数字电路实验
数字电路实验测试
数字电路实验测试数字电路实验测试是电子工程领域中非常重要的一项实验内容,通过对数字电路的测试与分析,可以验证电路设计的正确性、稳定性和可靠性。
本文将介绍数字电路实验测试的基本原理和常见的测试方法。
一、实验测试的基本原理数字电路实验测试的基本原理是通过输入不同的电信号,观察电路输出的情况,从而判断电路的工作状态和性能指标。
常见的数字电路实验测试基本原理包括输入输出特性测试、时序性能测试和逻辑功能测试。
输入输出特性测试:通过给定不同的输入信号,观察输出信号的变化情况。
测试输入输出特性可以确定电路输入输出的电平范围和电平变化关系,判断电路的输入、输出能力是否符合设计要求。
时序性能测试:通过给定不同的输入信号,并配合时钟信号,观察电路输出信号的时序性能。
测试时序性能可以判断电路的延时时间、时钟频率、时钟相位等时序参数是否满足设计要求,避免电路工作时出现时序冲突或时序偏差。
逻辑功能测试:通过给定不同的输入信号,观察电路输出信号的逻辑功能是否正确。
测试逻辑功能可以判断电路实现的逻辑运算是否符合设计要求,识别输入信号的各种组合情况,验证电路的逻辑表达式是否正确。
二、实验测试的方法1. 硬件测试方法硬件测试方法是通过专用的测试设备进行数字电路实验测试的方法。
常见的硬件测试设备包括逻辑分析仪、信号发生器、频谱仪等设备。
这些设备可以提供稳定的输入信号和高精度的输出信号,通过对电路输入输出信号的测量和分析,可以准确判断电路的工作状态和性能参数。
2. 软件仿真方法软件仿真方法是通过计算机模拟数字电路的工作状态和性能表现的方法。
常见的软件仿真工具包括Verilog、VHDL等。
通过在仿真工具中编写电路的描述代码,并给定不同的输入信号,可以模拟电路的工作过程,观察电路输出信号的变化情况,从而分析电路的工作状态和性能指标。
三、实验测试的步骤1. 确定测试目标:根据实验要求,明确测试的目标,例如测试输入输出特性、时序性能或逻辑功能等。
数字电路设计实训实验报告
一、实验目的1. 熟悉数字电路的基本组成和基本逻辑门电路的功能。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式化简、逻辑电路设计等。
3. 提高动手实践能力,培养独立思考和解决问题的能力。
4. 理解数字电路在实际应用中的重要性。
二、实验原理数字电路是一种用数字信号表示和处理信息的电路,其基本组成单元是逻辑门电路。
逻辑门电路有与门、或门、非门、异或门等,它们通过输入信号的逻辑运算,输出相应的逻辑结果。
组合逻辑电路是由逻辑门电路组成的,其输出仅与当前输入信号有关,与电路的过去状态无关。
本实验将设计一个简单的组合逻辑电路,实现特定功能。
三、实验仪器与设备1. 数字电路实验箱2. 逻辑门电路(如与非门、或非门、异或门等)3. 逻辑电平测试仪4. 线路板5. 电源四、实验内容1. 组合逻辑电路设计(1)设计一个三人表决电路三人表决电路的输入信号为三个人的投票结果,输出信号为最终的表决结果。
根据题意,当至少有两人的投票结果相同时,输出为“通过”;否则,输出为“不通过”。
(2)设计一个4选1数据选择器4选1数据选择器有4个数据输入端、2个选择输入端和1个输出端。
根据选择输入端的不同,将4个数据输入端中的一个输出到输出端。
2. 组合逻辑电路搭建与测试(1)搭建三人表决电路根据电路设计,将三个与门、一个或门和一个异或门连接起来,构成三人表决电路。
(2)搭建4选1数据选择器根据电路设计,将四个或非门、一个与非门和一个与门连接起来,构成4选1数据选择器。
(3)测试电路使用逻辑电平测试仪,测试搭建好的电路在不同输入信号下的输出结果,验证电路的正确性。
3. 实验结果与分析(1)三人表决电路测试结果当输入信号为(1,0,0)、(0,1,0)、(0,0,1)时,输出为“通过”;当输入信号为(1,1,0)、(0,1,1)、(1,0,1)时,输出为“不通过”。
测试结果符合设计要求。
(2)4选1数据选择器测试结果当选择输入端为(0,0)时,输出为输入端A的信号;当选择输入端为(0,1)时,输出为输入端B的信号;当选择输入端为(1,0)时,输出为输入端C的信号;当选择输入端为(1,1)时,输出为输入端D的信号。
数字电路实验报告 实验2
实验二 译码器及其应用一、 实验目的1、掌握译码器的测试方法。
2、了解中规模集成译码器的管脚分布,掌握其逻辑功能。
3、掌握用译码器构成组合电路的方法。
4、学习译码器的扩展。
二、 实验设备及器件1、数字逻辑电路实验板1块 2、74HC(LS)20(二四输入与非门) 1片 3、74HC(LS)138(3-8译码器)2片三、 实验原理74HC(LS)138是集成3线-8线译码器,在数字系统中应用比较广泛。
下图是其引脚排列,其中A 2、A 1、A 0为地址输入端,Y ̅0~Y ̅7为译码输出端,S 1、S ̅2、S ̅3为使能端。
下表为74HC(LS)138功能表。
74HC(LS)138工作原理为:当S 1=1,S ̅2+S ̅3=0时,电路完成译码功能,输出低电平有效。
其中:Y ̅0=A ̅2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅4=A 2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅1=A ̅2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅5=A 2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅2=A ̅2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅6=A 2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅3=A ̅2A 1A 0̅̅̅̅̅̅̅̅̅̅Y ̅7=A 2A 1A 0̅̅̅̅̅̅̅̅̅̅因为74HC(LS)138的输出包括了三变量数字信号的全部八种组合,每一个输出端表示一个最小项(的非),因此可以利用八条输出线组合构成三变量的任意组合电路。
