高中数学选修23计数原理概率知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3定理概念及公式总结
第一章基数原理
1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”
3.两个计数原理的区别:
如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.
4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.
(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A m
n
用于计算, 或m n
A )!
(!
m n n -=()
n m N m n ≤∈*,, 用于证明。
n
n
A =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m
n C 表示
(2)组合数公式: (1)(2)(1)
!
m m n n
m m A n n n n m C A m ---+== 用于计算,
或)!
(!!
m n m n C m n -=
),,(n m N m n ≤∈*且 用于证明。
(3)组合数的性质:
①m n n m n C C -=.规定:10=n C ; ②m n C 1+=m n C +1-m n
C . ③ n C C n n n ==-11 ④1=n
n C
6.二项式定理及其特例:
(1)二项式定理()()
*--∈+++++=+N n b C b a C b a C a C b a n n n n n n n n n n
r r r 1
10
展开式共有n+1项,其中各项的系数{}()n C n ,,2,1,
0r r ∈叫做二项式系数。 (2)特例:1
(1)1n r r
n n
n x C x C x x +=++++
+.
7.二项展开式的通项公式: r r r 1r b a C T n n -+= (为展开式的第r+1项) 8.二项式系数的性质:
(1)对称性:在()n
b a +展开式中,与首末两端 “等距”的两个二项式系数相等,
即m
n n m n C C -=,直线2
n
r =
是图象的对称轴. (2)增减性与最大值:当2
1
r +<
n 时,二项式系数逐渐增大,由对称性知它的
后半部分是逐渐减小的,且在中间取得最大值。
当n 是偶数时,在中间一项2
2n +T 的二项式系数2n n
C 取得最大值;
当n 是奇数时,在中间两项2
1n +T ,2
3n +T 的二项式系数12n n
C
-,12n n
C
+取得最大值.
9.各二项式系数和:
(1)
=+++n 21
0n n n n C C C C n 2, (2)1
5314202
-=+++=+++n n n n n n n C C C C C C .
10.各项系数之和:(采用赋值法)
例:求()932y x -的各项系数之和
解:()992728190932y a y x a y x a x a y x ++++=-
令1,1==y x
,则有()()132329
92109
-=-=++++=-a a a a y x ,
故各项系数和为-1
第二章 概率
知识点:
1、随机变量
:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 所有可能的值能一一列举出来,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1
,x 2,..... ,x i ,......,x n X 取每一个值 x i 的概率p 1,p 2,..... , p i ,......, p n ,则称表为离散型随机变量X 的概率分布,简称分布列
4、分布列性质① p i ≥0, i =1,2,… n ;② p 1 + p 2 +…+p n = 1.
5、二点分布:如果随机变量X 的分布列为:
其中0
6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为m 时的概率为
为和中的较小的一个()(0,n M )m n m M N M
n
N
C C P X m m l l C --==≤≤, 7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫
做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 8、公式:
.
0)(,)()
()|(>=
A P A P
B A P A B P
9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件
叫做相互独立事件。(|)
()P B A P B =
10、n 次独立重复试验:在相同条件下,重复地做n 次试验,各次试验的结果相互独立,一般