Environmental Monitoring Experimental Guide (环境检测英文版实验指导)

Environmental Monitoring Experimental Guide (环境检测英文版实验指导)
Environmental Monitoring Experimental Guide (环境检测英文版实验指导)

《Environmental Monitoring》Experiment Guide

M a j o r:

I n s t r u c t o r:E n v i r o n m e n t a l E n g i n e e r i n g

H u i y a n C h e n g&X i a o m i n g H u a n g

D e p a r t m e n t o f

E n v i r o n m e n t a l S c i e n c e a n d E n v i r o n m e n t a l

E n g i n e e r i n g

M a y10,2016

Experiment 1. Determination of Chroma and Turbidity

1. Principles

Pure water is clear and colorless, but nature water often shows a certain color, which comes mainly from leaves, barks, roots, humus of plants and soluble inorganic minerals and sediment. The color of surface water polluted by industrial waste water will become extremely complex.

Color can be divided into “true color” and “apparent color”. “True color” means the color exist after removing the suspension of the water. If the sample is turbid, it should be placed until clarified to determinate the supernatant. Or be filtered by membrane filters of 0.45μm aperture and then be centrifuged to determinate the color. "Apparent color" refers to the color of water without removing the suspension. To determinate the color of the original water samples without filtration or centrifugation is called measuring its "apparent color". For the water clean or with very low turbidity, the true color is similar to the apparent color. For the industrial water with deep color which is mainly caused by collide and suspended substance, it is allowed to measure either "true color" or "apparent color" according to the actual needs.

Determination of the color of water contains the methods of platinum/cobalt standard colorimetry (cobalt/chromium standard colorimetriy) and dilution multiple method. The former applies to the determination the color of the clean water, natural water with the hue of yellow and drinking water (result expressed as number of degrees). The latter applies to the determination of color of surface water polluted by the industrial wastewater and industrial wastewater (result expressed as diluted multiples).

Platinum/cobalt standard colorimetry use chloroplantinic acid and cobalt chloride to prepare standard color series, and do visual colorimetric analysis against the water samples. Water sample containing 1mg platinum and 0.5mg cobalt per 1000mL is defined as 1 degree, and to be used as the unit of color series.

Dilution multiple method is to dilute industrial waste water by a certain proportion of water to almost colorless, and then record the actual diluted multiple,

which value is called the color of this water sample.

Determination of turbidity of water samples includes visual method and photoelectric turbidimetry. Samples are collected in glass bottles, and determinate the samples after sampling as soon as possible.

Visual method is to prepare different turbidity series depending on the turbidity level of water. Turbidity produced by 1mg a certain size of diatomite (white clay) in 1000mL of the water is known as 1degree. Compare water samples with diatomite (white clay) preparation of the turbidity standard solution, so as to get the result of the turbidity of the water.

2.Equipments and Reagents

(1) 50mL colorimetric tubes with plug, whose scale line should be at the same level.

(2) Platinum and cobalt standard solution: 1.246g potassium chloroplatinate (K2PtCl6) (equivalent to 500mg platinum) and 1.000g cobalt chloride (CoCl2.6H2O) (equivalent to 250mg cobalt) are weighted and dissolved in 100mL water. Then add 100mL hydrochloride and add water to 1000mL. This solution is 500 degree of color and to be preserved in bottles in the dark.

(3) Cobalt-chromium standard solution: 0.0437g K2Cr2O7and Cobalt sulfate (CoSO4.7H2O) is weighted and dissolved into a small amount of water. Then add o.5mL sulfuric acid and dilute it with water to 500mL. This color of this solution is 500 degrees. It is not preserved for a long time.

(1)Turbidity meter.

(2) 100mL colorimetric tube with plug.

(3) 250mL colorless glass bottles, mass and diameter of glass should uniform.

Weight 10g turbidity standard solutions which go through 0.1mm sieve (150 mesh) of diatomite, and add a little distilled water into a mortar to form paste and

grind. Then move to 1000mL graduated cylinder and add water to scale. Fully stirring and standing 24h. Then move carefully 800mL upper suspension to the second 1000mlL graduated cylinder by siphonage. Add water into the second graduated cylinder to 1000mL, fully stirring again and standing 24h.

Move out 800mL upper suspension containing smaller particles by siphonage, and then abandon it. Add water to bottom sediment until 1000mL to dilute. Fully stirred and stored in a glass bottle with plug as the original turbidity solution. Diameter of diatomite particles contained in the solution is about 400μm.

Put 50.0 suspension mentioned above into evaporation dish whose weight id constant, and steam it in the water bath. Baked it in oven at 105℃for 2h, then cool it 30min in the dryer, and weighting it until constant weight. Calculate the mass of diatomite per milliliter of suspension (mg).

Move 250mL of the suspension of diatomite into 1000mL volumetric flask and add water to scale, shaking it up. Turbidity of this solution is 250 degrees.

Move 100mL turbidity standard solution of 250 degrees into volumetric flask, and add water to scale, shaking it up. Turbidity of this solution is 100 degrees. Add 1g/L mercuric chloride into the solution to prevent fungus from growing.

3. Procedures

1)Preparations of standard color series

Add 0, 0.50mL, 1.00mL, 1.50mL, 2.00mL, 2.50mL, 3.00mL, 3.50mL, 4.00mL, 4.50mL, 5.00mL, 6.00mL, 7.00mL cobalt platinum standard solution(or cobalt chromium standard solution) respectively in 50mL-colorimetric tubes. Dilute them to the mark with water and mix it. The color of each tube is of 0, 5degrees, 10degrees, 15degrees, 20degrees, 25degrees, 30degrees, 35degrees, 40degrees, 45degrees, 50degrees, 60degrees,70degrees consequently.

2) Determination of water samples

(1) 50.0mL water samples are placed in the colorimetric tube. If color of water is

deep, take some water sample appropriately and dilute it to 50.0mL.

(2) Make visual comparison between water samples and the standard color. Placed the colorimetric tubes on the white porcelain plate or white paper when observing. Make the light transmission from the bottom to up of liquid column, and the sight downward at the tube vertically. And write down the water color that is the same to the color of platinum-cobalt.

Visual turbidimetry

(1) The turbidity of the water samples is lower than 10 degrees.

①Draw turbidity standard solution of 100 degrees 0, 1.0mL, 2.0mL, 3.0mL,

4.0mL,

5.0mL,

6.0mL,

7.0mL,

8.0mL,

9.0mL, 10.0mL into colorimetric tubes of 10mL, and add water mark line to dilute, mixing. That is standard solutions with turbidity of 0, 1.0 degrees,2.0 degrees, 3.0 degrees, 4.0 degrees, 5.0 degrees, 6.0 degrees, 7.0 degrees, 8.0 degrees, 9.0 degrees, 10.0 degrees respectively.

②Take 100mL mixed water samples to colorimetric tubes of 100mL, and compare with standard solution. It is possible to observe from top to down vertically with black background.

(2)The turbidity of the water samples is above 10 degrees.

