步进电机的细分

合集下载

步进电机细分计算公式(二)

步进电机细分计算公式(二)

步进电机细分计算公式(二)步进电机细分计算公式步进电机是一种常见的机电设备,其通过控制脉冲信号的频率和顺序来实现转动。

在实际应用中,为了提高步进电机的分辨率和控制精度,需要对步进电机进行细分控制。

下面列举一些与步进电机细分计算相关的公式,并提供相应的例子进行解释说明。

步进电机细分计算公式1.单圈分辨率计算公式:Single Turn Resolution=Motor Steps Gear Ratio其中,Motor Steps表示电机总共的步数,Gear Ratio表示齿轮的比率。

这个公式是计算步进电机一圈的分辨率,即电机转动一圈时被细分的步数。

例如,一个步进电机有200个步进,与齿轮的比率为1:10,那么单圈分辨率为:Single Turn Resolution=20010=20Steps2.总细分分辨率计算公式:Total Resolution=Single Turn Resolution Microstep Setting其中,Microstep Setting表示微步细分设置。

这个公式是计算步进电机总的细分分辨率,即电机转动一圈时被细分的步数。

例如,对于上述的步进电机,微步细分设置为1/16,那么总细分分辨率为:Total Resolution=2016=Steps3.脉冲频率计算公式:Pulse Frequency=Motor Speed×Motor Steps 其中,Motor Speed表示电机转动的速度。

这个公式是计算步进电机的脉冲频率,即每秒钟发送给步进电机的脉冲数量。

例如,步进电机转动速度为1000转/分钟,步数为200,那么脉冲频率为:Pulse Frequency=1000×200=200000pulses/minute4.步进电机转速计算公式:Motor Speed=Pulse Frequency Motor Steps这个公式是计算步进电机的转速,即根据脉冲频率和电机步数计算电机的转速。

