电力系统三种潮流计算方法的比较
电力系统潮流计算1-概念方程及计算方法..

P T e Q f J T T x e 2 V eT
V 2 f T P f T Q f T
24
极坐标下牛顿-拉夫逊方法
P SP P(V , ) P(V , ) f ( x) SP Q ( V , ) Q Q ( V , )
如果将节点电压用极坐标表示,即令 则有:
Pi jQi U i i (Gij jBij )U j j
ji
Ui Ui i
=U i (Gij jBij )(cos ij j sin ij )
ji
i 1, 2,
N
Pi U i U j (Gij cos ij Bij sin Bij ) ji Qi U i U j (Gij sin ij Bij cos Bij ) ji
3 输出计算结果
22
牛顿-拉夫逊法潮流计算
牛顿法可写成如下简单迭代格式
x( k 1) x( k ) ( J ( x( k ) ))1 f ( x( k ) ) ( x( k ) )
( x) J 1 J 1 1 f ( x) ( x) I T f ( x) J T f ( x) T T x x x x
忽略高阶项,则有
f ( x ) f ( x )x
0
19
牛顿-拉夫逊法潮流计算
牛顿法的几何意义
20
以如下非线性方程为例进行 说明
f ( x) x 2 x 1 0
2
写成牛顿法形式为? 如果取初值为 x(0) 0.5
电力系统中的潮流计算与优化方法

电力系统中的潮流计算与优化方法潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、相角、有功、无功功率以及线路、变压器等的潮流分布情况。
对电力系统进行潮流计算可以帮助电力系统运行人员了解系统的稳定性、可靠性以及容载能力,也可以为电力系统规划提供数据支持。
本文将介绍电力系统潮流计算的基本方法与优化技术。
一、潮流计算的基本方法1.1 普通潮流计算方法潮流计算的基本方法是牛顿-拉夫逊迭代法(Newton-Raphson Iteration Method)和高尔顿法(Gauss-Seidel Method)。
牛顿-拉夫逊迭代法主要是通过不断迭代求解雅可比矩阵的逆,直到迭代误差小于给定阀值时停止迭代;高尔顿法则是逐一更新所有节点的电压与相角,直至所有节点的迭代误差都小于给定阀值。
1.2 快速潮流计算方法在大型电力系统中,普通的潮流计算方法计算速度较慢。
因此,研究人员提出了一些针对快速潮流计算的方法,如快速牛顿-拉夫逊法(Fast Newton-Raphson Method)和DC潮流计算方法。
快速牛顿-拉夫逊法通过简化牛顿-拉夫逊法的迭代公式,减少计算量,提高计算速度;DC潮流计算方法则是将潮流计算问题转化为一个线性方程组的求解问题,进一步提升计算效率。
二、潮流计算的优化技术2.1 改进的潮流计算算法为了提高潮流计算的准确性和收敛速度,研究人员提出了一些改进的潮流计算算法。
其中,改进的牛顿-拉夫逊法(Improved Newton-Raphson Method)是一种结合牛顿-拉夫逊法和割线法的算法,通过混合使用这两种方法,实现在减小迭代误差的同时加快计算速度。
此外,基于粒子群优化算法(Particle Swarm Optimization)和遗传算法(Genetic Algorithm)的潮流计算算法也得到了广泛研究和应用。
2.2 潮流优化潮流计算不仅可以用于分析电力系统的工作状态,还可以作为优化问题的约束条件。
电力系统中潮流计算方法研究