①Draw turbidity standard solution of 250 degrees 0, 10mL, 20mL, 30mL, 40mL, 50mL, 60mL, 70mL, 80mL, 90mL, 100mL into colorimetric tubes of 250mL, and add water to mark line to dilute, mixing. That is standard solutions with turbidity of 0, 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees, 80 degrees, 90 degrees, 100 degrees respectively. Move the solutions to 250ml - bottles with plug, adding 1g/L mercuric chloride per bottle to prevent the fungi growing, sealed.

②Take 250mL water samples stirred to a whole set of 250ml bottles with plug. Place a piece of white paper with black lines which are discrimination signs. Observe the bottles from front to back. Elect standard solutions which have similar visual effect to the water samples depending on clarity level object, and write down the turbidity.

③When turbidity of water is lover 100 degrees, dilute and then determinate it.

4. Data Processing

Records measured by the color. The dilution of the water samples, calculation as

follows:

degree of color=AA×50

Where: A —degree of color of di l uted w ater s amples e quivalent t o s tandard platinum/cobalt;

B — volume of water sample (mL).

5.Notes

(1) If water is turbid, stand it to clarify. Otherwise, use centrifugal method or membrane filters with aperture of 0.45μm to remove suspended solids, nit paper

filter. Filter paper can absorb the color dissolved in water.

(2) If soil or other small dispersion of suspended solids in the water, measure

apparent color even so pretreatment and water is not transparent.

6.Throught and Discussion

1. Is there any relationship between the mass concentration and turbidity of the suspended matter? Why?

2. Is it the "true color" or "apparent color" of the water sample determined by

the method of platinum - cobalt standard colorimetry?

Experiment 2 Determination of Chemical Oxygen Demand (COD)

1. Purposes

(1) Know the definition of chemical oxygen demand

(2) Master the principle of determination of chemical oxygen demand

(3) Master the operation of oxidation-reduction titration.

2. Principles

Add known amount of potassium dichromate solution to water samples, and use silver sulfate as the catalyst in strong sulfuric acid solution, after boiling and returning, use Ferroin as the indicator and titrate potassium dichromate not restored in water samples with ferrous ammonium sulfate, then convert the consumption of ferrous ammonium sulfate into mass concentration of oxygen consumption.

Under the condition of acidic potassium dichromate, aromatic hydrocarbon and pyridine are hard to be oxidized, the oxidation rate is low, and the straight-chain aliphatic compounds can be oxidized effectively in silver sulfuric catalysis.

The method is applicable to all types of water samples whose COD values are greater than 30mg/L, and the upper limit of water samples which are not diluted is 7000mg/L. The method is not suited to water samples whose chloride is more than 1000mg/L.

3. Equipments

(1) Reflux condensers (with 250mL or 500mL round-bottomed flasks with ground-glass necks.).

(2) Heating electric furnaces.

(3) 25mL or 50mL burets.

(4)1mL or 5mL pipet.

(5) 250mL conical flasks.

(6) V olumetric flasks.

(7) Small beaker.

(8) 20mL graduated flask.

4. Reagents

(1) Standard potassium dichromate solution [c(1/6K2Cr2O7) = 0.0250mol/L]: dissolved 12.25g K2Cr2O7 dried at 120℃(primary standard grade) in distilled water, transfer to a 1000mL volumetric flask, and dilute to the mark.

(2) Standard ferrous ammonium sulfate reagent {c[(NH4)2Fe(SO4)2.6H2O] =0.1mol/L}: dissolve 39.5g analytical-grade (NH4)2Fe(SO4)2.6H2O in distilled water, add 20mL concentrated H2SO4, cool, transfer to a 1000mL volumetric flask, and dilute to the mark. This solution must be standardized before used.

Standardization:Dilute 10mL standard potassium dichromate to 110mL in a 500mL-besker flask, and add 30mL concentrated H2SO4. Slow and cool it down. Titrate with the ferrous ammonium sulfate titrant using 3 drops of ferroin as the indicator. The normality of the ferrous ammonium sulfate is determined by the following formula:

cc=0.0250×10.00

Where: c— concentration of the standardized ferrous ammonium sulfate reagent (mol/L);

V— volume of the standardized ferrous ammonium sulfate reagent used to the end of titration ( mL).

(3) Silver sulfate-sulfuric acid reagent: dissolved 5g silver sulfate in 500mL

concentrated H2SO4. It will take 1 or 2 days for the silver sulfate to

dissolve.

(4) Mercuric sulfate crystals.

(5) Ferroin indicator solution: dissolve 1.485g 1,10-phenanthroline monohydrate (C12H8N2.H2O) and 0.695g FeSO4.7H2O in distilled water and dilute to 1000mL. This solution should be stored in the dark flask.

5. Procedures

(1) Place 20mL water sample in the reflux flask (250mL round-bottomed flask with ground-glass necks) and add 10mL standard potassium dichromate solution to the flask. Then add several boiling chips. Attached the flask to the reflux condenser, then add 30mL silver sulfate-sulfuric acid reagent slowly to the flask. Swirl to mix it, then reflux it for 2 hours.

(2) After being refluxed the solution is cooled and the reflux condenser is washed down with 90mL distilled water. Detach the flask from the condenser and measure the volume of solution. Bring up to a volume of 140mL with distilled water if necessary.

(3) Add 3 drops of the ferroin indicator and titrate above reflux solution to a reddish-brown end point with the standardized ferrous ammonium sulfate titrant.

(4) A blank consisting of 20mL distilled water in place of the sample is treated. After being refluxed, it can be titrated in the same manner.

(5) Calculations: The CODcr is calculated from the following equation:

CODcr(O2,mg L?)=(VV0?VV1)×cc×8×1000

VV

Where: c—concentration of the standardized ferrous ammonium sulfate reagent (mol/L);

V0—volume of the standardized ferrous ammonium sulfate reagent used for blank (mL);

V1—volume of the standardized ferrous ammonium sulfate reagent used for sample(mL);

V— volume of the water sample (mL);

8 — mass of 1 mol of 1/2O (g/mol).

6. Notes

(1) When the COD of sample is lower than 50mg/L, the concentration of standard potassium dichromate solution should adjust to 0.0250mol/L.

(2) After being refluxed, the leaving of potassium dichromate should be 1/5to 4/5

of the addition.

(3) Use the potassium hydrogen phthalate standard solution check the quality of reagents and technical operations, as per gram of potassium hydrogen phthalate theory COD value of 1.176g, so 0.4251g of potassium hydrogen phthalate (HOOCC6H4COOK) was dissolved in re-distilled water, switched to 1000mL volumetric flasks, to dilute it to become 500mg/L CODcr standard solution. Make solution when using.

(4) COD's results should be retained in the three available digits.

(5) Each experiment, ferrous ammonium sulfate titration should be carried out. The change of its concentration should be noticed at high ambient temperature.

7. Thought and Discussion

1. Why do you need to make a blank correction when determination of water samples?

2. What is the difference between the Chemical Oxygen Demand and Potassium Permanganate Index?

Experiment 3 Determination of Ammonia Nitrogen Content

(Nessler's Reagent Colorimetric Method)

1. Principles

The yellow-brown collodial compound was formed by the reaction between alkaline solution containing potassium iodide & mercury iodide and ammonia. Its chroma is proportional to the concentration of ammonia nitrogen, whose measurement scope of wave length is 410nm to 425nm. The minimum detectable concentration of this method is 0.025mg/L, and the maximum detectable concentration is 2mg/L.