实验用器件管脚介绍:1、74HC(LS)20(二四输入与非门)管脚如下图所示。
2、74HC(LS)138(3-8译码器)管脚如下图所示。
四、实验内容与步骤(四学时)1、逻辑功能测试(基本命题)m。
验证74HC(LS)138的逻辑功能,说明其输出确为最小项i注:将Y̅0~Y̅7输出端接到LED指示灯上,因低电平有效,所以当输入为000时,Y̅0所接的LED指示灯亮,其他同理。
《数字电路》实验报告
《数字电路》实验报告项目一逻辑状态测试笔的制作一、项目描述本项目制作的逻辑状态测试笔,由集成门电路芯片74HC00、发光二极管、电阻等元器件组成,项目相关知识点有:基本逻辑运算、基本门电路、集成逻辑门电路等;技能训练有:集成逻辑二、项目要求用集成门电路74HC00制作简易逻辑状态测试笔。
要求测试逻辑高电平时,红色发光二极管亮,测试逻辑低电平时绿色发光二极管亮。
三、原理框图四、主要部分的实现方案当测试探针A测得高电平时,VD1导通,三级管V发射级输出高电平,经G1反相后,输出低电平,发光二级管LED1导通发红光。
又因VD2截止,相当于G1输入端开路,呈高电平,输出低电平,G3输出高电平,绿色发光二级管LED2截止而不发光。
五、实验过程中遇到的问题及解决方法(1)LED灯不能亮:检查硬件电路有无接错;LED有无接反;LED有无烧坏。
(2)不能产生中断或中断效果:检查硬件电路有无接错;程序中有无中断入口或中断子程序。
(3)输入电压没有反应:数据原理图有没有连接正确,检查显示部分电路有无接错;4011逻辑门的输入端有无浮空。
六、心得体会第一次做的数字逻辑试验是逻辑状态测试笔,那时什么都还不太了解,听老师讲解完了之后也还不知道从何下手,看到前面的人都起先着手做了,心里很焦急可就是毫无头绪。
老师说要复制一些文件协助我们做试验(例如:试验报告模板、试验操作步骤、引脚等与试验有关的文件),还让我们先画原理图。
这时,关于试验要做什么心里才有了一个模糊的框架。
看到别人在拷贝文件自己又没有U盘只好等着借别人的用,当然在等的时候我也画完了逻辑测试笔的实操图。
后面几次都没有过,但最后真的发觉试验的次数多了,娴熟了,知道自己要做的是什么,明确了目标,了解了方向,其实也没有想象中那么困难。
七、元器件一逻辑状态测试笔电路八、附实物图项目二多数表决器电路设计与制作一、项目描述本项目是以组合逻辑电路的设计方法,用基本门电路的组合来完成具有多数表决功能的电路。
数字电路实验
数字电路实验数字电路实验是电子工程相关专业的一门重要实践课程,旨在帮助学生掌握数字电路设计与实验的基本原理、方法和技能。
通过实验,学生可以加深对数字电路理论知识的理解,提升实践能力和创新思维,为将来从事电子工程领域的研究和实践奠定坚实的基础。
一、实验目的数字电路实验的目的是培养学生的实验操作技能,提高学生的动手实践能力,掌握数字电路设计和测试的方法。
通过实际操作,学生可以了解数字电路的基本原理、功能及其实验现象,加深对数字电路的理论知识的理解。
二、实验器材数字电路实验需要以下器材和设备:1. 实验箱:用于组装和连接数字电路实验电路。
2. 示波器:用于观察和测量电路中的信号波形。
3. 信号发生器:用于产生各种测试信号。
4. 计数器:用于计数和测量电路中的脉冲频率。
5. 多用途通用测试仪:用于电路测试和故障诊断。
三、实验内容数字电路实验的内容主要包括以下几个方面:1. 数字逻辑门电路实验:包括与门、或门、非门、与非门、异或门等的实验。
2. 组合逻辑电路实验:包括编码器、解码器、复用器、译码器等的实验。
3. 时序逻辑电路实验:包括时钟、触发器、时序逻辑门、计数器、寄存器等的实验。
4. 数字电路综合实验:通过综合实验,学生需自主设计数字电路,实践数字电路设计的基本方法和技巧。
四、实验步骤1. 根据实验内容和要求,选择适当的实验器材和设备。
2. 设计和搭建数字电路实验电路,注意连接的准确性和稳定性。
3. 使用示波器和信号发生器对电路进行测试和调试,观察和测量信号波形和频率。
4. 记录实验过程中的数据和现象,并进行数据分析和处理。
5. 总结实验结果,撰写实验报告,包括实验目的、原理、电路图、实验步骤、数据分析和结论等内容。
五、实验注意事项1. 实验前需充分了解实验原理和电路设计,做好实验准备工作。
2. 实验操作过程中要注意安全,遵守实验室的各项规定。
3. 实验过程中需认真记录数据和现象,保证实验结果的准确性和可靠性。
数字电路设计实验报告
数字电路设计实验报告实验目的:通过数字电路设计实验,掌握数字电路的基本原理和设计方法,提高学生的实际动手能力和创新能力。
实验内容:1. 半加器的设计与测试2. 全加器的设计与测试3. 4位全加器的设计与测试实验步骤:1. 半加器的设计与测试半加器是最简单的加法器件,由XOR门和AND门构成。
首先根据半加器的真值表,设计出电路原理图,并使用Multisim软件进行模拟验证。
接着,搭建实际电路,连接信号发生器和示波器,输入不同的输入信号,观察输出结果,并记录实验数据。
2. 全加器的设计与测试全加器是实现多位数相加必不可少的组件,由两个半加器和一个OR门构成。
根据全加器的真值表,设计电路原理图,并进行Multisim 模拟验证。
接着,搭建实际电路,连接信号发生器和示波器,输入不同的输入信号组合,观察输出结果,记录实验数据。
3. 4位全加器的设计与测试利用已经设计好的全加器单元,进行4位数相加的实验。
将4个全加器连接起来,形成4位全加器电路,输入两个4位二进制数,观察输出结果。
通过实验验证4位全加器的正确性,并记录实验数据。
实验结果分析:经过实验验证,半加器、全加器和4位全加器电路均能正确实现加法运算,输出结果符合预期。
通过实验,加深了对数字电路原理的理解,掌握了数字电路设计的基本方法。
这对于今后的学习和工作都具有重要意义。
结论:通过本次数字电路设计实验,我深入了解了数字电路的原理和设计方法,提高了实际动手能力和创新能力。
数字电路设计是电子信息类专业的重要实践环节,通过不断的实践和探索,相信我能够更加扎实地掌握数字电路设计知识,为将来的研究和工作打下坚实基础。
愿未来的路上能够越走越宽广,越走越稳健。
数字电路实验报告