电力系统中潮流计算方法研究随着电力系统的迅速发展和电力需求的不断增长,电力系统的可靠性和稳定性成为了极为重要的问题。
在电力系统中,潮流计算是一项至关重要的技术,它可以帮助我们预测电力负荷和电力流向,有助于电力系统的稳定运行。
本文将探讨电力系统中的潮流计算方法及其研究。
一、潮流计算方法潮流计算是电力系统调度和运行的关键技术之一,其基本原理是根据电网拓扑、输电线路及变电站运行参数等,采用一系列算法求解电力系统中各节点的电压、电流和功率等物理量。
目前常用的潮流计算方法主要有两种:直接法和迭代法。
1.直接法直接法也叫解析法,它采用解析表达式计算电网各节点的电压、电流和功率等物理量。
其主要优点是计算速度较快,计算精度较高,适合用于小型电力系统和对计算精度要求较高的情况。
但是,直接法的缺点在于其计算复杂度极高,在大型电力系统中计算的时间和计算资源都会非常消耗。
2.迭代法迭代法也叫数值法,以牛顿—拉夫逊法(Newton-Raphson method)为代表,采用迭代过程计算电网各节点的电压、电流和功率等物理量。
迭代法主要优点在于其计算复杂度较低,在大型电力系统中计算速度相对较快。
但是,在特殊情况下,如系统存在多重解或松弛现象时,迭代法的收敛性也会受到一定的影响。
二、潮流计算的应用潮流计算在电力系统调度和运行中有着广泛的应用。
具体来讲,潮流计算可以用于下列几个方面:1.电网规划和设计电网规划与设计中潮流计算是必不可少的技术手段。
通过对不同区域、不同负荷的电力需求进行分析和计算,可以预测未来电力需求的变化,进而为电网规划与设计提供可靠的数据和参考。
2.电网运行状态分析潮流计算可以帮助运维人员及时监测电网运行状态,防范潜在安全隐患。
当电网发生故障或负荷变化时,运维人员可以通过潮流计算及时预警,采取有效措施避免电网故障的发生。
3.电网故障诊断与分析电力系统中常常发生各种故障,包括线路短路、设备故障等,这些故障严重影响电力系统的稳定运行。
电力系统潮流计算计算计算法

电力系统潮流计算算法设计及实现潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
建模是用数学的方法建立的数学模型,但它严格依赖于物理系统。
根据电力系统的实际运行条件,按给定的变量不同,一般将节点分为PQ节点,PV节点,平衡节点三种类型。
当这三个节点与潮流计算的约束条件结合起来时,便是潮流计算的数学模型。
PQ节点:有功功率P和无功功率Q是已知的,节点电压(V,δ)是待求量。
通常变电所都是这一类型的节点。
PV节点:有功功率P和电压复制V是已知的,节点的无功功率Q和电压相位δ是待求量。
一般选择有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PV节点。
平衡节点:在潮流分布算出之前,网络中的功率损失是未知的,所以,网络中至少有一个节点的有功功率P不能给定,这个节点承担了系统的有功功率平衡,所以称为平衡节点。
一般选择主调频发电厂为平衡节点。
潮流计算的约束条件是:1、所有的节点电压必须满足:这一约束主要是对PQ节点而言。
2、2、所有电源节点的有功功率和无功功率必须满足:对平衡节点的P和Q以及PV节点的Q按以上条件进行检验。
3、某些节点之间电压的相位差应满足:稳定运行的一个重要条件。
功率方程的非线性雅可比矩阵的特点:●各元素是各节点电压的函数●不是对称矩阵●因为Y =0,所以H =N =J =L =0,另R =S =0,故稀疏两种常见的求解非线性方程的方法:1)高斯-赛德尔迭代法;2)牛顿-拉夫逊迭代法。
高斯-赛德尔迭代法潮流计算1、方程表示:①用高斯-赛德尔计算电力系统潮流首先要将功率方程改写成能收敛的迭代形式;②Q:设系统有n个节点,其中m个PQ节点,n-(m+1)个是PV节点,一个平衡节点,平衡节点不参加迭代;③功率方程改写成:2、求解的步骤:1)上述迭代公式假设n个节点全部为PQ节点。
2)始终等号右边采用第k次迭代结果,当j<i时,采用经(k+1)次迭代后的值,当j>i时,采用第k次迭代结果。
41电力系统潮流计算总结