2. Equipments

(1) 500mL glass still;

(2) 50mL colorimetric tube tubes;

(3) Spectrophotometer;

(4) pH meter

3. Reagents

Water for reagent preparation must be free-ammonia water.

(1) Free-ammonia water: Water solution goes through strong acid ion-exchange resin or be added to sulfuric acid and KMNO4, and then be redistilled.

(2) 1mol/L NaOH solution.

(3) Absorption liquid: ①boric acid: Add 20g boric acid to 1L water. ②0.01mol/L sulfuric acid.

(4) Nessler reagent: Dissolve 16g NaOH in 50mL water and be cooled to room temperature.

Then dissolved 7g KI and HgI2to water and inject the solution into NaOH solution slowly. Dilute to 1000mL with water and keep the solution in a polyethylene bottle.

(5) Potassium sodium tartrate: Dissolved 50g potassium sodium tartrate

(KNaC4H4O6.4H2O) in 100mL water, then heat it to boiling to remove ammonia. Cool and keep constant volume to 100mL.

(6) Ammonium reserve standard solution: Dissolved 3.819g NH4Cl dried at 100℃and remove it into 1000mL volumetric flask, then dilute it to mark line with water. In this solution there is 1mg/L ammonia nitrogen.

(7) Ammonium standard solution for use: remove 5mL standard solution to 500mL volumetric flask and then dilute it to the mark line. In this solution there is 0.010mg/L ammonia nitrogen.

4. Procedures

(1) Pretreatment of water samples: Colorless and clarified water can be determined directly, while he water samples with high chroma and turbidity or containing much disturbance must be pretreated, such as distillation or coagulation sedimentation.

(2) Protract specification curve: add 0.50mL, 1.00mL, 3.00mL, 5.00mL, 7.00mL and 10.00mL ammonium standard solution for use to 50mL colorimetric tube and dilute them to the mark line with water. Add 1.0mL potassium sodium tartrate solution, mix them well. Add 1.5mL Nessler's reagent, mix them well too. Place the solution for 10 minutes and then determinate its absorbance by 10mm colorimetric ware at 420nm. The specification curve is prepared by ammonia nitrogen (mg) and correction absorbance that obtained by its absorbance to subtract blank absorbance.

(3) Determination of water samples: Immigrated proper volume of water (in which ammonia nitrogen concentration should be less than 0.1mg) into 50 mL colorimetric tube and dilute it to the mark line by water. Add 1.0mL potassium sodium tartrate and 1.5mL Nessler's reagent in turn and mix them well. The solution shall be placed for 10min and then determinate its absorbance by 10mm colorimetric ware at 420nm.

(4) Blank experiment: Free-ammonia water was used for blank determination instead of water sample.

5. Calculation

Concentration of ammonia nitrogen (mg) is calculated by standard curve at corrective absorbance.

Ammonia nitrogen (N)(mg L?)=mm×1000/VV

Where: m —Ammonium concentration of that calculated by standard curve (mg);

V— volume of the water sample (mL);

6. Notes

(1) Ratio of HgI2 to KI in nessler reagent has great influence on sensitivity of color reaction. The precipitation after standing should be removed.

(2) The filter paper must be washed by non-ammonia water for trace ammonium salt. All glassware must be washed by avoided being contaminated by ammonium in air.

7. Thought and Discussion

1. It is better to use what method to determine the content of ammonia nitrogen when the water sample has the color?

2. What are the factors that affect the accuracy of the measurement?

实验四水中铬(Ⅵ)的测定

一、实验目的和要求

(1)掌握用分光光度法测定六价铬和总铬的原理和方法,熟练使用分光光度计。

(2)复习《环境监测》(第四版)第二章第六节中测定铬的各种方法,比较其优、缺点。

二、原理

水中铬的测定方法有分光光度法、原子吸收光谱法、ICP - AES法和滴定法。本实验采用分光光度法。其原理基于:在酸性溶液中,六价铬与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540 nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。

三、仪器与试剂

(一)仪器

(1)分光光度计。

(2)比色皿:1cm、3cm。

(3)具塞比色管:50mL。

(4)移液管。

(5)容量瓶。

(二)试剂

除另有说明外,所用试剂均为分析纯试剂。

(1)丙酮。

(2)硫酸:1+1。

(3)磷酸:1+1。

(4)氢氧化锌共沉淀剂:称取七水合硫酸锌(ZnS04.7H20)8g,溶于100mL水中;称取氢氧化钠2.4g,溶于新煮沸冷却的120mL水中。将以上两溶液混合。

(5)高锰酸钾溶液:40g/L。

(6)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL 容量瓶中,用水稀释至标线,摇匀,每毫升铬标准贮备液含0.100mg六价铬。

(7)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升铬标准使用液含1.00 μg六价铬。使用当天配制。

(8)尿素溶液:200g/L。

(9)亚硝酸钠溶液:20g/L。

(10)显色剂(二苯碳酰二肼)溶液:称取二苯碳酰二肼(简称DPC,C13H14N40)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。

(11)浓硝酸、浓硫酸、三氯甲烷。

(12)氨水溶液:1+1。

(13)50g/L铜铁试剂:称取铜铁试剂[C6H5N(NO)ONH4]5g,溶于冰水中并稀释至100mL。临用时现配。

四、测定步骤

(一)水样的预处理

1.测定六价铬水样的预处理方法

(1)对不含悬浮物、低色度的淸洁地表水,可直接进行测定。

(2)如果水样有色但不深,可进行色度校正。即另取一份水样,加入除显色剂以外的各种试剂,以2mL丙酮代替显色剂,用此溶液为测定样品溶液吸光度的参比溶液。

(3)对浑浊、色度较深的水样,应加入氢氧化锌共沉淀剂并进行过滤处理。

(4)水样中存在次氯酸盐等氧化性物质时,干扰测定,可加入尿素和亚硝酸钠消除。

(5)水样中存在低价铁、亚硫酸盐、硫化物等还原性物质时,可将Cr(VI)还原为Cr3+,此时,调节水样pH至8,加入显色剂溶液,放置5 min后再酸化显色,并以同法作标准曲线。

2.测定总铬水样的预处理方法

(1)一般淸洁地表水可直接用高锰酸钾氧化后测定。

(2)对含大量有机物的水样,需进行消解处理。即取50mL或适量(含铬少于50μg)水样,置于150mL烧杯中,加入5mL硝酸和3mL硫酸,加热蒸发至冒白烟。如溶液仍有色,再加人5mL硝酸,重复上述操作,至溶液淸澈,冷却,用水稀释至约10mL,用氨水溶液中和至pH为1~2,移入50mL容量瓶中,用水稀释至标线,摇匀,供测定。