数字电路实验报告实验目的本实验的目的是通过对数字电路的实际操作,加深对数字电路原理和实验操作的理解。
通过实验,理论联系实际,加深学生对数字电路设计和实现的认识和理解。
实验内容本次实验的实验内容主要包括以下几个方面:1.数码管显示电路实验2.时序电路实验3.组合电路实验实验仪器和器材本次实验所使用的仪器和器材包括:•真空发光数字数码管•通用数字逻辑芯片•实验箱•数字电路设计软件•示波器数码管显示电路实验在数码管显示电路实验中,我们将使用真空发光数字数码管和逻辑芯片来实现数字数码管的显示功能。
具体的实验步骤如下:1.按照实验箱上的电路图,将逻辑芯片及其它所需器件正确连接。
2.通过数字电路设计软件,编写和下载逻辑芯片的程序。
3.观察数码管的显示效果,检查是否符合预期要求。
时序电路实验时序电路是数字电路中非常重要的一部分,通过时序电路可以实现各种各样的功能。
在时序电路实验中,我们将通过设计一个简单的计时器电路来学习时序电路的设计和实现。
具体的实验步骤如下:1.在实验箱上按照电路图连接逻辑芯片及其它所需器件。
2.通过数字电路设计软件,编写和下载逻辑芯片的程序。
3.通过示波器观察时序电路的波形,检查是否符合设计要求。
组合电路实验组合电路是由多个逻辑门组合而成的电路,可以实现各种逻辑功能。
在组合电路实验中,我们将使用逻辑芯片和其他器件,设计并实现一个简单的闹钟电路。
具体的实验步骤如下:1.在实验箱上按照电路图连接逻辑芯片及其它所需器件。
2.通过数字电路设计软件,编写和下载逻辑芯片的程序。
3.测试闹钟电路的功能和稳定性,检查是否符合设计要求。
实验结果与分析通过以上的实验,我们成功地实现了数码管显示、时序电路和组合电路的设计和实现。
实验结果表明,在正确连接逻辑芯片和其他器件,并编写正确的程序的情况下,我们可以实现各种各样的数字电路功能。
通过实验过程中的观察和测试,我们也发现了一些问题和改进的空间。
例如,在时序电路实验中,我们发现时序电路的波形不够稳定,可能需要进一步优化。
数字电路实验报告实验
数字电路实验报告实验一、引言数字电路是计算机科学与工程学科的基础,它涵盖了数字信号的产生、传输、处理和存储等方面。
通过数字电路实验,我们可以深入了解数字电路的原理和设计,掌握数字电路的基本知识和实验技巧。
本报告旨在总结和分析我所进行的数字电路实验。
二、实验目的本次实验的目的是通过搭建和测试电路,验证数字电路的基本原理,掌握数字电路实验中常用的实验仪器和操作方法。
具体实验目的如下:1. 组装和测试基础门电路,包括与门、或门、非门等。
2. 理解和实践加法器电路,掌握准确的运算方法和设计技巧。
3. 探究时序电路的工作原理,深入了解时钟信号和触发器的应用。
三、实验装置和材料1. 模块化数字实验仪器套装2. 实验台3. 数字电路芯片(例如与门、或门、非门、加法器、触发器等)4. 连接线、电源、示波器等。
四、实验步骤及结果1. 实验一:组装和测试基础门电路在实验台上搭建与门、或门、非门电路,并连接电源。
通过连接线输入不同的信号,测试输出的结果是否与预期一致。
记录实验步骤和观察结果。
2. 实验二:实践加法器电路将加法器电路搭建在实验台上,并输入两个二进制数字,通过加法器电路计算它们的和。
验证求和结果是否正确。
记录实验步骤和观察结果。
3. 实验三:探究时序电路的工作原理将时序电路搭建在实验台上,并连接时钟信号和触发器。
观察触发器的状态变化,并记录不同时钟信号下的观察结果。
分析观察结果,总结时序电路的工作原理。
五、实验结果与分析1. 实验一的结果与分析:通过测试与门、或门、非门电路的输入和输出,我们可以观察到输出是否与预期一致。
若输出与预期一致,则说明基础门电路连接正确,电路工作正常;若输出与预期不一致,则需要检查电路连接是否错误,或者芯片损坏。
通过实验一,我们可以掌握基础门电路的搭建和测试方法。
2. 实验二的结果与分析:通过实践加法器电路,我们可以输入两个二进制数字,并观察加法器电路的运算结果。
如果加法器电路能正确计算出输入数字的和,则说明加法器电路工作正常。
数电项目实验报告(3篇)
第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。
2. 掌握常用数字电路的分析方法。
3. 培养动手能力和实验技能。
4. 提高对数字电路应用的认识。
二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。
本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。
四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。
(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。
(3)分析输出波形,验证逻辑门电路的正确性。
2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。
(3)分析输出波形,验证触发器电路的正确性。
3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。
(3)分析输出波形,验证计数器电路的正确性。
4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。
(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。
(3)分析输出波形,验证寄存器电路的正确性。
五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。
实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。
2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。
实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。
3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。