全线路电容 (充电)功率
计算阻抗支路的功率损耗时,务必注意所用视 在功率和电压的一致性,应为线路环节同一侧 (点)的值。
第四章
(一)电力网的功率损耗
2、变压器功率损耗的计算
电 力 系 统 潮 流 计 算
常用型等值电路表示; 同样具有串联阻抗支路(变动损耗)及并联导 纳支路/励磁支路(固定损耗) 。
注意单位! (4-29) (4-31)
双绕组变压器功率损耗计算 总的有功损耗:P P P T TS 0 总的无功损耗:
QT QTS Q0
第四章
(一)电力网的功率损耗 三绕组变压器的功率损耗计算
电 力 系 统 潮 流 计 算
P T P TS 1 P TS 2 P TS 3 P 0
第四章
电压的降落、损耗及偏移
电 力 系 统 潮 流 (4-3) 计 算
则有
P2 jQ2 dU2 ( R jX ) U2
U 2 U 2 U 2
.
,进而有:
三相功率和 线电压
第四章
电压的降落、损耗及偏移
展开得:
电 力 系 统 潮 流 计 算
(4—4)
ቤተ መጻሕፍቲ ባይዱ
令
称为电压降落的纵分量
称为电压降落的横分量
. ' 1
.
电 力 系 统 潮 流 计 算
第四章
开式电力网的潮流计算 (3)若已知 U 1 和 S LD (已知量不同侧,大 多工程实际情况)
.
.
电 力 系 统 潮 流 思路: . 计 ' 先作功率平衡计算,从末端到首端 S 1 ; 算 . 然后再作电压平衡计算,从首端到末端 U 2 ;
潮流计算、短路电流、无功补偿、稳定计算

潮流计算、短路电流、无功补偿、稳定计算
潮流计算:是电力系统稳态分析中的一种计算方法,用于计算电力系统节点中的电压、电流、功率等参数,以评估系统运行的稳态性能。
短路电流:是指电力系统中在电源电压保持不变的情况下,电路中发生短路(故障)时通过故障点后的最大瞬时电流。
无功补偿:是指为了改善电力系统中的功率因数,减少无功功率的流动而采用的一种措施。
稳定计算:是指电力系统的稳定性分析,主要是研究系统在各类故障情况下的动态稳定性能、讨论网络的负荷能力、和系统电源的适应能力等问题,在此基础上,提出合理的控制策略和改进方案,保障电力系统的稳定、可靠、优质运行。
复杂电力系统潮流计算

复杂电力系统潮流计算
复杂电力系统潮流计算的基本原理是基于Kirchhoff电流定律和Kirchhoff电压定律建立节点电流方程和节点电压方程。
节点电流方程是
根据节点电流相等原理建立的,它表达了电力系统各节点的注入、吸收和
分配的功率之间的关系。
节点电压方程是根据电压分压原理建立的,它表
达了电力系统各节点的电压之间的关系。
直接法是指直接求解潮流方程组得到节点电压和功率的数值解。
直接
法适用于小规模系统或具有特殊结构的系统,计算速度较快。
但是,对于
复杂电力系统来说,节点电压和功率的数值解往往难以得到。
迭代法是指通过迭代求解潮流方程组得到节点电压和功率的数值解。
迭代法通常包括牛顿-拉夫森法和高斯-赛德尔法两种,其中牛顿-拉夫森
法是迭代法中最常用的方法之一、迭代法的优点是适用于解决复杂电力系
统的潮流计算问题,但计算速度相对较慢。
在进行复杂电力系统潮流计算时,还需要考虑负荷模型、发电机模型
和变压器模型等实际情况。
负荷模型要考虑负荷的定常、过渡和瞬时特性,发电机模型要考虑发电机的定常和暂态特性,变压器模型要考虑变压器的
变比和损耗等因素。
这些模型的确切参数对于潮流计算的精度和可靠性至
关重要。
总之,复杂电力系统潮流计算是电力系统分析和设计中的一个重要环节。
通过建立潮流方程组,采用直接法或迭代法求解节点电压和功率的数
值解,可以评估系统的稳态运行状态,为电力系统的规划、运行和控制提
供重要的参考依据。
在实际应用中,还需要考虑负荷模型、发电机模型和
变压器模型等实际情况,以提高潮流计算的精度和可靠性。
电力系统潮流计算的方法