(3)如果水样中钼、钒、铁、铜等含量较大,先用铜铁试剂和三氯甲烷萃取除去,然后再进行消解处理。

(4)高锰酸钾氧化三价铬:取50.0mL或适量(铬含量少于50μg)淸洁水样或经预处理的水样(如不足50.0mL,用水补充至50.0mL)于150mL锥形瓶中,用氨水溶液和硫酸溶液调至中性,加入几粒玻璃珠,加入(1+1)硫酸和(1+1)磷酸各0.5mL,摇匀。加人40g/L高锰酸钾溶液2滴,如紫色消退,则继续滴加髙锰酸钾溶液至保持紫色。加热煮沸至溶液剩约20mL。冷却后,加入1mL200g/L的尿素溶液,摇匀。用滴管加20g/L亚硝酸钠溶液,每加一滴充分摇匀,至紫色刚好消失。稍停片刻,待溶液内气泡逸尽,转移至50mL具塞比色管中,稀释至标线,供测定。

(二)标准曲线的绘制

取9支50mL具塞比色管,依次加入 0mL、l.00mL、2.00mL、4.00mL、6.00mL、8.00mL和10.00mL 铬标准使用液,用水稀释至标线,加入(1+1)硫酸0.5mL和(1+1)磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并作空白校正。以吸光度为纵坐标,相应六价铬质量为横坐标绘出标准曲线。

(三)水样的测定

取适量(含六价铬少于50μg)无色透明或经预处理的水样于50mL具塞比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得六价铬质量。

(四)计算

式中:m — 从标准曲线上查得的六价铬的质量,μg;

V — 水样的体积,mL。

(五)注意事项

(1)用于测定铬的玻璃器皿不应用重铬酸钾洗液洗涤。

(2)六价铬与显色剂的显色反应一般控制酸度在0.05~0.3mol/L(l/2H2S04)范围,以0.2mol/L时显色最好。显色前,水样应调至中性。显色温度和时间对显色有影响,在15℃时,5~15min顔色即可稳定。

(3)如测定淸洁地表水样,显色剂可按以下方法配制:溶解0.2g二苯碳酰二肼于100mL体积分数95%的乙醇中,边搅拌边加入(1+9)硫酸400mL。该溶液在冰箱中可存放一个月。显色时直接加入此显色剂2.5mL即可,不必再加酸。但加入显色剂后,要立即摇匀,以免六价铬可能被乙酸还原。

五、思考与讨论

(1)影响测定准确度的因素有哪些?

(2)比较各种测定方法的特点。

漏斗实验(Funnel Experiment)

漏斗实验(Funnel Experiment) 在戴明博士四日谈中,以漏斗实验来解释管理与干预问题。管理人员常因缺乏对系统变异的统计思考方式而对系统进行干预,造成问题越变越离谱。譬如,厂内的管理阶层在品质会议中要 求不良率最高的单位提出改善计划或业务会议中要求营业额退步的营业员提出对策。以前国中的 导师每周对学生评分排名,对退步的学生给与严厉的指责警告(现在应该还是一样)。但是以长期 来看不良率依然有高有低;营业额每月仍是有好有坏;学生的排名每周还是有进有退,这些数据 的变异很多是系统的正常变异,也就是所谓共同原因的变异。但是,管理人员对这些变异进行干 预,采取矫正措施,使得系统越变越复杂。例如,制程管理人员隐藏不良品使不良率好看;营业 人员虚报营业额使得帐面上好看;学生到补习班先练习考试题目使得排名进步。以上这些现象在 我们所处的工作或生活环境中屡见不鲜,我们应该先了解系统的变异是来自特殊原因或是共同原 因,再采取适当的行动。 所谓,就是假想我们有一漏斗,装在桌上约半公尺高的架上,桌上有个靶。假设我 们把一颗弹珠放入漏斗,不论我们放下的方式如何,弹珠就会以随机的方式滚下漏斗,然后由漏

斗底部掉下到靶上,再用铅笔在落点做个记号。我们利用一些简单的规则来使漏斗瞄准目标,这 些规则相当于我们在使用设备、流程或系统中作的一些决策规则。 [编辑] 漏斗实验的四种规则: 规则一:每次都不调整漏斗位置(结果:弹珠落点随机分布在目标值两侧) 规则二:根据上一次落点,调整漏斗位置(结果:弹珠落点范围较规则一大了约41%) 规则三:调整前先归回目标值(结果:弹珠落点由两侧大幅散开) 规则四:瞄准上一次的落点(结果:弹珠落点呈随机漫步到天边) 将四个规则仿真的结果绘在同张图上,可以一目了然地比较四种规则的结果。 :一个漏斗、一粒可以很容易通过漏斗的弹珠、一张桌子,最好铺上桌布。 第一次实验:规则为漏斗位置不变。首先在桌布上标出一点作为目标,开始实验。将漏斗口 瞄准目标点。保持这种状态,将弹珠由漏斗口落下50次,在弹珠每次落下的静止位置作标记。

死亡实验(the experiment)观后感

观后感 ——关于社会角色、侵犯行为、群体压力理论的思考这部由斯坦福监狱实验改编的影片,忘了剧中这个实验的目的是什么,但是它很好地诠释了社会心理学中有关于社会角色、侵犯行为、群体压力等理论。 首先关于社会角色。对于角色,社会心理学是这样定义的——一个社会身份所要求的一般行为方式及其内在的态度和价值观基础。显然,影片中将实验参与者分为看守和囚犯两类,就是重新定义了他们的社会角色。按照角色的分类,看守属于支配角色,而囚犯则属于受支配角色。既然赋予了他们一定的社会角色,那他们就必然会按照其特定的地位和所处的情境来行动,就像小孩子在玩过家家,扮演父亲的孩子会出去上班赚钱,扮演母亲的孩子会在家做家务一样,这些是他们从生活中学习模仿而来,这种行为被称作角色扮演。在剧中,角色扮演则明显体现在扮演看守的人员身上。当出现“囚犯”不服从命令的情况时,自己是看守,有义务维持监狱的秩序的思想会适时浮现于脑中,于是他们便会尽自己的职责,也许模仿某些警匪片中的行为,对囚犯加以控制,而在这个过程中,权利和义务也就诞生了。这个实验很好地向我们诠释了什么是社会角色,以及与社会角色相关联的角色扮演,甚至权利与义务是社会化过程的产物等相关的概念。 关于侵犯行为。侵犯行为也可称之为攻击行为,是指个体违反了社会主流规范的、有动机的、伤害他人的行为。在剧中,我们看到了很多暴力行为,比如把囚犯关进黑屋子,绑在椅子上等。那这些

