any Systemo Measures Temperatures From -55°C to +125°C in 0.5°C Increments; Fahrenheit Equivalent is -67°F to +257°F in 0.9°F Incrementso Temperature is Read as a 9-Bit Value o Converts Temperature to Digital Word in 750ms (max)o Thermostatic Settings are User-Definableand Nonvolatile▪ Can Be Used in a Wide Variety of Applicationso Supply Voltage Range Covers From 2.7V to 5.5Vo Data is Read From/Written Via a 3-Wire Serial Interface (CLK, DQ, RST ) ▪ Saves Spaceo Requires No External Components o 8-Pin DIP or SOIC (208-mil) PackagesAPPLICATIONS⋅ Thermostatic Controls ⋅ Industrial Systems ⋅ Consumer Products ⋅ ThermometersPIN DESCRIPTIONDQ - 3-Wire Input/Output CLK/CONV - 3-Wire Clock Input andStand-alone Convert Input RST- 3-Wire Reset Input GND - Ground T HIGH - High Temperature Trigger T LOW - Low Temperature TriggerT COM- High/Low Combination Trigger V DD - Power Supply Voltage (3V - 5V)DESCRIPTIONThe DS1620 Digital Thermometer and Thermostat provides 9–bit temperature readings which indicatethe temperature of the device. With three thermal alarm outputs, the DS1620 can also act as a thermostat. T HIGH is driven high if the DS1620’s temperature is greater than or equal to a user–defined temperature TH. T LOW is driven high if the DS1620’s temperature is less than or equal to a user–defined temperatureTL. T COM is driven high when thetemperature exceeds TH and stays high until the temperature falls below that of TL.DS1620Digital Thermometer andThermostatCLK/CONV RST V DD T HIGH T LOW T COM DS1620S 8-Pin SOIC (208-mil)DQ CLK/CONV RST GND V DD T HIGHT LOW T COMDS1620 8-Pin DIP (300-mil)DS1620User–defined temperature settings are stored in nonvolatile memory, so parts can be programmed prior to insertion in a system, as well as used in standalone applications without a CPU. Temperature settings and temperature readings are all communicated to/from the DS1620 over a simple 3–wire interface.ORDERING INFORMATIONPART PACKAGE MARKINGDESCRIPTIONDS1620 DS16208-Pin DIP (300 mil)DS1620+ DS1620 (See Note)Lead-Free 8-Pin DIP (300 mil) DS1620S DS16208-Pin SOIC (208 mil)DS1620S+ DS1620 (See Note)Lead-Free 8-Pin SOIC (208 mil)DS1620S/T&R DS16208-Pin SOIC (208 mil), 2000-Piece Tape-and-Reel DS1620S+T&RDS1620 (See Note)Lead-Free 8-Pin SOIC (208 mil), 2000-Piece Tape-and-ReelNote: A “+” symbol will also be marked on the package near the Pin 1 indicatorTable 2. DS1620 REGISTER SUMMARYREGISTER NAME(USER ACCESS) SIZE MEMORY TYPE REGISTER CONTENTS AND POWER-UP/POR STATETemperature (Read Only) 9 Bits SRAM Measured Temperature (Two’s Complement) Power-Up/POR State: -60ºC (1 1000 1000) T H(Read/Write) 9 Bits EEPROM Upper Alarm Trip Point (Two’s Complement) Power-Up/POR State: User-Defined.Initial State from Factory: +15°C (0 0001 1110) T L(Read/Write) 9 BitsEEPROMLower Alarm Trip Point (Two’s Complement) Power-Up/POR State: User-Defined.Initial State from Factory: +10°C (0 0001 0100)OPERATION-MEASURING TEMPERATUREA block diagram of the DS1620 is shown in Figure 1. . .DS1620 DS1620 FUNCTIONAL BLOCK DIAGRAM Figure 1The DS1620 measures temperature using a bandgap-based temperature sensor. The temperature reading is provided in a 9–bit, two’s complement reading by issuing a READ TEMPERATURE command. The data is transmitted serially through the 3–wire serial interface, LSB first. The DS1620 can measure temperature over the range of -55°C to +125°C in 0.5°C increments. For Fahrenheit usage, a lookup table or conversion factor must be used.Since data is transmitted over the 3–wire bus LSB first, temperature data can be written to/read from the DS1620 as either a 9–bit word (taking RST low after the 9th(MSB) bit), or as two transfers of 8–bit words, with the most significant 7 bits being ignored or set to 0, as illustrated in Table 3. After the MSB, the DS1620 will output 0s.Note that temperature is represented in the DS1620 in terms of a ½°C LSB, yielding the 9–bit format shown in Figure 2.TEMPERATURE, TH, and TL REGISTER FORMAT Figure 2T = -25°CDS1620Table 3 describes the exact relationship of output data to measured temperature. .TEMPERATURE/DATA RELATIONSHIPS Table 3TEMP DIGITAL OUTPUT(Binary) DIGITAL OUTPUT(Hex) +125˚C 0 11111010 00FA +25˚C 