电力系统潮流计算的方法电力系统潮流计算是电力系统运行中的重要环节,用于确定电力系统各节点的电压、电流以及功率等参数。
通过潮流计算可以得到电力系统的状态,为电力系统的运行和控制提供参考依据。
电力系统潮流计算的基本原理是基于电力系统的节点电压和支路参数的关系,通过建立节点电压和支路电流之间的数学模型,利用电力系统的功率平衡条件,求解节点电压和支路电流的未知量。
电力系统潮流计算的方法主要分为直流潮流计算和交流潮流计算两种。
直流潮流计算是电力系统潮流计算的最简单方法。
在直流潮流计算中,假设电力系统中的所有元件都是直流的,不考虑电抗器件的影响。
直流潮流计算的基本原理是根据欧姆定律和功率平衡条件,建立电压和电流之间的线性关系,通过求解线性方程组得到电力系统的潮流分布。
直流潮流计算适用于电力系统的初始状态估计和简化模型计算。
交流潮流计算是电力系统潮流计算的常用方法。
在交流潮流计算中,考虑了电力系统中的电抗器件对电流和电压的影响。
交流潮流计算的基本原理是建立节点电压和支路电流之间的非线性关系,通过迭代求解非线性方程组得到电力系统的潮流分布。
交流潮流计算考虑了电力系统中的电气特性,可以更准确地描述电力系统的运行状态。
交流潮流计算主要有牛顿-拉夫逊法、高斯-塞德尔法和快速潮流计算法等几种方法。
牛顿-拉夫逊法是一种常用的交流潮流计算方法。
该方法通过迭代求解牛顿方程组,利用雅可比矩阵的逆矩阵来计算节点电压和支路电流的未知量。
牛顿-拉夫逊法收敛速度较快,适用于大规模电力系统的潮流计算。
高斯-塞德尔法是一种经典的交流潮流计算方法。
该方法通过迭代求解高斯方程组,逐步更新节点电压和支路电流的未知量。
高斯-塞德尔法的计算速度较慢,但收敛性较好,适用于小规模电力系统的潮流计算。
快速潮流计算法是一种基于功率因子校正的交流潮流计算方法。
该方法通过迭代求解校正方程组,根据功率因子的变化来调整节点电压和支路电流的未知量。
快速潮流计算法具有较快的收敛速度和较好的稳定性,适用于电力系统的实时潮流计算。
电力系统潮流计算与分析

电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。
而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。
本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。
一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。
它是电力系统规划、设计和运行中必不可少的工具。
潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。
通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。
二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。
直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。
它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。
交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。
在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。
牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。
快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。
三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。
首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。
通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。
其次,潮流计算可以用于电力系统的故障分析和稳定性评估。
通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。
此外,潮流计算还可以用于电力系统的输电能力评估和优化。
潮流计算的三种方法

潮流计算的三种方法
以下是 8 条关于“潮流计算的三种方法”的内容:
1. 潮流计算的第一种方法呀,就像是在茫茫人海中找到你的那个专属伙伴一样重要!比如说我们在规划城市电网的时候,通过这种方法能精准地掌握电力潮流的走向呢。
2. 第二种方法呢,可以类比成搭积木,一块一块地稳稳搭建起来,才能构建出稳固的潮流计算模型呀!就像在复杂的电路系统中,这种方法能让一切都清晰明了起来,厉害吧?
3. 嘿,第三种方法可是个厉害的角色哦!它就像一位超级侦探,能够把潮流中的各种细节都侦查得一清二楚!比如在分析大型工厂的能源分配时,这方法可立下了大功哟!
4. 哎呀呀,第一种方法真的很关键呢!想想看,如果没有它,不就像在黑暗中摸索一样迷茫吗?我们在研究交通流量的时候不也得靠它呀!
5. 第二种方法简直就是神来之笔呀!没有它,怎么能像指挥家一样精准地控制潮流的节奏呢?比如在设计智能电网时,它的作用可大了去啦!
6. 哇塞,第三种方法那可是不能小瞧的呀!这不就是像指南针一样给我们指引方向嘛!在优化能源布局时没有它可不行呢!
7. 瞧瞧这第一种方法,多厉害呀!难道不是相当于为潮流计算打开了一扇明亮的窗吗?在解决能源传输问题时它可太重要啦!
8. 第二种方法绝对是不可或缺的呀!就好像是为潮流计算这艘大船扬起了风帆一样!在构建高效能源系统时,它就是那关键的一环呐!
我的观点结论:这三种潮流计算方法都各有其独特之处和重要性,在不同的领域和情境中都发挥着极为关键的作用呢!。
电力系统潮流分析