暴力行为是否属于侵犯行为呢?在判断某行为是否是侵犯行为时,有三个标准:一是个体外在的行为,二是看该行为是否违反社会主流规范,三是个体的内在动机或意图如何。显而易见地,看守的行为动机就是对罪犯进行报复,是故意的,而且也有外在的暴力动作,但是否能将这种暴力行为归于侵犯,我仍有一丝疑虑,因为在实验之初就已经说过,囚犯会丧失部分人权,所以这样的行为有没有违反社会主流规范仍旧存在疑虑,因为“看守看管囚犯,即使他运用了怎样的手段,也是可以理解的”这种思想没有经过调查,不好判断它是否属于社会主流思想。侵犯行为是否与生俱来也是社会心理学界争论的问题。霍尔提出过“挫折——侵犯理论”,他认为挫折是指当一个人为实现某种目标而努力时遭受干扰或破坏,致使需求不能得到满足时的情绪状态,人的侵犯行为是因为个体遭受挫折而引起的。从这个实验来看,如果证实了“看守”的行为的确属于侵犯行为的话,那么可见侵犯行为确实不是与生俱来的。因为在实验之前,他们都是正常人,而是在实验过程中,由于17号的挑战对于监狱管理产生困难与挫折,看守才最终选择了暴力侵犯行为。 关于群体压力。群体借助规范的力量形成的对其成员心理上的强迫力量,就是群体压力,群体借助这种力量达到对群体成员行为的约束作用。看守将17号关入黑屋子的惩罚就是为了造成对囚犯的群体压力。然而群体压力也有积极的意义:增强群体团结,有助于群体任务的完成,对多数成员内心安全感的形成起很大作用。这点明见于最后的囚犯群体大逃亡。但群体心理对于群体内固执己见的少数人

第18章-随机实验与自然实验

1 ? 陈强,《高级计量经济学及 Stata 应用》课件,第二版,2014 年,高等教育出版社。 第 18 章 随机实验与自然实验 18.1 实 验 数 据 假设研究x 1 是否导致 y 。假定{x 1, x 2 , , x K }包含所有影响 y 的因素。 不同学科采用不同的实验方法,大致分为以下几类。 (1) 控制实验(controlled experiment):在理想的物理实验中,控制 {x 2 , , x K }全部不变,单独让x 1 变化,观察 y 的变化。 (2) 随机(控制)实验(randomized controlled experiment):

【例】医学上对新药x 疗效的实验。由于参加实验者的体质与生活 1 方式不同,不可能完全控制所有其他因素{x2 , , x K }。 随机实验将实验人群(或个体)随机地分为两组,其中“实验组”或“处理组”(treatment group)服用真药,而“控制组”(control group,也称“对照组”)服用“安慰药”(placebo)。 被试者不知道自己分在哪一组,避免心理干扰。有时科研人员也不知道被试者在哪一组,称为“双盲法”(double blind)。 【例】农学中将地块随机地分成三组(很难找到土壤条件完全一样的地块),分别给予不同的施肥量,然后考察施肥的效果。 2

(3)自然实验或准实验(natural experiment or quasi experiment): 由于某些并非为了实验目的而发生的外部突发事件,使得当事人仿佛被随机地分在了实验组或控制组。 【例】一个州通过某法律,但相邻州未通过此法律。两州民众事先不知道哪个州会通过此法律,故无法自我选择住在哪个州。从考察法律的效果而言,可近似认为民众随机选择住在哪个州,或被随机分为实验组(通过法律)与控制组(没通过法律)。 (4)思想实验(thought experiment): Milton Friedman 曾设想在小岛上通过空投货币,考察该岛的宏观经济的变化。 3

完全随机设计试验资料的方差分析-东北农业大学植物科学与技术实验

东北农业大学本科课程教学大纲 课程名称:田间试验与统计方法 英文名称:Field Experiment and Statistic-method 课程编号:01600008j 适用专业:草业科学、植物生产类 总学时数:40 总学分:2.5 大纲主撰人:李文霞 内容简介 《试验设计与统计分析》是一门收集整理数据、分析数据, 并根据数据进行推断的科学。本课程为高等农业院校农学类专业的专业基础课,主要讲授有关田间试验的基本知识和统计分析的基本方法和技能,为学习专业课程奠定基础,使学生具备承担科学试验,正确分析和评价科学试验结果及其可靠性的能力。 教学大纲 一、课堂讲授部分 (一)分章节列出标题、各章节要点及授课时数(务必将要点写清楚) 第1章绪论 一、基本内容 1.1 农业科学试验的任务和要求1学时 1.1.1 农业科学试验和田间试验 1.1.2 农业科学试验的任务和来源 1.1.3 农业科学试验的基本要求 1.2 试验误差及其控制2学时 1.2.1 试验误差 1.2.2 试验误差的来源 1.2.3试验误差的控制 1.3 生物统计学与农业科学试验1学时 1.3.1 部分生物统计学基本概念 1.3.2 生物统计学的形成与发展 1.3.3 生物统计学在农业科学试验中的作用和注意问题 二、教学目的与要求 要求学生掌握农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念,了解农业科学试验的任务和来源、生物统计学在农业科学试验中的作用和注意问题。 三、重点与难点 重点:农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念

难点:试验误差的概念和生物统计学的基本概念的理解 第2章试验的设计和实施 一、基本内容 2.1 试验方案1学时 2.1.1 试验方案的概念和类别 2.1.2 处理效应 2.1.3 试验方案的设计要点 2.2 试验设计原则 1.5学时 2.2.1 重复 2.2.2 随机排列 2.2.3 局部控制 2.3 小区技术0.5学时 2.3.1 小区 2.3.2 区组和小区的排列 2.3.3 保护行 2.4 常用的试验设计1学时 2.4.1 对比法设计 2.4.2 间比法设计 2.4.3 完全随机设计 2.4.4 随机区组设计 2.4.5 拉丁方设计 2.4.6 裂区设计 2.5 试验的实施(学生自学) 2.6 田间抽样(学生自学) 二、教学目的与要求 要求学生掌握试验方案、试验设计原则、小区技术和常用的试验设计,自学试验的实施和田间抽样。 三、重点与难点 重点:试验方案、试验设计原则、小区技术和常用的试验设计。 难点:试验设计原则、小区技术、试验方案的设计要点的理解。 第3章描述性统计 一、基本内容 3.1 次数分布 1.5学时 3.1.1次数分布表 定量资料、定性资料 3.1.2次数分布图 柱形图、多边形图 3.1.3其它常用统计图 结合Excel的作图向导讲解,重点柱形图和折线图 3.2 平均数1.5学时

热传导实验(Heat Conduction Experiment)

熱傳導實驗(Heat Conduction Experiment) 目的:測定各種金屬之『熱傳導係數』,並探討物質具有不同大小之熱傳導係數要如何應用。實驗設備:自己填寫 實驗方式:分別以沿『軸向』及『徑向』之熱傳導試件進行實驗,以試件內之溫度達到穩定狀態時為準,來計算金屬之熱傳導係數。 操作步驟: (1)將金屬試件(不鏽鋼或黃銅、 不鏽鋼或鋁)安裝到要進行實 驗的座位台上 (2)打開電源,選擇溫度顯示相近 的RTD測溫棒插入試件的測 溫孔,並確定測溫棒與測溫孔 緊密接觸 (3)選擇『軸向』或『徑向』之加 熱源,並調整熱率輸入視窗之 數值為20W (4)每隔5分鐘讀取每支測溫棒 之溫度,每個試件至少記錄六次共30分鐘,歸納結果時要將各個測溫點的『溫度-時間圖』畫出,並以溫度達到穩定狀態時為準,來計算金屬之熱傳導係數。 (5)更換試件重複步驟(1)~(4) 實驗數據記錄: 試件名稱:軸向熱傳導 T1(℃) T2(℃) T3(℃) T4(℃) T5(℃)測溫點 時間 5(min) 10(min) 15(min) 20(min) 25(min) 30(min) 試件名稱:軸向熱傳導 T1(℃) T2(℃) T3(℃) T4(℃) T5(℃)測溫點 時間 5(min) 10(min) 15(min) 20(min) 25(min) 30(min)