步进电机细分原理

步进电机细分原理

步进电机细分原理步进电机是一种特殊的电机,它可以根据输入的脉冲信号来精确控制位置和速度。

步进电机的细分原理是指通过将每个步进脉冲信号细分成更小的微步脉冲信号,从而提高步进电机的分辨率和运动平滑性。

在本文中,我们将深入探讨步进电机的细分原理及其应用。

步进电机的细分原理基于电机控制器对输入的脉冲信号进行处理。

一般来说,步进电机的每个步进角度对应一个脉冲信号,通过改变脉冲信号的频率和顺序可以控制电机的转动速度和方向。

然而,传统的步进电机控制方式存在分辨率较低、运动不平滑等问题。

为了解决这些问题,人们提出了细分原理,即将每个步进脉冲信号进一步细分成多个微步脉冲信号,从而使步进电机的角度分辨率得到提高,运动更加平滑。

细分原理的实现离不开现代步进电机控制器的高级功能。

通过控制器内部的电子线圈驱动器和细分逻辑电路,可以将输入的脉冲信号细分成更小的微步脉冲信号,实现对步进电机的精细控制。

细分原理的核心在于将每个步进角度再次细分成多个微步角度,这样可以使步进电机的角度分辨率大大提高,从而提高电机的定位精度和运动平滑性。

细分原理在实际应用中具有重要意义。

首先,细分原理可以提高步进电机的定位精度和运动平滑性,适用于对运动精度要求较高的场合,如数控机床、精密仪器等。

其次,细分原理可以降低步进电机的共振噪音和振动,改善电机的运动品质,提高设备的工作稳定性和可靠性。

另外,细分原理还可以扩大步进电机的速度范围,提高电机的运动性能,满足不同应用场合的需求。

总的来说,步进电机的细分原理是通过将每个步进脉冲信号细分成更小的微步脉冲信号,从而提高电机的分辨率和运动平滑性。

细分原理的实现离不开现代步进电机控制器的高级功能,它在提高步进电机的定位精度、改善运动品质、提高工作稳定性等方面具有重要意义。

在未来的发展中,细分原理将继续发挥重要作用,推动步进电机技术的进步和应用领域的拓展。

步进电机的细分控制

步进电机的细分控制

步进电机的细分控制
步进电机的细分控制是指通过对电机的控制信号进行细分,使电机的转动角度变得更精确。

通常情况下,步进电机有固定的步距角度,比如1.8度、0.9度等。

但通过细分控制,可以将
这个步距角度进一步细分,从而实现更精确的控制。

细分控制常用的方法是使用微步驱动器。

微步驱动器可以将电机的控制信号进行细分,使电机能够以更小的步距角度运动。

常见的微步数有2、4、8、16、32、64等。

例如,如果一个步进电机的步距角度为1.8度,通过设置微步数为16,就可以将每个步进分为16个微步,从而实现步距角度为0.1125度的细
分控制。

细分控制可以提高步进电机的精度和平滑性,减小震动和噪音。

但同时也增加了系统的复杂性和控制难度。

细分控制还可以实现步进电机的微调和精确定位,适用于需要高精度的应用场合,如3D打印机、数控机床和精密仪器等。

需要注意的是,细分控制会增加步进电机的功耗和热量产生,需要考虑电机和驱动器的散热问题。

此外,选择合适的驱动器和控制方式也是细分控制的关键,不同的电机和应用场景可能需要不同的控制方法和参数设置。

步进电机细分原理

步进电机细分原理

步进电机细分原理
步进电机细分原理是通过将步进电机的每一步细分为更小的步数,以提高步进电机的精度和平滑性。

细分步进电机的方法有很多种,其中一种常用的方法是电子细分。

电子细分是通过改变电流的形式或频率来实现细分效果。

具体来说,当电流经过细分驱动器时,驱动器会根据细分的要求将电流细分为更小的步数,并按照指定的步序依次通电给步进电机的各相,从而实现步进电机的细分控制。

在电子细分中,常用的方法包括全流模式细分和半流模式细分。

全流模式细分是将每一步细分为两个小步,即电流依次由A
相到AB相再到B相,再由B相到BC相再到C相,依此循环。

这样可以提高步进电机的抗负载能力和静态扭矩,但精度相对较低。

半流模式细分是将每一步细分为四个小步,即电流分别经过A相、AB相、B相、BC相、C相和CA相,依此循环。

这样可以提高步进电机的精度和平滑性,但抗负载能力和静态扭矩相对较低。

除了电子细分,还有一些其他方法用于步进电机的细分控制。

例如,可以通过增加步进电机的极对数来实现细分效果,即增加步进电机的电磁线圈数量,从而提高步进电机的分辨率。

此外,还可以通过使用微步驱动器来实现步进电机的细分控制,微步驱动器能够将每一步细分为更小的微步数,从而进一步提高步进电机的精度。

综上所述,步进电机细分原理是通过改变电流的形式或频率,
将每一步细分为更小的步数,以提高步进电机的精度和平滑性。

在实际应用中,可以根据具体需求选择不同的细分方法和控制器,以实现最佳的细分效果。

步进电机的分类

步进电机的分类

步进电机的分类
步进电机分为三大类:
1)反应式步进电机(VAriABle ReluCtAnCe,简称VR)反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。

它的结构简洁,成本距角可以做得很小,但动态性能较差。

反应式步进电机有单段式和多段式两种类型。

2)永磁式步进电机(PermAnent MAgnet),简称PM永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。

转子的极数和定子的极数相同,所以一般步进角比较大,它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电。

3)混合式步进电机(HyBrid,简称HB)混合式步进电机综合了反应式和永磁式两者的优点。

混合式与传统的反应式相比,结构上转子加有永磁体,以供应软磁材料的工作点,而定子激磁只需供应变化的磁场而不必供应磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪声低、低频振动小。