电力系统潮流分析电力系统潮流分析是电力系统运行和规划中的重要工作,通过对电力系统的节点电压和功率流动进行计算和分析,可以评估电力系统的稳定性、安全性以及电能的经济分配。
本文将从潮流分析的基本原理、计算方法以及应用方面进行论述。
一、基本原理电力系统潮流分析是基于电力系统的等效电路模型和节点电压/功率之间的关系进行的。
在电力系统中,各个节点之间通过导线连接,形成复杂的电网。
当电力系统运行时,节点之间通过导线传输电能,而节点电压会受到负荷、发电机、变压器等因素的影响而发生变化。
电力系统潮流分析需要根据各个节点的特性(负荷、电源等)以及导线的特性(阻抗、输电能力等),计算得到节点电压和功率的分布情况,从而对电力系统的运行状态有所了解。
二、计算方法电力系统潮流分析的计算方法主要包括潮流方程的建立和潮流计算的迭代过程。
1. 潮流方程的建立潮流方程是电力系统潮流计算的基础,其基本形式为节点功率方程和节点电压方程。
节点功率方程描述了节点负荷与节点电压、导线传输电能之间的关系;节点电压方程描述了节点电压与节点电流、导线阻抗之间的关系。
通过列举各个节点的功率方程和电压方程,并结合电力系统的拓扑关系,可以建立电力系统的潮流方程。
2. 潮流计算的迭代过程潮流计算是通过迭代的方法求解电力系统的节点电压和功率流动情况。
迭代过程中,首先需要对电力系统中的各个节点进行初始化,即给定节点电压和功率的初值。
然后,根据潮流方程,计算节点电压和功率的值,再根据计算结果进行修正,直到达到收敛条件为止。
常用的潮流计算方法包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。
三、应用方面电力系统潮流分析在电力系统运行和规划中有广泛的应用。
1. 运行控制通过潮流分析可以获得电力系统的节点电压和功率分布情况,从而评估电网的稳定性。
根据潮流分析的结果,可以采取相应的控制措施,如调节发电机的输出功率、调整变压器的变比等,以维持电力系统的稳定运行。
2. 负荷分配潮流分析可以帮助确定电力系统中各个节点的负荷分布情况,从而合理安排电能的供应。
电力系统分析第04章复杂电力系统潮流计算

电力系统分析第04章复杂电力系统潮流计算潮流计算是电力系统分析的一个重要工具,用于计算电力系统中各节点的电压幅值和相角,以及各支路的功率潮流分布情况。
复杂电力系统潮流计算主要包括节点潮流计算和线路潮流计算两部分。
节点潮流计算是指计算电力系统各节点的电压幅值和相角。
节点潮流计算的基本原理是根据节点复功率方程和节点电流平衡方程,建立节点潮流计算的数学模型。
该模型可以用于计算电力系统中各节点的电压幅值和相角,并找出潮流计算过程中出现的问题。
线路潮流计算是指计算电力系统中各支路的功率潮流分布情况。
线路潮流计算的基本原理是根据支路潮流方程,建立线路潮流计算的数学模型。
该模型可以用于计算电力系统中各支路的功率潮流,包括有功功率、无功功率和视在功率等。
在复杂电力系统潮流计算中,需要考虑以下几个方面。
首先,需要确定电力系统的潮流计算方法,常用的有直接法、迭代法和改进迭代法。
直接法适用于小型电力系统,计算速度较快,但对于大型电力系统不太适用。
迭代法采用不断迭代的方式计算潮流,适用于大型电力系统,计算精度较高。
改进迭代法是对迭代法的改进,可以提高计算速度和精度。
其次,需要确定电力系统的节点类型。
电力系统中的节点可以分为平衡节点、PQ节点、PV节点和参考节点。
平衡节点的有功功率和无功功率都为零,用于维持整个系统的功率平衡。
PQ节点的有功功率和无功功率是已知的,需要通过潮流计算来确定该节点的电压幅值和相角。
PV节点的有功功率是已知的,需要通过潮流计算来确定该节点的无功功率和电压幅值。
参考节点是一个已知电压值的节点,作为其他节点电压相角的参考点。
最后,需要考虑电力系统潮流计算的收敛性和稳定性。
收敛性是指潮流计算的结果是否能够收敛到一个稳定的值。
如果潮流计算不能收敛,则需要调整潮流计算的参数或算法,以提高收敛性。
稳定性是指潮流计算结果对电力系统的扰动是否具有稳定的响应。
如果潮流计算结果不稳定,则需要进一步分析系统的动态行为,以寻找稳定的解决方案。
电力系统的潮流计算