实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。
数字电路实验报告_北邮
一、实验目的本次实验旨在通过实践操作,加深对数字电路基本原理和设计方法的理解,掌握数字电路实验的基本步骤和实验方法。
通过本次实验,培养学生的动手能力、实验技能和团队合作精神。
二、实验内容1. 实验一:TTL输入与非门74LS00逻辑功能分析(1)实验原理TTL输入与非门74LS00是一种常用的数字逻辑门,具有高抗干扰性和低功耗的特点。
本实验通过对74LS00的逻辑功能进行分析,了解其工作原理和性能指标。
(2)实验步骤① 使用实验箱和实验器材搭建74LS00与非门的实验电路。
② 通过实验箱提供的逻辑开关和指示灯,验证74LS00与非门的逻辑功能。
③ 分析实验结果,总结74LS00与非门的工作原理。
2. 实验二:数字钟设计(1)实验原理数字钟是一种典型的数字电路应用,由组合逻辑电路和时序电路组成。
本实验通过设计一个24小时数字钟,使学生掌握数字电路的基本设计方法。
(2)实验步骤① 分析数字钟的构成,包括分频器电路、时间计数器电路、振荡器电路和数字时钟的计数显示电路。
② 设计分频器电路,实现1Hz的输出信号。
③ 设计时间计数器电路,实现时、分、秒的计数。
④ 设计振荡器电路,产生稳定的时钟信号。
⑤ 设计数字时钟的计数显示电路,实现时、分、秒的显示。
⑥ 组装实验电路,测试数字钟的功能。
3. 实验三:全加器设计(1)实验原理全加器是一种数字电路,用于实现二进制数的加法运算。
本实验通过设计全加器,使学生掌握全加器的工作原理和设计方法。
(2)实验步骤① 分析全加器的逻辑功能,确定输入和输出关系。
② 使用实验箱和实验器材搭建全加器的实验电路。
③ 通过实验箱提供的逻辑开关和指示灯,验证全加器的逻辑功能。
④ 分析实验结果,总结全加器的工作原理。
三、实验结果与分析1. 实验一:TTL输入与非门74LS00逻辑功能分析实验结果表明,74LS00与非门的逻辑功能符合预期,具有良好的抗干扰性和低功耗特点。
2. 实验二:数字钟设计实验结果表明,设计的数字钟能够实现24小时计时,时、分、秒的显示准确,满足实验要求。
数字电路实验:常用数字逻辑门输入输出特性测试
五、实验任务
1.反相器电压传输特性的测试 1)用示波器实测电源电压VDD 【测试提示】:
用数字示波器测试直流信号电压值时,应选择参数平 均值(Vavg),而不是峰峰值(Vpp)或幅值(Vamp),否则 测到的只是直流的纹波。
示波器垂直因数不宜过大或过小。垂直因数过大可能 影响测试精度,垂直因数过小当电压值变化时波形容易超出 屏幕显示范围,不便观察。一般设置为(1V—2对输出的影响测试
• 按图3.3.7连接电路,输 入加入1KHz TTL信号,
测试输出波形的上升时 间(trise)。在输出和地 之间加入0.01μ电容,
测试此时输出波形的上 升时间(trise)。比较两 次测量结果有何不同并 加以分析。
0.01μF
思考题
• 本实验中你实测的输出逻辑电平的范围是 多少?
辑电平未定义区域。造成电路工 作不正常。
5V电源下 CMOS非门电压传输特性
VTH=VDD/2
• 影响 TTL门电路工作速度的主要因素是电路内部管子的开 关特性、电路结构及内部的各电阻阻数值。电阻数值越大, 工作速度越低。管子的开关时间越长,门的工作速度越低。
• 影响CMOS电路工作速度的主要因素在于电路的外部,即 负载电容CL。CL是主要影响器件工作速度的原因,由CL 所决定的影响CMOS门的传输延时约为几十纳秒。
门的输出电压VO 随输入电压Vi 而变化的曲线VO=f(Vi)
称为门的电压传输特性。
VOUT
VTH
• 当负载电路所需驱动电流增大时, 5.0 输出特性就不像理论值那样理想
了,逻辑门的输出电压值与规定
值之间有较明显的差异。
• 当负载电路所需驱动电流过大时, 逻辑门的输出电压值就会落在逻
数字电路实验四:电子秒表
2、电子秒表的整体测试
各单元电路测试正常后,按总图把几个单 元电路连接起来,进行电子秒表的总体测试。
要求计时至少2分钟,利用参考时间源测试 其误差。
分析电子秒表误差原因。
4、自主练习 74ls90及74ls92各种进制级联。 例:2——10进制级联;
10——2进制级联; 上次布置的思考题
········
经过5分频,产生频率10HZ,周期0.1 S的计数时钟信号
T TW1 TW 2 TW1 0.7R1 R 2 C TW 2 0.7R2C
实验原理
现代电子技术实验
50HZ
5分频
10HZ
五、总电路图
现代电子技术实验
现代电子技术实验
六、实验内容
1、脉冲源的调测
现代电子技术实验
用示波器观察输出电压波形并测量其频率,调节 RW,使输出矩形波频率为50Hz,画出其波形。
产生清零信号单稳态电路来自实验原理 2、停止电路
Q=0
Q=1
现代电子技术实验
时钟信号
C
与
非 门 计数脉冲
若停止键按下, Q将变为0。
实验原理
停止电路
Q=01
Q=01
现代电子技术实验
时钟信号
C
与
非 门 无计数脉冲
停止键按下, Q=C变为0。
实验原理
现代电子技术实验
3、脉冲源电路
产生频率为50HZ,周期0.02 S的信号
2 、按下启动键开始清零计时,按 下停止键,停止。
三、实验框图
电子秒表的组成框图
现代电子技术实验
四、实验原理
Q=1
Q=0
现代电子技术实验
1、启动电路
R-S触发器
数字显示电路实验报告
一、实验目的1. 理解数字显示电路的基本原理和组成。
2. 掌握数码管的工作原理和驱动方法。
3. 学习使用51单片机控制数码管显示数字。
4. 培养动手实践能力和问题解决能力。
二、实验原理数字显示电路主要由数码管、驱动电路和单片机控制单元组成。
数码管是一种显示数字的电子元件,常用的有七段数码管和点阵数码管。
本实验使用的是七段共阳极数码管,其内部由七个发光二极管(LED)组成,分别代表数字0-9的七个笔画。
三、实验内容1. 电路搭建:根据实验指导书,搭建数字显示电路,包括单片机、数码管、晶振、电阻等元件。
2. 程序编写:使用C语言编写程序,实现数码管显示数字的功能。