試件名稱: 徑向熱傳導 測溫點 時間 T1(℃) T2(℃) T3(℃) T4(℃) T5(℃) 5(min ) 10(min ) 15(min ) 20(min ) 25(min ) 30(min ) 試件名稱: 徑向熱傳導 測溫點 時間 T1(℃) T2(℃) T3(℃) T4(℃) T5(℃) 5(min ) 10(min ) 15(min ) 20(min ) 25(min ) 30(min ) 實驗數據圖示: (1) 用Excell 畫出各個測溫點的『溫度-時間』圖 (2) 依據(1)之圖,估計各個測溫點達到穩定狀態時的溫度,依此溫度,畫出各試件在各個 測溫點達到穩定狀態的『溫度-位置』圖(在『軸向』實驗中應有兩試件之線;在『徑向』實驗中也應有兩試件之線) 實驗數據計算: (1) 依據穩定狀態的『溫度-位置』圖,將各點連成擬合直線(不是折線),依據此直線之斜 率(『軸向』為 X T ΔΔ)(『徑向』為)ln(i o o i r r T T ?)來 計算『熱傳導係數K 』。 (2) 『軸向』公式為X T KA Q ΔΔ=;Q :輸入熱率(A :試件截面積(m 2);△T :直線上兩點之溫度差(℃);△X :直線上兩點之位置差(m ) (3) 『徑向』公式為)ln(2i o o i r r T T KL Q ?=π;L=試件厚度(m ),T i =靠近圓心處之溫度(℃),r i =靠近圓心處之半徑(m ),T o =靠外側處之溫度(℃),r o =靠外側處之半徑(m ) 結果與討論: (1) 書本上不鏽鋼的『熱傳導係數K 』約為20W/m ℃;黃銅約為100W/m ℃;鋁約為200W/m ℃,為何實驗計算出的值比書本提供的值為大?

15章随机实验与自然实验-ShandongUniversity

教学用PPT ,《高级计量经济学及Stata 应用》,陈强编著,高等教育出版社,2010年 第15章 随机实验与自然实验 15.1实验数据 不同学科可能依条件的不同而采用不同的实验方法。 (1)控制实验(controlled experiment ):在理想的物理实验中,对除1x 以外的因素{}2,,K x x "全部控制不变,单独让

x变化,然后观察y变化的情况。 1 (2)随机(控制)实验(randomized controlled experiment):通常将实验人群随机地分为两组,其中“实验组”(treatment group)服用真药,而“控制组”(control group,也称“对照组”)服用“安慰药”(placebo)。 (3)自然实验或准实验(natural experiment or quasi experiment):由于某些并非为了实验目的而发生的外部突 发事件,使得当事人仿佛 ..被随机分在了实验组或控制组。

15.2 理想的随机实验 在理想的随机实验(ideal randomized experiment)中,实验组与控制组的成员决定完全随机,比如,通过抛硬币或电脑随机数来决定。故个体究竟被分在哪一组或得到多大的实验“剂量水平”(treatment level),与个体的特征或其他可能影响实验结果的因素是完全独立的。这就避免了遗漏变量偏差(omitted variable bias)。

考虑以下回归模型, i i i y x αβε=++ (15.1) 其中,i x 是完全随机地决定的。由于i x 与i ε相互独立,故 Cov(,)0i i x ε=,因此OLS 是一致的。由于i x 与i ε相互独立,故1E(|,,)0i n x x ε=",故OLS 也是无偏的。 在理想的随机实验中,X 对y 的因果效应表现在条件期望的差别,即E(|)E(|0)y X x y X =?=,也称为“实验效应”

实验安全风险分析EXPERIMENT RISK ANALYSIS

E UROPEAN S YNCHROTRON R ADIATION F ACILITY INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON EXPERIMENT RISK ANALYSIS Experimental Number:Beamline: Main Proposer: Title of the Experiment: 1EXPERIMENT (only if changes since the proposal) Classification of the sample: Radioactive Contaminant Corrosive Oxidising Explosive Biological Other: Sample Description: Crystal Powder Polycrystalline Multilayer Liquid Gas Nanoparticles Other: Container: Capillaries Flat plate Pressure cell – Type: Other: ESRF equipment to be used: Furnace Magnet Cryostat Cryogenic gas stream Refrigerator Laser High pressure Fixed temperature Other: The Safety Group must immediately be informed of all modifications made and which differ from the original proposal and this at least two weeks before your arrival on site. Your equipment has been tested by your home institute. No changes can be made before your arrival at the ESRF and until your experiment has started. Page 1 / 12- Analyse des risques de l’expérience

experiment1

实验一 电位、电压的测量和叠加定理的研究 一、实验目的 1.熟悉实验台的整体布置及交、直流电源和交、直流仪表的使用。 2.学会测量电路中各点的电位和电压的方法。 3.掌握线性电路的叠加定理。 二、实验设备 实验箱(EEL-51)(EEL-53)、恒压源、直流电压表、直流电流表 三、实验内容 1.熟悉实验台的整体布局、记录实验台的主要设备和仪表的参数。要求记录:设备的名称、规格、量程及精度。 2.熟悉直流恒压源、恒流源和直流电压表、电流表的使用。 (a)自行设计一个电路,以某点为参考点,测量电路各点的电位和两点之间的电压。具体要求: ①用三个电阻和一个电源(电压不超过8V )组成一个简单电路; ②由附录中实验箱选择电阻元件的阻值,并画出电路; ③选择参考点计算各点的电位和两点之间的电压,自行设计一个表格,将所计算的数据填入表格中。然后实际连接电路,测量电位和电压。 (b)叠加定理的研究 使用EEL-53实验箱,按叠加原理图1-1进行实验,测量每个电源(V U S 121 =,V U S 62 =) 单独作用时和共同作用时各支路电流值,填入表1-1中。 表1-1 图1-1 4 5

四、实验注意事项 1.测量直流电压应并联在被测元件上,注意正负极性。测量直流电流时应串联在被测支路中,要注意电流的方向。 2.选择测量仪表的量程,根据估算选择稍大的量程,如电流偏小,再降低量程,以保证测量的精度。注意测量仪表报警铃响时,应关闭仪表的电源,检查原因,改正后重新合上仪表的电源。 3.正确使用可调直流恒压源和恒流源,正确读数(读数以电压表测量为准,而不以电源表盘指示值为准)。 4.使用电流插头测量时应注意仪表的极性的正确连接,以及读数时"",""-+号的记录。 5.叠加定理实验中,每个电源单独作用时,去掉另一个电源,是由开关S 1 ,S 2 操作完成,而不能将直流电源短路。 五、预习思考题 1.叠加定理实验中1 S U ,2 S U 分别单独作用时实验中应如何操作? 2.如将叠加定理中电阻R 3改为二极管D 时,叠加定理是否成立? 3.电路中各点电位与选择的参考点有什么关系?任意两点之间的电压与参考点的选择有关系吗? 六、实验报告要求 1.预习报告内容的要求:实验目的、实验设备(写出具体实验箱的型号和测量仪表的型号)、实验内容及步骤、根据实验内容,具体画出线路及实验参数,计算结果,以及设计出测量用的记录表格。 2.总结报告内容的要求:除预习报告内容之外,再增加数据的误差分析或曲线比较,理论分析,故障分析和心得体会。