0 00110010 0032h +½˚C 0 00000001 0001h +0˚C 0 00000000 0000h -½˚C 1 11111111 01FFh -25˚C 1 11001110 01CEh -55˚C1 100100100192hHigher resolutions may be obtained by reading the temperature, and truncating the 0.5°C bit (the LSB) from the read value. This value is TEMP_READ. The value left in the counter may then be read by issuing a READ COUNTER command. This value is the count remaining (COUNT_REMAIN) after the gate period has ceased. By loading the value of the slope accumulator into the count register (using the READ SLOPE command), this value may then be read, yielding the number of counts per degree C (COUNT_PER_C) at that temperature. The actual temperature may be then be calculated by the user using the following:TEMPERATURE=TEMP_READ-0.25 + CCOUNT_PER_IN)COUNT_REMA -_C (COUNT_PEROPERATION–THERMOSTAT CONTROLSThree thermally triggered outputs, T HIGH , T LOW , and T COM , are provided to allow the DS1620 to be used as a thermostat, as shown in Figure 3. When the DS1620’s temperature meets or exceeds the value stored in the high temperature trip register, the output T HIGH becomes active (high) and remains active until the DS1620’s measured temperature becomes less than the stored value in the high temperature register, TH. The T HIGH output can be used to indicate that a high temperature tolerance boundary has been met or exceeded, or it can be used as part of a closed loop system to activate a cooling system and deactivate it when the system temperature returns to tolerance.The T LOW output functions similarly to the T HIGH output. When the DS1620’s measured temperature equals or falls below the value stored in the low temperature register, the T LOW output becomes active. T LOW remains active until the DS1620’s temperature becomes greater than the value stored in the low temperature register, TL. The T LOW output can be used to indicate that a low temperature tolerance boundary has been met or exceeded, or as part of a closed loop system it can be used to activate a heating system and deactivate it when the system temperature returns to tolerance.The T COM output goes high when the measured temperature meets or exceeds TH, and will stay high until the temperature equals or falls below TL. In this way, any amount of hysteresis can be obtained.DS1620 THERMOSTAT OUTPUT OPERATION Figure 3OPERATION AND CONTROLThe DS1620 must have temperature settings resident in the TH and TL registers for thermostatic operation. A configuration/status register also determines the method of operation that the DS1620 will use in a particular application and indicates the status of the temperature conversion operation. Theconfiguration register is defined as follows:whereDONE = Conversion Done Bit. 1=conversion complete, 0=conversion in progress. The power-up/POR state is a 1.THF = Temperature High Flag. This bit will be set to 1 when the temperature is greater than or equal to the value of TH. It will remain 1 until reset by writing 0 into this location or by removing power from the device. This feature provides a method of determining if the DS1620 has ever been subjected to temperatures above TH while power has been applied. The power-up/POR state is a 0.TLF = Temperature Low Flag. This bit will be set to 1 when the temperature is less than or equal to the value of TL. It will remain 1 until reset by writing 0 into this location or by removing power from the device. This feature provides a method of determining if the DS1620 has ever been subjected to temperatures below TL while power has been applied. The power-up/POR state is a 0.NVB = Nonvolatile Memory Busy Flag. 1=write to an E2memory cell in progress. 