3. 编译调试:使用Keil软件对程序进行编译和调试,确保程序运行正确。
4. 实验验证:观察数码管显示结果,验证程序的正确性。
四、实验步骤1. 电路搭建:- 将单片机的P1口与数码管的七个段连接,分别对应数码管的七个LED。
- 将单片机的P2口与数码管的共阳极连接。
- 将晶振和复位电路连接到单片机上。
- 搭建完整的数字显示电路。
2. 程序编写:- 编写程序,实现数码管显示数字的功能。
- 程序主要包括以下部分:- 初始化单片机端口。
- 定义数码管的编码,即每个数字对应的LED状态。
- 循环显示数字0-9。
3. 编译调试:- 使用Keil软件对程序进行编译和调试。
- 观察程序运行结果,确保数码管显示数字正确。
4. 实验验证:- 观察数码管显示结果,验证程序的正确性。
- 修改程序,实现其他功能,如动态显示、显示时间等。
五、实验结果与分析1. 实验结果:- 数码管能够正确显示数字0-9。
- 程序运行稳定,无错误。
2. 实验分析:- 通过本次实验,掌握了数字显示电路的基本原理和组成。
- 学会了使用51单片机控制数码管显示数字的方法。
- 提高了动手实践能力和问题解决能力。
六、实验总结1. 本实验成功实现了数字显示电路的功能,验证了程序的正确性。
2. 通过本次实验,加深了对数字显示电路原理的理解,掌握了51单片机控制数码管的方法。
北科大__数电实验报告(3篇)
第1篇实验一:组合逻辑电路分析与设计一、实验目的1. 理解组合逻辑电路的基本概念和特点。
2. 掌握组合逻辑电路的分析方法。
3. 学会使用逻辑门电路设计简单的组合逻辑电路。
二、实验原理组合逻辑电路是指电路的输出仅与当前的输入有关,而与电路之前的状态无关。
组合逻辑电路通常由逻辑门组成,如与门、或门、非门、异或门等。
三、实验设备1. 数字电路实验箱2. 逻辑门电路芯片3. 导线4. 示波器四、实验内容1. 实验一:逻辑门电路识别(1)搭建一个简单的逻辑门电路,如与非门。
(2)使用示波器观察输入和输出信号,验证逻辑门电路的功能。
(3)记录实验数据,并分析实验结果。
2. 实验二:组合逻辑电路分析(1)设计一个简单的组合逻辑电路,如奇偶校验电路。
(2)根据电路图,列出真值表。
(3)使用逻辑门电路搭建电路,并观察输入和输出信号。
(4)记录实验数据,并分析实验结果。
3. 实验三:组合逻辑电路设计(1)设计一个组合逻辑电路,如二进制加法器。
(2)根据电路图,列出真值表。
(3)使用逻辑门电路搭建电路,并观察输入和输出信号。
(4)记录实验数据,并分析实验结果。
五、实验结果与分析1. 实验一:逻辑门电路识别通过搭建简单的逻辑门电路,观察输入和输出信号,验证了逻辑门电路的功能。
2. 实验二:组合逻辑电路分析通过设计奇偶校验电路,观察输入和输出信号,验证了组合逻辑电路的正确性。
3. 实验三:组合逻辑电路设计通过设计二进制加法器,观察输入和输出信号,验证了组合逻辑电路的正确性。
六、实验心得与体会1. 通过本次实验,我对组合逻辑电路有了更深入的了解,掌握了组合逻辑电路的分析方法和设计方法。
2. 实验过程中,我学会了使用逻辑门电路搭建电路,并观察输入和输出信号,验证电路的正确性。
3. 本次实验提高了我的动手能力和逻辑思维能力,对我今后的学习和工作具有重要意义。
七、实验改进建议1. 在实验过程中,可以尝试使用不同的逻辑门电路搭建电路,以加深对逻辑门电路的理解。
数电的小实验报告(3篇)
第1篇一、实验目的1. 熟悉数字电路实验的基本操作流程;2. 掌握基本数字电路的组成和原理;3. 培养动手能力和问题解决能力。
二、实验设备1. 数字电路实验箱;2. 万用表;3. 导线;4. 面包板;5. 计算器。
三、实验内容1. 基本逻辑门电路实验2. 组合逻辑电路实验3. 时序逻辑电路实验四、实验原理1. 基本逻辑门电路:逻辑门电路是数字电路的基础,包括与门、或门、非门、异或门等。
通过这些逻辑门电路的组合,可以实现复杂的逻辑功能。
2. 组合逻辑电路:组合逻辑电路由基本逻辑门电路组成,其输出仅取决于当前输入信号。
常见的组合逻辑电路有编码器、译码器、多路选择器等。
3. 时序逻辑电路:时序逻辑电路由触发器组成,其输出不仅取决于当前输入信号,还与电路的历史状态有关。
常见的时序逻辑电路有计数器、寄存器、触发器等。
五、实验步骤1. 基本逻辑门电路实验(1)按照实验指导书的要求,搭建与门、或门、非门、异或门等逻辑门电路;(2)使用万用表测量各逻辑门的输入、输出电压;(3)根据实验数据,验证各逻辑门的功能。
2. 组合逻辑电路实验(1)按照实验指导书的要求,搭建编码器、译码器、多路选择器等组合逻辑电路;(2)使用万用表测量各组合逻辑电路的输入、输出电压;(3)根据实验数据,验证各组合逻辑电路的功能。
3. 时序逻辑电路实验(1)按照实验指导书的要求,搭建计数器、寄存器、触发器等时序逻辑电路;(2)使用万用表测量各时序逻辑电路的输入、输出电压;(3)根据实验数据,验证各时序逻辑电路的功能。
六、实验结果与分析1. 基本逻辑门电路实验实验结果显示,与门、或门、非门、异或门等逻辑门电路的功能与理论分析一致。
2. 组合逻辑电路实验实验结果显示,编码器、译码器、多路选择器等组合逻辑电路的功能与理论分析一致。
3. 时序逻辑电路实验实验结果显示,计数器、寄存器、触发器等时序逻辑电路的功能与理论分析一致。
七、实验总结通过本次实验,我熟悉了数字电路实验的基本操作流程,掌握了基本数字电路的组成和原理,提高了动手能力和问题解决能力。
数电综合实验报告(3篇)
第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。
2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。
3. 通过综合实验,培养团队合作精神和实践操作能力。
二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。
2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。
3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。