Reynolds_experiment雷诺实验(英文版)

Reynolds experiment Aim of the experiment 1.Observe the laminar and turbulent flow, and the process of transition from one state to the other. 2.Measure the critical Reynolds number and develop the skills on how to distinguish the pipe flow state. 3.Study the dimensional analysis method to analyze the experiment, confirming the criterion number of flow state for a non-circular pipe. Experimental apparatus 1. The figure of the apparatus Figure 1 shows the experimental apparatus and the name of each part. Figure 1. 1: Self-circulating water supply, 2: Hydraulic bench, 3: Speed controller, 4: Constant head water tank, 5: Coloured water pipe, 6: Perforated plate, 7: Overflow, 8: Experiment pipe, 9: Flow rate control valve

DOE(Design of Experiment,试验设计)

DOE 出自 MBA智库百科(https://www.360docs.net/doc/c018184908.html,/) DOE(Design of Experiment,试验设计) 目录 [隐藏] ? 1 什么是DOE ? 2 为什么需要DOE ? 3 DOE的基本原理 ? 4 DOE实验的基本策略 ? 5 DOE的步骤 ? 6 DOE的作用 ?7 DOE的方法 [编辑] 什么是DOE DOE(Design of Experiment)试验设计,一种安排实验和分析实验数据的数理统计方法;试验设计主要对试验进行合理安排,以较小的试验规模(试验次数)、较短的试验周期和较低的试验成本,获得理想的试验结果以及得出科学的结论。 试验设计源于1920年代研究育种的科学家Dr.Fisher的研究, Dr. Fisher 是大家一致公认的此方法策略的创始者, 但后续努力集其大成, 而使DOE在工业界得以普及且发扬光大者, 则非Dr. Taguchi (田口玄一博士) 莫属。 [编辑] 为什么需要DOE ?要为原料选择最合理的配方时(原料及其含 量); ?要对生产过程选择最合理的工艺参数时; ?要解决那些久经未决的“顽固”品质问题 时;

?要缩短新产品之开发周期时; ?要提高现有产品的产量和质量时; ?要为新或现有生产设备或检测设备选择最 合理的参数时等。 另一方面,过程通过数据表现出来的变异,实际上来源于二部分:一部分来源于过程本身的变异,一部分来源于测量过程中产生的变差,如何知道过程表现出来的变异有多接近过程本身真实的变异呢?这就需要进行MSA测量系统分析。 [编辑] DOE的基本原理 试验设计的三个基本原理是重复,随机化,以及区组化。 所谓重复,意思是基本试验的重复进行。重复有两条重要的性质。第一,允许试验者得到试验误差的一个估计量。这个误差的估计量成为确定数据的观察差是否是统计上的试验差的基本度量单位。第二,如果样本均值用作为试验中一个因素的效应的估计量,则重复允许试验者求得这一效应的更为精确的估计量。如 s2是数据的方差,而有n次重复,则样本均值的方差是。这一点的实际含义是,如果n=1,如果2个处理的y1 = 145,和y2 = 147,这时我们可能不能作出2个 处理之间有没有差异的推断,也就是说,观察差147-145=2可能是试验误差的结果。但如果n合理的大,试验误差足够小,则当我们观察得y1随机化是试验设计使用统计方法的基石。 所谓随机化,是指试验材料的分配和试验的各个试验进行的次序,都是随机地确定的。统计方法要求观察值(或误差)是独立分布的随机变量。随机化通常能使这一假定有效。把试验进行适当的随机化亦有助于“均匀”可能出现的外来因素的效应。 区组化是用来提高试验的精确度的一种方法。一个区组就是试验材料的一个部分,相比于试验材料全体它们本身的性质应该更为类似。区组化牵涉到在每个区组内部对感兴趣的试验条件进行比较。 [编辑] DOE实验的基本策略 策略一:筛选主要因子(X型问题化成A型问题)

experiment

Project 1 Technology Enhanced Presentations Choice 1. To begin a presentation: a.choose the New menu, then choose New. b.choose the File menu, then choose New Presentation. c.choose the File menu, then choose New. d.click the New Slide button on the toolbar. 2. To insert footer into the slide presentation: a.click the Header/Footer button on the toolbar. b.choose the View menu, choose Master, then choose Slide Master. c.choose the Edit menu, then choose Header/Footer. d.choose the View menu, then choose Header/Footer. 3. The type of animation that is caused by the change from one slide to another is a(n): a.action setting. b.custom animation. c.slide transition. d.preset animation. 4. To set a transition: a.choose the Slide Show menu, then choose Transition. b.choose the Slide Show menu, then choose Slide Transition. c.click the Transition button on the toolbar. d.choose the Format menu, then choose Transition. 5. What is the first step in setting a custom animation? a.Clicking the Animation button on the toolbar. b.Choosing the Slide Show menu. c.Clicking the mouse on a part of the text to be animate d. d.Clicking the Add Effect button on the toolbar. Essay Questions What is the purpose of having a clear beginning and ending to a presentation?

操作系统experiment3

实验2 存储管理 1. 实验目的 存储管理的主要功能之一是合理地分配空间,请求页式管理式一种常用的虚拟存储管理技术。本实验的目的是通过请求页式管理中页面置换算法的模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 2. 实验内容 (1) 通过随机数产生一个指令序列,共320条指令,指令地址按下述原则生成 ①50%的指令是顺序执行; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分; 具体的实施方法是 ①在[0, 319] 的指令地址之间随机选取一起点m ; ②顺序执行一条指令,即执行地址为m+1 的指令; ③在前地址[0, m+1] 中随机选取一条指令并执行,该指令的地址是m’; ④顺序执行一条指令,其地址为m’+1 ; ⑤在后地址[m’+2, 319] 中随机选取一条指令并执行; ⑥重复上述步骤①~⑤,直到执行320次指令。 (2) 将指令序列变为页地址流 设:①页面大小为1K ; ②用户页面内存容量为4页到32页; ③用户虚存容量为32K 。 在用户虚存中,按每K 存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0, 9]); 第10条~第19条指令为第1页(对应虚存地址为[10, 19]); …… …… 第310条~第319条指令为第31页(对应虚存地址为[310, 319]); 按以上方式,用户指令可组成32页。 (3) 计算并输出下述各种算法在不同内存容量下的命中率 ①First-In-First-out (FIFO) Page Replacement ②Least-Recently-Used (LRU) Page Replacement ③Optimal Page Replacement 其中③和④为选择内容