这种电动机最初是作为一种低速驱动用的沟通同步机设计的,后来发觉假如各相绕组通以脉冲电流,这种电动机也能做步进增量运动。

由于能够开环运行以及掌握系统比较简洁,因此这种电机在工业领域中得到广泛应用。

步进电机的细分原理

步进电机的细分原理

步进电机的细分原理
步进电机的细分原理是指将步进电机的每个步进角度再进行更加精细的划分,以增加电机的精度和平滑性。

细分原理的基本思想是通过改变电机的驱动信号来控制电机的步进角度。

步进电机通常由一个转子和一个定子组成,定子上带有一组绕组,而转子则带有一组磁极。

根据步进电机的类型不同,转子上的磁极数量可能是奇数或偶数。

在正常情况下,步进电机的每一步进角度是固定的,例如对于一个普通的四相步进电机,每一步进角度是90度。

然而,通过细分原理,可以将每个步进角度再次划分为更小的角度。

这样做的关键在于电机驱动的控制信号。

通常情况下,步进电机的驱动信号是一个脉冲信号,每个脉冲触发电机转动一小步。

通过改变脉冲信号的频率和宽度,可以改变电机的步进角度和速度。

细分的原理是通过在每个步进角度中插入更多的脉冲信号来实现。

例如,将每个步进角度细分为两个小步进角度,那么在原先一个步进角度内,就会插入一个额外的脉冲信号。

这样做的结果是电机转动更加平滑,步进角度更加精细。

细分原理的另一个关键技术是微步驱动技术。

微步驱动技术利用了步进电机绕组的特性,通过改变绕组的相位差来实现步进角度的细分。

这样做的好处是可以在不增加电机绕组的情况下,实现步进角度的细分。

总的来说,步进电机的细分原理通过改变驱动信号的频率、宽度和相位差来实现步进角度的细分。

这样做可以提高电机的精度和平滑性,适用于一些对步进角度要求较高的应用,例如打印机、数控机床等。

步进电机细分工作原理

步进电机细分工作原理

步进电机细分工作原理
步进电机细分工作原理是指通过控制电流波形,使步进电机在每个步进角度上分为更小的微步,从而实现更精确的控制。

步进电机是一种将电信号转换为机械运动的装置,它由一个固定的磁场与一个可旋转的磁场之间的相互作用驱动。

当电流通过驱动器中的细分电路时,细分电路会将输入的电流信号进行分析并转换为根据所设定的细分级数产生相应的电流波形。

细分电路中通常采用Pulse Width Modulation(PWM)技术,即通过调节电流信号的占空比来控制电机的驱动电流。

通过改变电流的大小和方向,可以实现步进电机的连续旋转或停止。

在细分过程中,输入的电流信号被切割成很多个小步进,通过不断改变电流的大小和方向,可以使步进电机在任意位置停下或继续旋转,从而实现更高的定位精度。

细分级数的选择对步进电机的运动精度和平滑度有重要影响。

通常情况下,细分级数越高,步进电机的旋转角度越小,运动精度和平滑度越高。

然而,细分级数越高,所需的计算和控制效率也会越低,因此需要在控制系统设计中进行权衡。

步进电机细分原理

步进电机细分原理

步进电机细分原理步进电机是一种将电能转化为机械能的电动机,它通过控制电流的方向和大小,实现精确的位置控制。

在步进电机工作原理中,细分原理是非常重要的一部分。

细分原理是指将步进电机的每个步进角度再次分割成更小的角度,以提高步进电机的精度和分辨率。

接下来,我们将详细介绍步进电机的细分原理。

首先,步进电机的细分原理基于步进电机的结构特点,步进电机是通过控制电流的方向和大小来实现转动的,而且它的转动是按照一定的步进角度来进行的。

在传统的步进电机中,一次步进角度通常为1.8度或者0.9度,这就意味着步进电机的转动是以这个角度为基本单位来进行的。

然而,有时候我们需要更高的精度和分辨率,这时就需要采用细分原理来实现。

其次,细分原理是通过改变步进电机驱动器的控制方式来实现的。

步进电机驱动器是控制步进电机转动的关键部件,它可以根据输入的脉冲信号来控制电机的转动。

在细分原理中,我们可以通过改变驱动器的细分数来实现对步进角度的再次分割。

比如,如果我们将步进电机的细分数设置为2,那么每个步进角度就会再次分割成两个小的角度,这样就可以实现更高的精度和分辨率。

另外,细分原理还可以通过改变驱动器的微步进模式来实现。

微步进是指在每个步进角度中再次分割成更小的角度,并且在每个小角度上都施加不同的电流控制,从而实现对步进电机转动的更精细控制。

微步进模式可以将步进电机的精度和分辨率提高到一个更高的水平,这对于一些对精度要求较高的应用来说是非常重要的。

最后,细分原理在步进电机的应用中具有非常重要的意义。

通过细分原理,我们可以实现对步进电机转动的精确控制,提高步进电机的精度和分辨率,从而更好地满足各种应用的需求。

同时,细分原理也为步进电机的进一步发展提供了技术支持,使得步进电机在各种领域得到了广泛的应用。

综上所述,步进电机的细分原理是通过改变步进角度的控制方式来实现对步进电机转动的精确控制,提高步进电机的精度和分辨率。

通过细分原理,我们可以实现对步进电机的更高精度和更细致的控制,从而更好地满足各种应用的需求。

步进电机细分控制原理及仿真分析

步进电机细分控制原理及仿真分析

步进电机细分控制原理及仿真分析引言:步进电机是一种将电能转换为机械能的装置,它具有定位精度高、启动扭矩大、体积小等优点,广泛应用于工业自动化领域。

在一些特定场合,需要对步进电机进行细分控制,以提高其运动精度和平滑性。

本文将介绍步进电机细分控制的原理,并通过仿真分析验证其效果。

一、步进电机基本原理:步进电机是一种工作在离散回转模式下的执行元件,它通过电流的阶跃变化来实现角度的离散改变。

一般步进电机由两相及以上的线圈组成,线圈由直流电源供电,通过驱动电流改变线圈中的磁场,使得转子发生步进运动。

步进电机可以精确控制每一步的角度,具有良好的定位性能。

二、步进电机细分控制原理:传统的步进电机控制方式是通过改变驱动电流的方向和大小来控制转子的转动。

而在细分控制中,我们将一个步进角(通常为1.8度)细分为更小的角度,以提高运动的精度。

细分控制的原理可以通过脉冲信号来实现,通过控制脉冲信号的频率和脉冲数来控制步进电机的运动。

三、细分控制方式:常见的步进电机细分控制方式有两种,一种是全步进细分控制,即将一个步进角细分为多个小角度步进;另一种是半步进细分控制,即将一个步进角细分为相邻两个小角度步进之间的中间角度。