0=nonvolatile memory is not busy. A copy to E2may take up to 10 ms. The power-up/POR state is a 0.CPU = CPU Use Bit. If CPU=0, the CLK/CONV pin acts as a conversion start control, when RST is low. If CPU is 1, the DS1620 will be used with a CPU communicating to it over the 3–wire port, and the operation of the CLK/CONV pin is as a normal clock in concert with DQ and RST. This bit is stored in nonvolatile E2memory, capable of at least 50,000 writes. The DS1620 is shipped with CPU=0.DS1620 1SHOT = One–Shot Mode. If 1SHOT is 1, the DS1620 will perform one temperature conversion upon reception of the Start Convert T protocol. If 1SHOT is 0, the DS1620 will continuously perform temperature conversion. This bit is stored in nonvolatile E2memory, capable of at least 50,000 writes. The DS1620 is shipped with 1SHOT=0.For typical thermostat operation, the DS1620 will operate in continuous mode. However, for applications where only one reading is needed at certain times or to conserve power, the one–shot mode may be used. Note that the thermostat outputs (T HIGH, T LOW, T COM) will remain in the state they were in after the last valid temperature conversion cycle when operating in one–shot mode.OPERATION IN STAND-ALONE MODEIn applications where the DS1620 is used as a simple thermostat, no CPU is required. Since the temperature limits are nonvolatile, the DS1620 can be programmed prior to insertion in the system. In order to facilitate operation without a CPU, the CLK/CONV pin (pin 2) can be used to initiate conversions. Note that the CPU bit must be set to 0 in the configuration register to use this mode of operation. Whether CPU=0 or 1, the 3–wire port is active. Setting CPU=1 disables the stand–alone mode.To use the CLK/CONV pin to initiate conversions, RST must be low and CLK/CONV must be high. If CLK/CONV is driven low and then brought high in less than 10 ms, one temperature conversion will be performed and then the DS1620 will return to an idle state. If CLK/CONV is driven low and remains low, continuous conversions will take place until CLK/CONV is brought high again. With the CPU bit set to 0, the CLK/CONV will override the 1SHOT bit if it is equal to 1. This means that even if the part is set for one–shot mode, driving CLK/CONV low will initiate conversions.3-WIRE COMMUNICATIONSThe 3–wire bus is comprised of three signals. These are the RST (reset) signal, the CLK (clock) signal, and the DQ (data) signal. All data transfers are initiated by driving the RST input high. Driving the RST input low terminates communication. (See Figures 4 and 5.) A clock cycle is a sequence of a falling edge followed by a rising edge. For data inputs, the data must be valid during the rising edge of a clock cycle. Data bits are output on the falling edge of the clock and remain valid through the rising edge.When reading data from the DS1620, the DQ pin goes to a high-impedance state while the clock is high. Taking RST low will terminate any communication and cause the DQ pin to go to a high-impedance state.Data over the 3–wire interface is communicated LSB first. The command set for the 3–wire interface as shown in Table 4 is as follows.Read Temperature [AAh]This command reads the contents of the register which contains the last temperature conversion result. The next nine clock cycles will output the contents of this register.Write TH [01h]This command writes to the TH (HIGH TEMPERATURE) register. After issuing this command the next nine clock cycles clock in the 9–bit temperature limit which will set the threshold for operation of the T HIGH output.Write TL [02h]This command writes to the TL (LOW TEMPERATURE) register. After issuing this command the next nine clock cycles clock in the 9–bit temperature limit which will set the threshold for operation of the T LOW output.Read TH [A1h]This command reads the value of the TH (HIGH TEMPERATURE) register. After issuing this command the next nine clock cycles clock out the 9–bit temperature limit which sets the threshold for operation of the T HIGH output.Read TL [A2h]This command reads the value of the TL (LOW TEMPERATURE) register. After issuing this command the next nine clock cycles clock out the 9–bit temperature limit which sets the threshold for operation of the T LOW output.Read Counter [A0h]This command reads the value of the counter byte. The next nine clock cycles will output the contents of this register.Read Slope [A9h]This command reads the value of the slope counter byte from the DS1620. The next nine clock cycles will output the contents of this register.Start Convert T [EEh]This command begins a temperature conversion. No further data is required. In one–shot mode the temperature conversion