第11章电力系统的潮流计算§1.0概述§1.1开式网络的电压和功率分布计算§1.2闭式网络潮流的近似计算方法§1.3潮流计算的数学模型§1.4牛顿一拉夫逊法的潮流计算§1.5P-Q分解法潮流§1.0 概述1、定义:根据给定的运行条件求取给定运行条件下的节点电压和功率分布2、意义:电力系统分析计算中最基本的一种:规划、扩建、运行方式安排3、所需:① 根据系统状态得到已知条件:网络、负荷、发电机。
②电路理论:节点电流平衡方程。
③非线性方程组的列写和求解。
4、已知条件:① 负荷功率P LD +jQ LD②发电机电压5、历史:手工计算:近似方法(§11.1,§11.2)计算机求解:严格方法V 3P 4 R 3Q 4X 3V 4P 4 X 3 - Q 4 R 3V 4V 3 = . (V^ V 3)V 32S LOSS3V 1R 1jX 1:V 4 L V 3P 4 Q (R 3 V 42V 2R 2jX 2 V 3 R 3jX 3 V14S 3S 2由此可见:利用上节的单线路计算公式,从末端开始逐级往上推算§1.1 开式网络的电压和功率分布计算注重概念,计算机发展和电力系统复杂化以前的方法1、已知末端功率和未端电压,见Figll.1解说:已知V 和各点功率S 3 = S3 ' S LO SS3 ' S 42、已知末端功率和首端电压以图11.1讲解,已知V 1和各点功率迭代法求解: ① 假定末端为额定电压,按上小节方法求得始端功率及全网功率分布 ②用求得的始端功率和已知的始端电压,计算线路末端电压和全网功率分布③用第二步求得的末端电压重复第一步计算④精度判断:如果各线路功率和节点电压与前一次计算小于允许误差,则停止计算,反之,返回第2步重复计算。
⑤从首端开始计算线路各电压如果近似精度要求不高,可以不进行迭代,只进行①、⑤计算始可。
电力系统的潮流计算

电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。
通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。
本文将介绍电力系统潮流计算的基本原理、计算方法和应用。
一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。
潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。
2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。
3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。
二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。
其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。
牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。
快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。
三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。
具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。
2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。
3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。
潮流计算

Sb SG STc S0c jQB 2 jQB3
1 b Tb 2 c Tc 3
A
d Td
SLDb
G
SG
SL D d
14
二、两级电压的开式电力网计算 计算方法一:包含理想变压器,计算时,经过理 想变压器功率保持不变,两侧电压之比等于实际 变比k。 T b d c L-1 L-2 SLD A
V1 arctg V1 V1
4
网络元件的功率损耗
功率损耗包括:电阻和等值电抗上的损耗 对地等值导纳上产生的损耗
V1S1 , I1 S ' I
jQB1
B j 2
R jX
S '', I S 2 , I 2 V2
jQB 2
B j 2
线路
VS1 , I1
线路
S0 (GT jBT )V 2
I0% S0 P0 jQ0 P0 j SN 100
开式网络的电压和功率分布计算
一、已知供电点电压和负荷点功率时的计算方法 已知末端的功率和电压:从末端开始依次计算出 电压降落和功率损耗。 已知电源点的电压和负荷的功率:采取近似的方 法通过叠代计算求得满足一定精度的结果
X2 k2 X2
T
A
A
B2 B2 / k 2 d c L-2 SLD
R'2+ j X'2 j B'2/2
16
R1+ jX1
j B1/2 j B1/2
b ΔS0
Z'T
c' j B'2/2
d'
SLD
二、两级电压的开式电力网计算 计算方法三:用π型等值电路代表变压器
电力系统潮流计算1-概念方程及计算方法(1)