这两种方式各有优劣,在实际应用中可以根据要求进行选择。

四、细分控制的仿真分析:为了验证步进电机细分控制的效果,我们可以通过仿真软件进行仿真分析。

以下是具体的仿真步骤:1.创建仿真模型:在仿真软件中,根据步进电机的参数创建电机模型,并设置驱动电流和控制脉冲的参数。

2.编写控制算法:根据细分控制的原理,编写相应的控制算法。

算法中需要考虑脉冲信号的频率和脉冲数的设置,以及步进电机的特性。

3.运行仿真模型:通过运行仿真模型,观察步进电机的运动情况。

可以通过绘制转子角度随时间的变化曲线,来评估细分控制的效果。

4.优化参数:根据仿真结果,评估细分控制的效果,并进行参数优化。

可以尝试不同的细分控制方式和参数设置,以达到理想的控制效果。

步进电机的分类

步进电机的分类

步进电机的分类
步进电机可以分为以下几种分类:
1. 永磁式步进电机:通过在转子内部放置永磁体来生成磁场,转子和定子之间的磁场交互作用产生转矩,实现步进运动。

2. 双绕组式步进电机:包括两个绕组,每个绕组都有自己的阻抗相串联,通过改变绕组的电流方向和大小来控制转子的步进运动。

3. 双极步进电机:拥有两种状态,每次只能从一种状态转换到另一种状态,转子通过磁场的吸引力而产生步进运动。

4. 四相步进电机:有四个相位绕组,通过控制绕组的电流来产生引力转子并实现步进运动。

5. 全/半步进电机:通过变化绕组的电流来控制转子的步进运动。

全步进电机每次只进行一个步进,而半步进电机可以在一个步进中进行更小的增量运动。

6. 隔离式步进电机:在永磁转子和定子之间使用气体或液体作为隔离媒介,以减少摩擦和磨损,并提高步进电机的精度和寿命。

这些是常见的步进电机分类,根据不同的应用需求和工作原理,可能还存在其他
类型的步进电机。

步进电机驱动细分原理

步进电机驱动细分原理

步进电机驱动细分原理
步进电机驱动细分原理是通过改变电流波形来实现对步进电机精细控制的一种方法。

在传统的双极性驱动方式中,每一相都只有两种状态:激活和不激活。

而细分驱动则将每一相的激活状态进行进一步细分,使得电流具有更多个离散的状态。

细分驱动的基本原理是通过改变驱动器输出的电流波形来实现对步进电机转子位置的微调。

具体来说,细分驱动使用一种特殊的电流控制技术,将总电流周期性地细分成多个小的电流脉冲。

通过改变电流脉冲的大小和时序,可以在每一个基本步进角度上进行更细致的位置控制。

通常,在步进电机驱动器中使用的细分驱动方式有全步进和半步进两种。

全步进是最基本的细分方式,在一个完整的电流周期内将电流波形分为两个相等的部分,每个部分激活的时间持续一个基本步进角度。

而半步进则是在全步进的基础上,对激活时间进行了进一步细分,使得每个部分激活的时间只有全步进时间的一半,从而实现了更精细的位置控制。

细分驱动的实现离不开现代步进电机驱动器中的电流控制电路。

这些电路通常包括高性能的电流感应器、精确的分流器和多级放大器等。

通过这些电路的协同作用,细分驱动器可以在每个细分步进角度上产生相应大小和时序的电流脉冲,实现对步进电机位置的微调控制。

总而言之,步进电机驱动细分原理是通过改变电流波形来实现
对步进电机位置的微调。

通过细分驱动方式,可以获得更精细的步进角度控制,提高步进电机的定位精度和运动平滑性。

步进电机细分驱动原理

步进电机细分驱动原理

步进电机细分驱动原理
步进电机细分驱动原理是指通过驱动电路将步进电机的每一步细分为更小的步数,从而使步进电机的转动角度更精确。

细分驱动原理的关键在于通过改变驱动电流的大小和方向来实现步进电机每一步的控制。

常见的细分驱动方式有全步细分和微步细分两种。

在全步细分中,驱动电路会根据输入的脉冲信号,按照步进电机的步距角度来控制电流大小和方向。

比如在单相全步细分驱动中,每个脉冲信号对应一个步进角度,驱动电路会根据脉冲信号的频率和方向控制电流的大小和方向,从而实现步进电机的转动。

在微步细分中,驱动电路将每一步细分为更小的步数,从而使步进电机的转动更加平滑和精确。

微步细分驱动通常采用PWM(脉宽调制)技术,通过调节电流的占空比来实现细分
控制。

例如,当需要将每一步细分为10个微步时,驱动电路
会根据输入的脉冲信号和PWM调制信号,以较高的频率控制
电流的开关状态和占空比,从而实现步进电机的微步细分控制。