will be performed and then the DS1620 will remain idle. In continuous mode this command will initiate continuous conversions.Stop Convert T [22h]This command stops temperature conversion. No further data is required. This command may be used to halt a DS1620 in continuous conversion mode. After issuing this command the current temperature measurement will be completed and then the DS1620 will remain idle until a Start Convert T is issued to resume continuous operation.Write Config [0Ch]This command writes to the configuration register. After issuing this command the next eight clock cycles clock in the value of the configuration register.Read Config [ACh]This command reads the value in the configuration register. After issuing this command the next eight clock cycles output the value of the configuration register.DS1620 COMMAND SET Table 4INSTRUCTION DESCRIPTION PROTOCOL 3-WIRE BUSDATA AFTER ISSUING PROTOCOL NOTESRead Temperature Reads last converted temperaturevalue from temperature register. AAh <read data>Read Counter Reads value of count remainingfrom counter. A0h <read data>Read Slope Reads value of the slopeaccumulator. A9h <read data>Start Convert T Initiates temperature conversion. EEh Idle 1 Stop Convert T Halts temperature conversion. 22h Idle 1Write TH Writes high temperature limit valueinto TH register. 01h <write data> 2Write TL Writes low temperature limit valueinto TL register. 02h <write data> 2Read TH Reads stored value of hightemperature limit from TH register. A1h <read data> 2Read TL Reads stored value of lowtemperature limit from TL register. A2h <read data> 2Write Config Writes configuration data toconfiguration register. 0Ch <write data> 2Read Config Reads configuration data fromconfiguration register.ACh <read data> 2NOTES:1.In continuous conversion mode, a Stop Convert T command will halt continuous conversion. Torestart, the Start Convert T command must be issued. In one–shot mode, a Start Convert T command must be issued for every temperature reading desired.2.Writing to the E2 requires up to 10 ms at room temperature. After issuing a write command no furtherwrites should be requested for at least 10 ms.FUNCTION EXAMPLEREAD DATA TRANSFER Figure 4WRITE DATA TRANSFER Figure 5ABSOLUTE MAXIMUM RATINGS*Voltage on Any Pin Relative to Ground –0.5V to +6.0V Operating Temperature –55°C to +125°C Storage Temperature –55°C to +125°C Soldering Temperature 260°C for 10 seconds* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.RECOMMENDED DC OPERATING CONDITIONSPARAMETERSYMBOL MIN TYP MAX UNITS NOTES Supply V DD 2.7 5.5 V 1,2 Logic 1 V IH 0.7 x V DD V CC + 0.3 V 1 Logic 0V IL-0.30.3 x V DD V 1NOTE: t CL , t CH , t R , and t F apply to both read and write data transfer.SINGLE CONVERT TIMING DIAGRAM (STAND-ALONE MODE)CNV CONV11 of 12AC ELECTRICAL CHARACTERISTICS(-55°C to +125°C; V DD =2.7V to 5.5V)PARAMETER SYMBOLMIN TYP MAX UNITS NOTESInput Capacitance C I 5 pF I/O Capacitance C I/O10pFEEPROM AC ELECTRICAL CHARACTERISTICS(-55°C to +125°C; V DD =2.7V to 5.5V)PARAMETERCONDITIONSMIN TYP MAX UNITS EEPROM Write Cycle Time4 10 Ms EEPROM Writes-55°C to +55°C 50k Writes EEPROM Data Retention-55°C to +55°C10 YearsNOTES:1. All voltages are referenced to ground.2. Valid for design revisions D1 and above. The supply range for Rev. C2 and below is 4.5V < 5.5V.3. Thermometer error reflects temperature accuracy as tested during calibration.4. Logic 0 voltages are specified at a sink current of 4mA5. Logic 1 voltages are specified at a source current of 1mA.6. I STBY , I CC specified with DQ, CLK/CONV = V DD , and RST = GND.7. Drift data is based on a 1000hr stress test at +125°C with V DD = 5.5V8. Measured at V IH = 0.7 x V DD or V IL = 0.3 x V DD .9. Measured at V OH = 2.4V or V OL = 0.4V. 10. Load capacitance = 50pF.11. t CWH must be 10ms minimum following any write command that involves the E 2 memory.12. 250ns is the guaranteed minimum pulse width for a conversion to start; however, a smaller pulse width may start a conversion.Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000©2015 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.12 of 12。
ifm电子温度传感器说明书