具体可参见 Kusic G L. Computer-aided power systems
analysis. Prentice Hall, 1986
18
牛顿-拉夫逊法潮流计算
牛顿法的历史 牛顿法基本原理
对于非线性方程 f (x) 0
已知量为:平衡节点的电压;除平衡节点外所 有节点的有功注入量;PQ节点的无功注入量 ;PV节点的电压辐值
直角坐标下和极坐标下有不同的处理方法
10
直角坐标下潮流方程
直角坐标下待求变量
e1
x
en f1
fn
直角坐标下功率方程
P1
Pn Q1
f (x)
Qnr
21
牛顿-拉夫逊法潮流计算
牛顿法计算流程 1 初始化,形成节点导纳阵,给出初值 x(0) 2 令k=0 进入迭代循环
2.1 计算函数值 f (x(k) ) ,判断是否收敛 f (x(k) ) 2.2 计算Jacobian矩阵 f (x(k) ) 2.3 计算修正量 x(k) (f (x(k) ))1 f (x(k) ) 2.4 对变量进行修正 x(k1) x(k) x(k) ,k=k+1返回
23
直角坐标下牛顿-拉夫逊方 法
P(e, f ) PSP P(e, f )
f (x) Q(e, f )
QSP Q(e, f )
V 2 (e, f ) (V SP )2 V 2 (e, f )
P
eT
J
f xT
Q eT
V
2
eT
P
f T
Q
f T
V
2
f T
(完整)电力系统潮流计算方法分析

电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1.1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法.当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛.下面简要介绍该方法。
1.1。
1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。
12(,,,)01,2,,i n f x x x i n ==(1-1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1—4).(0)'(0)1(0)[()]()x f x f x -∆=-(1—3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤.第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1—5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下.n n n V e jf =+(1-8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
电力系统分析第4章电力系统潮流的计算机算法