细分驱动原理的核心是通过改变驱动电流的大小和方向来控制步进电机的转动角度。

通过细分驱动,可以使步进电机的转动更加平滑和精确,从而满足一些对转动精度要求较高的应用场景。

步进电机细分工作原理

步进电机细分工作原理

步进电机细分工作原理
步进电机的细分工作原理是通过改变驱动电流的形状来实现的。

一般情况下,步进电机的驱动方式是脉冲驱动,每来一个脉冲,步进电机就会前进一定的步进角度。

而细分则是指在一个步进角度内再细分出更小的角度。

步进电机的细分工作原理是通过改变驱动电流的形状来实现的。

细分驱动电流的形状可以分为两种:单相与双相。

其中,单相细分时,驱动电流只有一路;而双相细分时,驱动电流有两路。

通过改变细分电流的形状,可以使步进电机在一个步进角度内细分出更小的角度,从而实现步进电机的精确控制。

在单相细分中,驱动电流的形状变化主要是通过改变驱动电流的占空比来实现的。

在每一个步进角度中,通过改变驱动电流的占空比,可以在一个步进角度内细分出更小的角度。

占空比变化越细致,步进电机的运动就越精确。

在双相细分中,驱动电流的形状变化则是通过改变驱动电流的相位来实现的。

在每一个步进角度中,通过改变驱动电流的相位差,可以在一个步进角度内细分出更小的角度。

相位差变化越细致,步进电机的运动就越精确。

细分驱动可以提高步进电机的位置精度和运动平滑度,但也会增加控制难度与复杂度。

因此,在选择细分驱动的方式时,需要综合考虑步进电机的要求和实际应用场景来确定最合适的细分方式。

什么是步进电机细分

什么是步进电机细分

什么是步进电机细分?是不是驱动器细分越高精度越高?很多雷赛驱动器新用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。

步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。

细分后电机运行时的实际步距角是基本步距角的几分之一。

(两相步进电机的基本步距角是1.8°,即一个脉冲走1.8°,如果没有细分,则是200个脉冲走一圈360°,细分是通过驱动器靠精确控制电机的相电流所产生的,与电机无关,如果是10细分,则发一个脉冲电机走0.18°,即2000个脉冲走一圈360°,电机的精度能否达到或接近0.18°,还取决于细分驱动器的细分电流控制精度等其它因素。

不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

以次类推。

三相步进电机的基本步距角是1.2°,即一个脉冲走1.2°,如果没有细分,则是300个脉冲走一圈360°,如果是10细分,则发一个脉冲,电机走0.12°,即3000个脉冲走一圈360°,以次类推。

在电机实际使用时,如果对转速要求较高,且对精度和平稳性要求不高的场合,不必选高细分。

在实际使用时,如果转速很低情况下,应该选大细分,确保平滑,减少振动和噪音。

)怎么设置步进驱动器细分?【设置步进马达驱动器的细分参数】1、设置步进驱动器的细分数,通常细分数越高,控制分辨率越高。

但细分数太高则影响到最大进给速度。

一般来说,对于模具机用户可考虑脉冲当量为0.001mm/P(此时最大进给速度为9600mm/min)或者0.0005mm/P(此时最大进给速度为4800mm/min);对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/P(此时最大进给速度为19200mm/min)或0.005mm/P(此时最大进给速度为48000mm/min)。

步进电机细分和步距角的关系

步进电机细分和步距角的关系

步进电机细分和步距角的关系步进电机细分和步距角的关系在探讨步进电机的工作原理时,一个关键的概念是步距角。

步进电机通过逐步向前转动来完成工作,每一步旋转的角度称为步距角。

然而,步距角的大小与电机的细分数有关。

本文将深入探讨步进电机细分和步距角之间的关系,并介绍如何优化电机细分以获得更好的性能。

一、什么是步进电机细分步进电机细分是指将电机的每一步细分为更小的步数。

通常情况下,步进电机被设计成有固定的全步距角。

这意味着电机可以按照固定的角度进行每一步,无法做到无限小的步进。

然而,通过细分电机,我们可以将每一步进一步分为更小的部分,从而增加电机的分辨率。

细分电机通常使用驱动电路和控制器来实现。

通过在每个步进间隔中施加更多的微步,可以使步进电机的旋转更加平滑,减小振动和噪音。

细分电机还可以提高电机的定位准确性和速度响应。

二、步进电机细分与步距角之间的关系步进电机的步距角通常由电机的设计确定,是电机的一个固有特性。

步距角定义了电机每一步的旋转角度,在电机驱动信号驱动下,电机按照这个角度进行操作。

然而,当我们进行电机细分时,每一步的旋转角度变小,这也就意味着步距角变小。

步进电机的细分级别会直接影响到步距角的大小。

细分电机可以通过增加电机驱动信号的频率来实现。

较高的频率将导致电机旋转更平稳,更精确,同时步距角更小。

举例来说,如果一个步进电机的全步距角为1.8度,那么在进行2倍细分时,每一步的旋转角度将变为0.9度,4倍细分时变为0.45度,8倍细分时变为0.225度,以此类推。