三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。
(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。
(3)使用ModelSim软件对加法器进行仿真,验证其功能。
2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。
(2)使用Verilog HDL语言编写代码,实现4位计数器。
(3)使用ModelSim软件对计数器进行仿真,验证其功能。
3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。
(2)使用Verilog HDL语言编写代码,实现数字时钟功能。
(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。
四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。
2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。
3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。
五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。
2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。
3. 培养了团队合作精神和实践操作能力。
六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。
2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。
数字电路实验
数字电路实验实验目的本实验旨在通过实际操作,加深对数字电路原理的理解并巩固相关知识,提高学生的动手能力和解决问题的能力。
实验设备与材料•逻辑门芯片•示波器•数字电路实验箱•多用途测试仪实验内容1.实验一:数字逻辑门的基本操作–使用真值表法验证与门、或门、非门、与非门的逻辑功能。
–使用数字电路实验箱上的逻辑门芯片,接线实现与门、或门、非门、与非门的功能,并通过示波器验证。
–记录实验过程和实验结果,并对结果进行分析和讨论。
2.实验二:二进制加法器的设计与实现–使用逻辑门芯片,设计并实现一个二进制加法器。
–验证二进制加法器的功能,记录实验过程和实验结果,并分析可能出现的问题。
–对比全加器和半加器的功能和实现方式,并进行思考和讨论。
3.实验三:多路选择器的设计与实现–使用逻辑门芯片,设计并实现一个多路选择器。
–验证多路选择器的功能,记录实验过程和实验结果。
–探讨多路选择器的应用场景,并思考其在电路设计中的作用。
4.实验四:时序电路的设计与实现–了解时序电路的原理和基本概念。
–使用逻辑门芯片,设计并实现一个简单的时序电路。
–验证时序电路的功能,记录实验过程和实验结果,并进行分析和总结。
实验步骤1.实验一:数字逻辑门的基本操作–根据真值表,通过逻辑门芯片进行电路的设计和实现。
–使用示波器对逻辑门的输出进行观察,记录实验结果。
–思考并讨论逻辑门的实现原理和应用场景。
2.实验二:二进制加法器的设计与实现–熟悉二进制加法器的原理和设计方法。
–使用逻辑门芯片,设计并实现一个4位二进制加法器。
–验证加法器的功能,记录实验结果,并分析可能出现的问题。
–比较全加器和半加器的功能和实现方式,思考其在电路设计中的应用。
3.实验三:多路选择器的设计与实现–了解多路选择器的原理和应用场景。
–使用逻辑门芯片,设计并实现一个4位多路选择器。
–验证选择器的功能,记录实验结果,并思考其在电路设计中的作用。
4.实验四:时序电路的设计与实现–学习时序电路的基本概念和实现方法。
数字系统电路实验报告(3篇)
第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。
2. 掌握数字电路的基本实验方法和步骤。
3. 通过实验加深对数字电路知识的理解和应用。
4. 培养学生的动手能力和团队合作精神。
二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。
数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。
三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。
(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。
2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。
3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。
4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。
五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。
2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。
3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。
数字电路实验的实验报告(3篇)
第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。
2. 熟悉数字电路实验设备和仪器的基本操作。
3. 培养实际动手能力和解决问题的能力。
4. 提高对数字电路设计和调试的实践能力。
二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。
(2)设计简单的组合逻辑电路,如全加器、译码器等。