图4-1简单电力系统
可得图4-1a各节点净注入功率为
S%1 S%2
S%G1 S%G 2
S%L1
S%3 S%L3
(4-1)
对图4-1b中的等值电路进行化简,将在同一节点上的接地 导纳并联得:
y10 y120 y130
阻抗矩阵是一个满矩阵,这是一个重要的特点。由于网络 结构复杂,直接应用公式(4-17)计算是很困难的。
综上所述,阻抗矩阵具有以下特点: (1)阻抗矩阵是n阶方阵,且Zij=Zji,既为对称矩阵。 (2)在一般情况下,阻抗矩阵无零元素,是满矩阵。矩阵的元 素与节点数的平方成正比,将需要更多的计算机内存容量。 (3)由于阻抗矩阵中的自阻抗Zii一般大于互阻抗Zij,即矩阵的 对角元素大于非对角元素。因此阻抗矩阵具有对角线占优势的性 质,应用于迭代计算时收敛性能较好。 (4)阻抗矩阵不能从系统网络接线图上直观的求出,需要采用 其他办法,如直接对导纳矩阵求逆。
...
Yi1
Yi2
i行 Y 'ii
... Yin
Yij
Yn1 Yn2 ...
Yni
... Ynn
0
0
0
...
Yji
...
0
Yjj
j行
其中,原节点导纳矩阵的对角元素应修正为 Y 'ii Yii yij
新增导纳矩阵元 Yjj yij ,Yij Yji yij 。
电力系统分析教材配套课件
第4章电力系统潮流的计算机算法
4.1 电力网络的数学模型 4.2 高斯——塞德尔法潮流计算 4.3 牛顿-拉夫逊法潮流计算 4.4 P-Q分解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统三种潮流计算方
法的比较
This manuscript was revised on November 28, 2020
电力系统三种潮流计算方法的比较
一、高斯-赛德尔迭代法:
以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮
流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为
不能直接得出方程的根,给一个猜测值
得
又可取x1为猜测值,进一步得:
反复猜测
则方程的根
优点:
1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点
数成正比关系。
缺点:
1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、
包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射
形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的
系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿-拉夫逊法:
求解
设 ,则
按牛顿二项式展开:
当△x不大,则取线性化(仅取一次项)
则可得修正量
对 得:
作变量修正: ,求解修正方程
牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。自从20世纪60年代
中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了
其他方法,成为直到目前仍被广泛采用的方法。
优点:
1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代4—5
次便可以收敛到一个非常精确的解。而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性,对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法
呈病态的系统,牛顿法均能可靠地收敛。
3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多,并与程序
设计技巧有密切关系。
缺点:
()0fx
10
()xx
迭代
0
x
21
()xx
1()kkxx
()xx
()0fx
0
xxx
1kkkxxx
牛顿法的可靠收敛取决于有一个良好的启动初值。如果初值选择不当,算法有可能根本
不收敛或收敛到一个无法运行的解点上。
解决方法:
对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间
的相位角差也不大,所以对各节点可以采用统一的电压初值(也称为“平直电压”),
“平直电压”法假定:
0100
ii
U
或 );,...,2,1(0100sinifeii
这样一般能得到满意的结果。但若系统因无功紧张或其它原因导致电压质量很差或
有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问题。
可以先用高斯一塞德尔法迭代1-2次;以此迭代结果作为牛顿法的初值,也可以先用直
流法潮流求解一次以求得一个较好的角度初值,然后转入牛顿法迭代。
三、P-Q分解法:
电力系统中常用的PQ分解法派生于以极坐标表示的牛顿—拉夫逊法,其基本思想是把节
点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,
以无功功率误差作为修正电压幅值的依据,把有功和无功分开进行迭代其主要特点是以
一个(n-1)阶和一个m阶不变的、对称的系数矩阵B,B代替原来的(n+m-1)阶变化
的、不对称的系数矩阵M,以此提高计算速度,降低对计算机贮存容量的要求。P-Q分解
法在计算速度方面有显着的提高,迅速得到了推广。
原理:
修正方程为:VVLKNHQP
雅克比矩阵元素的表达如下:
a) 当i≠j时
b) 当i=j时
对修正方程的第一个简化是:
上式可分别写成以下两式
在一般情况下,线路两端电压的相角差是不大的(不超过100~200),因此可以认为
ijijij
G
sin,1cos
《Bij
因此可得:BVVHijjiij (i,j=1,2,…,n-1)
BVVLijjiij (i,j=1,2,…,m)
经一系列化简得P—Q分解法的修正方程式: VBQBP
原P—Q分解法的修正方程的简化形式为: VBVQVBVP
PQ分解法的修正方程式的特点:
1. 以一个(n-1)阶和一个(m-1)阶系数矩阵BB、替代原有的系数矩阵J,提高了计算速
度,降低了对贮存容量的要求。
2. 以迭代过程中保持不变的系数矩阵BB、替代原有的系数矩阵J,显着的提高了计算
速度。
3. 以对称的系数矩阵BB、替代原有的系数矩阵J,使求逆等运算量和所需的储存容量
都大为减少。
P-Q分解法两个主要特点:
1. 降阶在潮流计算的修正方程中利用了有功功率主要与节点电压相位有关,无功功率主
要与节点电压幅值有关的特点,实现P-Q分解,使系数矩阵由原来的2N×2N阶降为
N×N阶,N为系统的节点数(不包括缓冲节点)。
2. 因子表固定化利用了线路两端电压相位差不大的假定,使修正方程系数矩阵元素变为
常数,并且就是节点导纳的虚部。
由于以上两个特点,使快速分解法每一次迭代的计算量比牛顿法大大减少。P-Q分解法只
具有一次收敛性,因此要求的迭代次数比牛顿法多,但总体上快速分解法的计算速度仍比
牛顿法快。快速分解法只适用于高压网的潮流计算,对中、低压网,因线路电阻与电抗的
比值大,线路两端电压相位差不大的假定已不成立,用快速分解法计算,会出现不收敛问
题。