随着电机细分级别的增加,步距角也会逐渐减小。

三、步进电机细分的优化步进电机的细分级别对于电机性能的优化非常重要。

较高的细分级别可以提高电机的准确性和精度。

然而,随着细分级别的增加,要求驱动电路和控制器具备更高的性能和计算能力。

在进行细分时,一般情况下,细分级别越高,步距角越小,电机的分辨率越高。

然而,过高的细分级别可能会导致电机跳步问题,即电机无法按照预期的步进进行旋转。

步进电机细分原理

步进电机细分原理

步进电机细分原理
步进电机一直以来都是用于运动控制的一种重要元件,主要由驱
动器、电机和减速器组成。

步进电机细分是一种技术,它可以减少电
机的步进角,从而实现高精度的步进控制。

步进电机细分的基本原理是使用电机驱动器解耦步进电机的步进角,从而增加步进电机的细分等级。

通过更改电机驱动器的控制指令
可以减少电机的步进角,从而实现高精度的步进控制。

步进电机细分
可以通过下列四种方式实现:使用传统的共阴极方式、使用三阻改进
方式、使用整流器插入技术和使用改进的整流器板技术。

传统的共阴极方式是将电机插入电源共阴极中有效地改变细分等级,并不需要更改电机驱动器的控制指令,但是会产生一些损耗。


使用三阻改进方式可以有效地减少损耗,但是使用此方法必须根据电
源电压变化而变化。

而使用整流器插入技术可以有效解耦电机的步进角,提高精度,但是需要根据步进电机的工作电压、电流和负载情况
来设计整流器的型号。

最后使用改进的整流器板技术可以有效地控制
步进电机的角度及其细分等级,而且不受外界环境影响。

总之,步进电机细分技术是用于通过更改电机驱动器的控制指令
减少电机的步进角,从而实现高精度的步进控制的一种技术,有四种
方法可以实现步进电机细分:传统的共阴极方式、使用三阻改进方式、使用整流器插入技术和使用改进的整流器板技术,每种方法都有自己
的优点和缺点,应根据实际应用情况进行选择。

步进电机细分4,8,16 ,32,64,128,256什么意思?

步进电机细分4,8,16 ,32,64,128,256什么意思?

步进电机细分4,8,16 ,32,64,128,256什么意思?步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。

比如对于步进角为1.8°?的两相混合式步进电机,如果细分驱动器的细分数设置为4,那么电机的运转分辨率为每个脉冲0.45°,电机的精度能否达到或接近0.45°,还取决于细分驱动器的细分电流控制精度等其它因素。

不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

步进电机驱动器的细分数。

常规有三种细分方法
1、2的N次方,如
2、4、8、16、32、64、128、256细分,
2、5的整数倍,如5、10、20、25、40、50、100、200细分,
3、3的整数倍,如3、6、9、12、2
4、48细分。

几细分就相当于“控制精度”增加了几倍(每个脉冲所使电机转动的角度就小了,执行过程中丢几个脉冲所产生的误差就小了,控制精度就高了),要是想保持速度不变,那频率就要增大相应的倍数。