2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。
(2)设计简单的时序逻辑电路,如计数器、分频器等。
3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。
(2)分析电路的输入输出关系,验证电路的正确性。
4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。
(2)分析电路的输入输出关系,验证电路的正确性。
5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。
(2)对比实际实验结果和仿真结果,分析误差原因。
四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。
(2)了解实验器材的性能和操作方法。
(3)准备好实验报告所需的表格和图纸。
2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。
(2)使用万用表测试电路的输入输出关系,验证电路的功能。
(3)记录实验数据,分析实验结果。
3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。
(2)使用示波器观察触发器的输出波形,验证电路的功能。
(3)记录实验数据,分析实验结果。
4. 组合逻辑电路实验(1)设计4位二进制加法器电路。
(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。
(3)记录实验数据,分析实验结果。
数字电路实验报告 2023年数字电路实训报告(精彩7篇)
数字电路实验报告2023年数字电路实训报告(精彩7篇)用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
下面是作者给大家整理的7篇2023年数字电路实训报告,希望可以启发您对于数字电路实验报告的写作思路。
数字电路实训报告篇一一、实训时间__二、实训地点__电工电子实习基地三、指导老师__四、实训目的1、熟悉电工工具的使用方法。
2、了解安全用电的有关知识及触电的急救方法。
3、掌握电工基本操作技能。
4、熟悉电动机控制电路的调试及故障排除方法。
5、熟悉电动机板前配线的工艺流程及安装方法。
6、了解电动机正转反转电路设计的一般步骤,并掌握电路图的绘制方法。
7、熟悉常用电器元件的性能、结构、型号、规格及使用范围。
五、实训资料(一)常用低压电器介绍1、螺旋式熔断器螺旋式熔断器电路中较简单的短路保护装置,使用中,由于电流超过容许值产生的热量使串联于主电路中的熔体熔化而切断电路,防止电器设备短路或严重过载。
它由熔体、熔管、盖板、指示灯和触刀组成。
选取熔断器时不仅仅要满足熔断器的形式贴合线路和安装要求,且务必满足熔断器额定电压小于线路工作电压,熔断器额定电流小于线路工作电流。
2、热继电器热继电器是用来保护电动机使之免受长期过载的危害。
但是由于热继电器的热惯性,它只能做过载保护。
它由热元件、触头系统、动作机构、复位按钮、整定电流装置、升温补偿元件组成。
其工作原理为:热元件串接在电动机定子绕组仲,电动机绕组电流即为流动热元件的电流。
电动机正常运行时热元件产生热量虽能使双金属片弯曲还不足以使继电器动作。
电动机过载时,经过热元件电流增大,热元件热量增加,使双金属片弯曲增大,经过一段时光后,双金属片推动导板使继电器出头动作,从而切断电动机控制电路。
3、按钮开关按钮开关是用来接通或断开控制电路的,电流比较小。
按钮由动触点和静触点组成。
其工作原理为:按下按钮时,动触点就把下边的静触点接通而断开上边的静触点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y=1Y+2Y
16
9
74LS153
12345678
VCC4B 4A 4Q 3B 3A 3Q 74LS00
1A 1B 1Q 2A 2B 2Q GND
1S A1 1D3 1D2 1D1 1D0 1Y GND
1S 、A1、 A0作为地址码输入端,接逻辑电平开关K; 1D0~2D3作为8个数据输入端,接逻辑电平开关K; 74LS00的8脚3Q端作为“8选1”的输出。
的两个逻辑电平开关(如:K1、K2)相连,其余不用 的多余输入端悬空。逻辑开关“K”打上去为“1”,拨 下来为“0”。 3、与门的输出端(1Q)接到实验仪上的发光二极管 (如:L1),二极管亮为“1”,不亮则为“0”状态。 4、改变1A、1B的逻辑组态,记录1Q的输出状态。
请同学们按介绍的方法做实验
实验内容二: 用74LS151实现3变量的组合逻辑函数
1、地址码端作为变量输入端; 2、数据端(D0~D7)与组合逻辑函数随变量的
取值相对应;
3、数选输出端就可满足组合逻辑函数的取值。 4、用74LS151实现F(A、B、C)=∑(m3、m5、
m6、m7)的方法。 (1)列真值表;(2)找出对应关系。 (3)画逻辑电路图。
请同学们验证。
74LS153组成8选1的功能表
地址码输入
数据输入1
数据输入2
数选输出
1S A1 A0 1D0 1D1 000 001 010 011 100 X X 101 X X 110 X X 111 X X
1D2 1D3 2D0 2D1 2D2 XXX XXX XXX XXX
XX XX XX XX
下次实验预习的内容及要求
1.复习 3/8线译码器74LS138的功能及测试方法, 复习显示译码器74LS48的功能及应用方法。(实 验指导书p31~p37)
2.试用74LS138和74LS20实现逻辑函数 F XY Z XY Z XY Z XYZ ,画出电路图,列
出真值表,并画出集成块接线图备用。 3.用显示译码器74LS48和7段数码显示管组成一
a bcde f gh
共阴极LED显示器
一位数码显示电路的接线图
VCC f g a 16 15
bcd
显 示 管
e
10 9
74LS48
K1
1 2 3 4 5 6 78
K2 A1
A2
K3
A3 A0
GND
1
K0
输入端A0、A1、A2、A3对应接逻辑电平输出, 改变输入状态,显示相应的数码。列表记录,并 验证功能。