Dr. Heidegger's Experiment读后感

Ambiguity and Uncertainty in Dr. Heidegger's Experiment Nathaniel Hawthorne's short story, Dr. Heidegger's Experiment, reveals that people have a futile and self-destructive desire to relive their pasts instead of moving onward and accepting their fates. In Dr. Heidegger's Experiment, Hawthorne uses a point of view that allows ambiguity to enter the narration. The unnamed narrator opens many aspects of the story to more than one interpretation and enhances the revelation of the theme through uncertainty as he tells of the reactions of four old people to the water of the Fountain of Youth. The narrator himself seems unsure whether the events he is relating have even occurred. "Was it delusion?" he asks, "Even while the draught was passing down their throats, it seemed to have wrought a change on their whole systems." Commenting on the many tales that have sprung up around the mysterious Dr. Heidegger, the narrator even admits his own unreliability, stating, "Some of these fables, to my shame be it spoken, might possibly be traced back to mine own veracious self; and if any passages of the present tale should startle the reader's faith, I must be content to bear the stigma of a fiction-monger." These uncertainties divorce the story's happenings from reality, enhancing the allegorical meaning of the tale. The narrator is uncertain whether Dr. Heidegger's four old subjects have attained a second youth. As they drink the water, their actions become those of youths, but have their bodies changed too? "...the three gentlemen behaved in such a manner, as proved that the water of the Fountain of Youth possessed some intoxicating qualities; unless, indeed, their exhilaration of spirits were merely a lightsome dizziness, caused by the sudden removal of the weight of years." When they lose their newfound "youth," the same doubts are shown: "A strange chillness, whether of body or spirit they could not tell, was creeping gradually over them all. They ... fancied that each fleeting moment snatched away a charm, and left a deepening furrow where none had been before. Was it an illusion? Had the changes of a life-time been crowded into so brief a space... In truth, they had [grown old]. The Water of Youth possessed merely a virtue more transient than that of wine." The Elixir of Youth is likened to an alcoholic drink, yet the effects of an actual loss of age, and later a loss of their new-found youth, are felt in the four subjects. The narrator, and thus the reader, does not know the true extent of Dr. Heidegger's "experiment." This does not obscure the truths that the subjects reactions reveal; whatever interpretation the reader chooses, the theme remains. This uncertainty also highlights the multiple meanings of certain lines. When the four old

JAVA Experiment

以下所有实验完成的环境: OS: Windows XP IDE: Eclipse Database: MySQL或SQL Server 实验一 实验名称:JAV A中循环结构 实验目的:熟悉循环结构,熟悉JA V A类的定义以及参数的传递。 实验时间:(2学时) 实验内容: 1.金字塔:Pyramid.java 在屏幕上显示一个由星型符号“*”组成的金字塔图案,示例如下: * *** ***** 实验二 实验名称:封装,继承与多态 实验目的:熟悉JA V A面向对象的三大特性。 实验时间:(4学时) 实验内容: 1.定义一个形状类(Shape)方法:计算周长,计算面积 子类: 矩形类(Rect):额外的方法:cha()计算长宽差 圆形类(Circle) 正方形类(Square)矩形的子类 生成几个不同的形状对象,放在一个Shape类型的数组里,分别求每个形状的周长和面积。如果形状对象是一个矩形,且不是正方形,则计算长宽差。 实验三 实验名称:集合 实验目的:熟悉JA V A的集合框架,熟练掌握以下接口和类的使用,Collection, Map, List,Set, SortedSet, ArrayList, LinkedList, Vector, HashMap, Hashtable等。 实验时间:(2学时) 实验内容: 1. 数组拷贝CopyArray.java 定义数组int[] a = { 1,2,3,4,5,6,7,8,9,10 }和b。 (1)将数组a中的所以元素拷贝到数组b中,打印b中元素。(用循环实现) 结果参考: 1,2,3,4,5,6,7,8,9, (2)将数组a中从第3个元素起连续5个元素拷贝到数组b中,打印b中的元素(用api中提供的数组拷贝方法实现)

第18章-随机实验与自然实验(优选.)

1 ? 陈 强,《高级计量经济学及S t a t a 应用》课件,第二版,2014年,高等教育出版社。 第1 8章 随机 实验与自然实验 18.1 实 验 数 据 假设研 究1x 是否导致y 。假定{}12,,,K x x x 包含所有影响y 的因素。 不同学科采用不同的实验方法,大致分为以下几类。 (1) 控制实验(c o n t r o l l e d e x p e r i m e n t ):在理想的物理实验中,控制{}2,,K x x 全部不变,单独让1x 变化,观察y 的变化。 (2) 随机(控制)实验(r a n d o m i z e d c o n t r o l l e d e x p e r i m e n t ):

2 【例】 医学 上对 新药 1x 疗效的 实验。 由于 参加实验者的体质 与生 活 方式不同 ,不 可能 完全 控制 所有 其他因 素 {} 2, , K x x 。 随机实 验将实验人群(或个体)随机地分为两组,其中“实验组”或“处理组” (t r e a t m e n t g r o u p )服用真药,而“控制组”(c o n t r o l g r o u p ,也称“对照组”)服用“安慰药”(p l a c e b o )。 被试 者不知道自己分在哪一组,避免心理干扰。有时科研人员也不知道被试者 在哪一组,称为“双盲法”(d o u b l e b l i n d )。 【例 】农学中将地块随机地分成三组(很难找到土壤条件完全一样的地块 ),分 别给予不同的施肥量,然后考察施肥的效果。

3 (3) 自然实验或 准实验 (n a t u r a l e x p e r i m e n t o r q u a s i e x p e r i m e n t ): 由于某些 并非 为 了实 验 目的而发生的外部突发事件,使得当事 人 仿佛被随机 地分在 了实验 组或控制组。 【例】一个州通过某法律,但相邻州未通过此法律。两州民众事先不知道哪个州会通过此法律,故无法自我选择住在哪个州。从考察法律的效果而言,可近似认为民众随机选择住在哪个州,或被随机分为实验组(通过法律)与控制组(没通过法律)。 (4) 思想实验(t h o u g h t e x p e r i m e n t ): M i l t o n F r i e d m a n 曾设想在小岛上通过空投货币,考察该岛的宏观经济的变化。

Experiment_Report

Experiment Report (实验报告) Experiment Name(实验名称) The first Experiment(第 1 次实验) Experiment Date(日期) 2014-06-17 Teacher(老师) Student ID(学号) Name(姓名) Class(班级) Score(成绩) 一.Aim and Requirement(目的和要求) Define a Class containing an overloaded method area(), which calculates area of a Square, Rectangle, and a Circle depending on the type and number of arguments passed to it. 二. Experiment Content(实验内容) 1、Write an overloaded method area(), which calculates area of a Square, Rectangle, and a Circle. 2、Write the main function to test the method. 三.Experimental Procedures(实验步骤) 1、Write an overloaded method area() to calculate area of a Circle. 2、Overload the method area() again to calculate area of a Square or a Rectangle. 3、Write the main function to test the method. 4、Run the project file, the result shows that: 四.Experimental Summary(实验小结)

相关文档
最新文档