例如原来电机转一圈用200个脉冲,你做了2细分,那么电机转一圈就要400 (200*2)个脉冲了
一般细分有 2 4 8 16 32
可能也有64 128的。

一般加细分是为了提高控制精度,但细分是电脉冲状态的增加来实现提高精度的,其实细分也存在误差,但是机械制造精度也有误差,这是不能完全避免的。

如果没有细分,那么步进电机每接受一个脉冲,就会转动一个步距角。

加入驱动器的细分后,则每发出一个脉冲,电机旋转的角度=步距角/细分数。

步进电机的分类

步进电机的分类

步进电动机的分类
(1)步进电动机按工作原理不同可分为:
1)激磁式。

电动机定子转子均有绕组,靠电磁力矩使转子转动。

2) 反应式。

转子无绕组,定、转子开小齿,定子绕组励磁后产生反应力矩,使转子转动。

这是目前我国主要发展的类型,已于20世纪70年代末形成完整的系列,有较好的技术性能指标。

3)混合式(即永磁感应子式)。

它与反应式的主要区别是转子上置有磁钢。

反应式电动机转子无磁钢,输放能量全靠定子励磁电流供给,静态电流比永磁式大许多。

永磁感应子式具有驱动电流小、效率高、过载能力强等优点,是一种很有发展前途的步进电动机。

(2)按输出转矩大小可分为:
1) 快速步进电动机。

输出转矩一般为0.07~4N·m。

可控制小型精密机床的工作台(例如线切割机床)。

2)功率步进电动机。

输出转矩一般为5~4N·m。

可直接驱动机床移动部件。

(3)按励磁相数可分为三相、四相、五相、六相等。

相数越多步距角越小,但结构越复杂。

步进电机细分原理

步进电机细分原理

步进电机细分原理
步进电机细分原理是指将一个步进电机的每个基本步进角细分成更小的步进角,以提高步进电机的精度和运动平滑性。

细分原理主要通过改变驱动电路中的电流波形来实现。

在传统的步进电机驱动电路中,通常使用全步进模式,即每个步进角对应一个脉冲信号。

这种模式下,步进电机旋转精度较低,且容易产生振动和共振现象。

而细分原理通过在每个基本步进角之间插入额外的电流值,使步进电机能够跳过基本步进角,实现更小的步进角,从而提高精度。

细分原理可以通过改变驱动电路中的电流波形来实现,常见的细分方式有正弦细分、微步细分等。

在正弦细分中,驱动电流波形会按照正弦函数的规律变化,通过改变电流的幅值和相位来控制步进电机的精度。

正弦细分可以提高步进电机的转矩平滑性和减轻共振现象,但需较复杂的控制电路来实现。

微步细分是一种更常见的细分方式,通过在每个基本步进角之间插入多个脉冲信号,使步进电机能够跳过多个基本步进角,实现更小的步进角。

微步细分可以在一定程度上提高步进电机的转动精度和控制精度,同时减小振动和噪音。

细分原理的应用可以使步进电机实现更高的分辨率和更精确的位置控制,广泛应用于机械加工、自动化设备和精密仪器等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机的细分步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。

实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。

本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC 单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。

细分电流波形的选择及量化步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。

一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。

因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。

我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。

这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。

以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。

图中,a为电机转子偏离参考点的角度。

ib滞后于ia,ic超前于ia。

此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。

且步进电机在这种情况下也最为平稳。

将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。

为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。

这些工作大部分由计算机来完成。

步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。

实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。

本文在选择了合理的电流波形的基础上,提出了基于Intel80C196MC单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。

图2 硬件系统原理框图步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。

一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。

因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。

我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。

这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。

以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。

图中,a为电机转子偏离参考点的角度。

ib滞后于ia,ic超前于ia。

此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。

且步进电机在这种情况下也最为平稳。

将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。

为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。

这些工作大部分由计算机来完成。

在取得校正后的量化电流波形之后,以相应的数字量存储于EEPROM中的不同区域,量化的程度决定了细分驱动的分辨率。

斩波恒流细分驱动方案及硬件实现斩波恒流细分驱动方案的原理为:由单片机输出EEPROM中存储的细分电流控制信号,经D/A转换成模拟电压信号,再与取样信号进行比较,形成斩波控制信号,控制各功率管前级驱动电路的导通和关断,实现绕组中电流的闭环控制,从而实现步距的精确细分。

系统原理框图如图2所示。

控制电路控制电路主要由80C196MC单片机、晶振电路、地址锁存器、译码器、EEPROM存储器及可编程键盘/显示控制器Intel-8279等组成,受控步进电机的细分倍数、运行脉冲频率、正反转、运行速度、单次运行线位移、启/停等的控制,既可由键盘输入,也可以通过串行通信接口由上位机设置。

状态显示提供当前通电相位、相电流大小、电机运行时间、正反转、当前运行速度、线位移及相关计数等信息显示,并将工作状态和数据传送给上位机。

传感器(霍尔传感器)用于检测计数器的当前值。

单片机是控制系统的核心其主要功能是输出EEPROM中存储的细分电流控制信号进行D/A转换。

根据转换精度的要求,D/A转换器既可以选择8位的,亦可选择12位的。

本控制系统选用的是8位D/A转换器MAX516,MAX516把4个D/A转换器与4个比较器组合在单个的CMOS IC上,4个D/A转换器共享一个参考输入电压VREF。

每个转换器的输出电压均可采用下式表示:VDACi=VREFN/256N=0,l,......,255,对应于8位的DAC的输入码D0—D7(此处为细分电流控制信号)。

通过调节VREF 的变化范围,便可调节步进电机绕组中电流的幅值。

功率驱动电路工作中,步进电机细分电流控制信号的D/A转换值Ui输入到MAX516内部各比较器COMPi的同向输入端,绕组电流取样信号Vi输入到COMPi的反向输入端。