发布日期2015-11-18版本V1.0.0.12Copyright2015,Builder:2.5.2.6,Time:12:29:32TN310/0x0136-Bytes:0154/0x010x36供应商ID582/0x000246-Bytes:000270/0x000x020x46设备IDifm electronic gmbh供应商名称供应商文本/ifmgb/web/io-link-download.htm 供应商网址通信V1.1IO-Link修订版COM2比特率2.300ms最短循环时间是啊SIO模式支持产品特点块参数是啊是啊数据存储设备类型TN2511电子温度传感器,-50...150°C,IO-Link,过程数据总位长=16(过程数据输入)数据类型描述名字位偏移位长度单位梯度偏移值范围2IntegerT140.1°C 温度(8184)OL当前温度-500to1500(-8184)ULBooleanTOUT1(false)无效状态取决于[OU1](true)有效单位偏移梯度值范围默认访问权限长度数据类型分类指数指数描述名字wo8BitUIntegerTSub 02标准命令(130)恢复工厂设置(161)重新设定[Hi]和[Lo]内存(162)重新设定[Lo]内存(163)重新设定[Hi]内存(240)IO-Link 1.1系统测试命令240,事件8DFE会出现(241)IO-Link 1.1系统测试命令241,事件8DFE将消失(242)IO-Link 1.1系统测试命令242,事件8DFF会出现(243)IO-Link 1.1系统测试命令243,事件8DFF将消失(255)没有效果的命令,仅供内部使用rw16Bit RecordT Sub 012设备访问锁(false )1Bit BooleanT bitOffs 1数据存储(false)未解锁(true)已锁定(false )1BitBooleanTbitOffs 3本地用户界面(false)未解锁(true)已锁定单位偏移梯度值范围默认访问权限长度数据类型分类指数指数描述名字ifm electronic gmbh romax 19Byte StringTSub 016供应商名称 ro max 11Byte StringT Sub 017供应商文本TN2511ro max 6Byte StringT Sub 018产品名称TN2511ro max 6Byte StringT Sub 019产品ID Electronictemperature sensorromax 29Byte StringTSub 020产品文本ro max 12Byte StringT Sub 021序列号ro max 2Byte StringT Sub 022硬件版本ro max 5Byte StringT Sub 023固件版本***rw max 32Byte StringT Sub 024应用特定标签(0)设备正常ro 8Bit UIntegerTSub 036设备状态000000h ro 21ByteSub 037详细的设备状态(0)PnPrw8BitUIntegerTSub 0500开关输出的输出极性P-n(0)PnP (1)nPn(4)OFFrw8Bit UIntegerT Sub 0531发生故障时[OUT 1]的表现FOU1(2)On单位偏移梯度值范围默认访问权限长度数据类型分类指数指数描述名字(4)OFFrw8BitUIntegerTSub 0531发生故障时[OUT 1]的表现FOU1(4)OFF(4)OFFrw8BitUIntegerTSub 0532发生故障时[OUT 2]的表现FOU2(2)On (4)OFF(1)uLocrw8BitUIntegerTSub 0550[Loc]锁定本地用户界面,以防止意外的更改,[Loc]可在设备上重新设置。
温度计说明书
基于AT89C51的数字温度计的说明书第十二组张思琪:PC板的制作,电路板的焊制,PPT演讲肖容:原理图的绘制,说明书的制作刘盼:说明书的制作,PPT的制作目录第1章引言...................................................................................................... - 2 -第2章系统设计方案 ..................................................................................... - 3 -第3章硬件系统设计 ..................................................................................... - 4 -3.1 单片机最小系统设计 ............................................................................... - 4 -3.1.1 电源电路................................................................................................ - 4 -3.1.2 振荡电路与复位电路 ........................................................................... - 4 -3.1.3 DS18B20与单片机的接口电路 ............................................................ - 5 -3.2 主控制器AT89C51 .................................................................................. - 5 -3.2.1 AT89C51的特点及特性: .................................................................... - 5 -3.2.2 管脚功能说明: ................................................................................. - 6 -3.2.3 PROTEUS仿真电路图 ............................................................................ - 8 -第4章软件设计.............................................................................................. - 8 -4.1 程序流程.................................................................................................... - 9 -4.1.1 主程序流程图 ....................................................................................... - 9 -4.1.2 各子程序流程图 ................................................................................... - 9 -第5章汇编语言程序源代码 ....................................................................... - 13 -第6章DS18B20简单介绍........................................................................... - 18 -6.1 DS18B20 的性能特点如下: ................................................................. - 19 -6.2 DS18B20使用中的注意事项 .................................................................. - 20 -6.3 DS18B20内部结构 .................................................................................. - 21 -6.4 DS18B20测温原理 .................................................................................. - 24 -第7章仿真调试............................................................................................ - 25 -第八章总结.................................................................................................... - 26 -第九章参考文献............................................................................................ - 27 -第1章引言随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。