实验内容:
1. 3/8线译码器74LS138功能测试。 2. 试用74LS138和74LS20实现逻辑函数
F XY Z XY Z XY Z XYZ
3. 用显示译码器74LS48和7段数码显示管组成 一位数码显示电路。
实验内容一: 3-8线译码器74LS138功能测试
首先要明确74LS138的功能:
实验一、TTL门电路的逻辑功能测试
目的: 1、掌握识别集成电路管脚排列的方法。 尤其记住: (1)TTL集成电路的工作电压是+5V; (2)电源端、地端的脚序; (3)它的输出端不允许直接接电源和地。 2、加深对与门、或门、非门、与非门及异或门 电路逻辑功能的理解,掌握测试方法。
实验内容:
分别测试与门、或门、非门、与非门及 异或门电路的逻辑功能;
74LS48的功能表 Vcc f g a b c d e
74LS48为高电平 有效的显示译码器。 内部有升压电阻, 可直接驱动共阴极 数码管。
16 15 14
1 1 10 9
74LS48
12345678
L A1 A2
T
R A BI RBO
BI
3
A0 GND
(2)数码管结构
(+)
ab c d ef gh 共阳极LED显示器
下次实验预习的内容及要求
(P38~40、P45~47)
1、预习8选1数据选择器74LS151的逻辑功能。 2、预习双4选1数据选择器74LS153的逻辑功能。 3、掌握用数据选择器实现逻辑函数的方法。 4、预习组合逻辑电路的设计与测试。
实验三、数据选择器及其应用
实验目的:
1. 掌握测试8选1数据选择器74LS151逻辑 功能的方法。 2. 掌握用数据选择器74LS151实现逻辑函 数的方法。
列出对应真值表:(用Di对应F的取值)
输入
函数输出
数选输出
A
B
C
F
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
0
Y D0=0 D1=0 D2=0 D3=1 D4=0
1
0
1
1
1
1
0
1
1
1
1
1
D5=1 D6=1 D7=1
Y S( A2' A1' A0' D0 A2' A1' A0 D1 A2' A1 A0' D2 A2' A1 A0 D3 A2 A1' A0' D4 A2 A1' A0 D5 A2 A1 A0' D6 A2 A1 A0 D7 )
实验四:组合逻辑电路的设计与测试
实验目的:
1、掌握组合逻辑电路的分析与设计方法。 2、加深对基本门电路使用的理解。
实验内容:
1、设计一个四人无弃权表决电路(多数赞成则提议通过, 即三人以上包括三人),要求用2四输入与非门来实现。 2、用74LS86和74LS00设计半加器和全加器。
组合电路的设计方法:
位数码显示电路。试画出它的集成块接线图,备 用。
实验二、 译码器及其应用
实验目的: 1. 掌握二4输入与非门74LS20、3/8线译码器
74LS138、显示译码器74LS48的逻辑功能以 及使用方法。 2. 设计由译码器实现逻辑函数. 3. 用显示译码器74LS48和7段数码管构成一位 显示电路,并组成电路验证其功能。
1、根据任务的要求,列出真值表(同意为“1”, 不同意为“0”);
2、用卡诺图或代数化简法求出最简的逻辑表达式; 3、根据表达式,画出逻辑电路图,用标准器件
(与、或、非)构成电路; 4、最后,用实验来验证设计的正确性。
列真值表,赞成为“1”,反之为“0”
B
(1)
输入 AB 00 01 10 11
输出 Q 0 1 1 1
A B
≥1 F=A+B+C=1
C
“1” (2)
被C=1封闭的或门
与非门的功能-异或门的功能
A
F=AB
B
A
Q=A⊕B
=1
B
输入 AB 00 01 10 11
输出 FQ 10 11 11 00
TTL电路的输入端悬空为高电平
&
闲置端
闲置端
下以验证74LS08与门的逻辑功能为例:
验证74LS08与门逻辑功能的方法 +5V
VCC 4B 4A 4Q 3B 3A 3Q 74LS08
1A 1B 1Q 2A 2B 2Q GND
K1
1、先将VCC接数字逻辑仪的K+25V,GND端L接1 地; 2、选择与门的两个输入端(如:1A、1B)与实验仪上
F XY Z XY Z XY Z XYZ
Y0
VCC
Y2 Y4
Y1
Y3
Y5 Y6
F=∑(0、2、4、7)
74LS138
A0 A1 A2 S3 S2 S1 Y7 GND
ZYX
GND “1”
A0=Z; A1=Y; A2=X
实现组合逻辑函数的方法
1. 74LS138配合74LS20即可实现逻辑函数 的功能。
/Y1 /Y2 /Y3 /Y4 /Y5 /Y6 /Y7
X
1 XX X 1 1 1 1 1 1 1 1
1
0 000 0 1 1 1 1 1 1 1
1
0 001
1
0 010
1
0 011
1
0 100
1
0 101
1
0 110
1
0 111 1 1 1 1 1 1 1 0
实验内容二: 用74LS138实现逻辑函数
逻辑电路图
VCC D4 D5 D6 D7 A0 A1 A2
16
9
74LS151
12 3 4 5 6 7 8
“0”
D3 D2 D1 D0 Y Y G GND
实验内容三:
双4选1(74LS153)扩展为8选1数据选择器
VCC 2S A0 2D3 2D2 2D1 2D0 2Y
16
11 10 9
74LS153 12345678
≥1
闲置端
+5V或VOH
+5V或VOH &
闲置端
闲置端
0V或VOL ≥1
闲置端
注意:CMOS电路输入端不能悬空!
TTL逻辑门电路闲置端的处理
对“与门”、“与非门”、“或门”闲 置的输入端处理的方法:
+5V
+5V
&
≥1
闲置 的输 入端
闲置 的输 入端
闲置 的输 入端
实验方法:
1、将74LS08与门、74LS32或门、74LS00与非门 74LS02或非门 、74LS86异或门的输入端分别接逻辑 电平输出单元,相应的输出端接逻辑电平显示单元。 (发光表示1,不发光表示0) 2、按“实验电路接线的次序和方法”检查无误,即 可进行实验。 3、记住:电源=+5V,正确处理闲置端。 4、改变逻辑电平开关的组态,观察输出端的状态。 5、对输入、输出的状态作记录,填写真值表。