斩波恒流驱动采用固定频率的方波与比较器输出信号调制成斩波控制信号,控制绕组的通电时间,使反馈电压Vi始终跟随D/A转换输出的控制电压Ui。

合理选择续流回路就可使绕组中的电流值在一定的平均值上下波动,且波动范围不大。

调制用方波信号频率为21.74KHz,由80C196MC的P6.6/PWM0端产生,且各相是同频斩波,不会产生差拍现象,所以消除了电磁噪声。

为防止因比较器漂移或干扰导致功率开关管误导通,让斩波控制信号和相序控制信号相与后控制功放管。

当开关管截止时,并联RC、快恢复续流二极管D、绕组L及主电源构成泄放回路。

与单纯电阻释能电路相比,RC释能电路使功耗和电流纹波增加较小,而电流下降速度大大加快。

电流取样信号由精密电流传感放大器MAX471完成。

当绕组电流流过其内部35mΩ精密取样电阻时,经内部电路变化,转换为输出电压信号:VOUT=ROUT×(ILOAD×500mA/A)其中ROUT为MAX471外部调压电阻,阻值按设计要求选定。

ILOAD为流过精密电阻的相绕组电流。

MAX471同时具有电流检测与放大功能,从而大大方便了整个电路的设计与调试。

功率开关管(功放管)是功放电路中的关键部分,影响着整个系统的功耗和体积。

由于所设计的驱动器主要用来驱动额定电流3A、额定电压27V以下的步进电机,故选用高频VMOS功率场效应晶体管IRF540(VDS=100V,RDS(on)=0.052W,ID=27A)作为开关管。

IRF540导通电阻很小,因此,即使电机长时间运转,该VMOS管壳本身的温度也比较低,无须外加风扇。

为了提高步进电机的工作可靠性,消除电机电感性绕组的串扰,本系统无论从驱动部分还是反馈部分都进行了隔离。

驱动隔离采用高速光电耦合器6N137为隔离元件,一方面可以实现前级控制电路同步进电机绕组的隔离;另一方面使功率开关管的驱动变得方便可靠。

反馈通道的滤波部分采用无源低通滤波器,其作用是高速衰减绕组(电感线圈)在开关时截止频率以上的瞬时高频电压信号,从而避免控制电路做出太迅速的反应,可以有效地防止步进电机的振荡。

线性光耦合电路的作用是将滤波后的采样电阻反馈信号线性地传输给比较器。

软件设计步进电机细分驱动系统的软件主要由主控程序、细分驱动程序、键处理程序、显示数据处理及显示驱动程序、通信监控程序等部分组成。

细分驱动电路的主控制程序控制整个程序的流程,主要完成程序的初始化、中断方式的设置、计数器工作方式的设置及相关子程序的调用等。

初始化包括8279各寄存器、8279的显示RAM、80C916MC的中断系统及内部RAM等。

在80C196MC的各中断中,使用了INT15、INT14和INT13这三个中断,其中,INT15为高优先级。

在运行状态下,当有停止键按下时,则INT15中断服务程序将T1关闭,从而使步进电机停止。

T1控制每一步的步进周期,该服务程序基本上只作重置定时器和置标志位的操作,而其它操作均在主程序中完成。

主程序流程图见本刊网站。

细分驱动程序中,细分电流控制信号的输出采用单片机片内EEPROM软件查表法,用地址选择来实现不同通电方式下的可变步距细分,从而实时控制步进电机的转角位置。

其流程图如图4所示。

步进电机的正反转控制是通过改变电机通电相序来实现的。

为达到对步进电机启/停运行过程的快速和精确控制,从其动力学特性出发,推导出符合步进电机矩频特性的曲线应该是指数型运行曲线,并将这一曲线量化后,存入EEPROM。

步进电机在运行过程中,每个通电状态保持时间的长短,由当前速度对应的延时时间值决定。

图3 步进电机细分驱动控制主程序流程图结语本文提出并实现的步进电机均匀细分驱动系统,最高细分达到256细分,能适应大多数中小微型步进电机的可变细分控制、较高细分步距角精度及平滑运行等要求。

大量新型元器件的采用,使所设计的驱动器具有体积小、细分精度高、运行功耗低、可靠性高、可维护性强等特点。

系统软件功能丰富,通用性强,从而使控制系统更加灵活。

问1:步进电机细分4,8,16 ,32,64,128,256什么意思?代表什么啊?答:细分的目的是减小步进电机的低频振动,细分的数量是电机一拍要分几次走完,细分的次数越多,步进电机就走的越顺滑。

问2:步进电机细分的目的是什么?答:首先我要指出的,细分不是步进电机细分,而是步进电机驱动器细分。

驱动器细分有两个重要的功能:一、增加电机工作时的平稳性。

二、提高步进电机精度。

问3:步进电机,细分数大后,电机几乎没动了?能听到什么,但是没动了?答:电机不够力才会这样,细分过头了问4:16细分以上的步进电机会丢步吗?一般来说,16细分以上的正弦波已经很平滑了特殊情况下,只要电机转动之后不超过1.8°的话,步进电机还能跟上正弦波的,这么说的话,步进电机几乎不会丢步了对吗?答:16细分以上的步进电机也有可能会丢步,实际上若让步进电机在高速下面带大的负载都有可能丢步。

相关文档
最新文档