基于PLD的纳秒级脉冲发生器

合集下载

一种纳秒级高压脉冲发生器的研制

一种纳秒级高压脉冲发生器的研制

高压电器
High Voltage Apparatus
直流电压的纹波系数可用公式( 2) 描述。
S=δU/Ud=Id/( 2fCUd)
( 2)
显然, C 值越大, 纹波系数 S 越小。在该电路中, 选择
1 uF 的电容以减小 S。变压器的变比可调, 因此可以
得到不同幅值的高压直流电压。当变压器的高压绕
pulse width <20 ns) must be easy to be generated. In this
paper, a new high voltage pulse generator is designed. The
mercury relay is used as switch and the energy storage
[3] 陈 衡, 侯善敬. 电力设备故障红外线诊断[ M] . 北京: 中国 电力出版社, 1999.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
( 上接第 130 页)
断路器安全总突变隶属函数值: X!=( 0.969, 0.749, 0.612, 0.387) 该高压断路器的运行状态处于“优”阶段, 工作 性能稳定, 故障概率极低。

脉冲激光沉积_PLD_技术及其应用研究

脉冲激光沉积_PLD_技术及其应用研究

第6卷第3期空 军 工 程 大 学 学 报(自然科学版)Vol.6No.3 2005年6月JOURNAL OF A I R FORCE ENGI N EER I N G UN I V ERSITY(NAT URAL SC IENCE ED I TI O N)Jun.2005 3脉冲激光沉积(P LD)技术及其应用研究高国棉1,2, 陈长乐1, 王永仓1,2, 陈 钊1, 李 谭1(11西北工业大学理学院,陕西西安 710072;21空军工程大学理学院,陕西西安 710051)摘 要:综述了脉冲激光沉积(P LD)薄膜技术的原理、特点,着重分析了脉冲激光沉积技术的研究现状和在功能薄膜制备中的应用前景。

大量研究表明,脉冲激光沉积技术是目前最好的制备薄膜方法之一。

关键词:P LD;薄膜制备;应用中图分类号:T N249 文献标识码:A 文章编号:1009-3516(2005)03-0077-05第一台激光器的问世,开启了激光与物质相互作用的全新领域。

人们发现当用激光照射固体材料时,有电子、离子和中性原子从固体表面“跑”出来,并在其附近形成一个发光的等离子区[1],其温度估计在几千到一万度之间,随后有人想到,若能使这些粒子在衬底上凝结,就可得到薄膜,这就是激光镀膜的概念。

1965年,S m ith等人第一次尝试用激光制备了光学薄膜,但经分析发现,用这种方法类似于电子束打靶蒸发镀膜,未显示出很大的优势,所以一直不为人们所重视。

直到1987年,美国Bell实验室首次成功地利用短波长脉冲准分子激光制备了高质量的钇钡铜氧(Y BCO)超导薄膜[2],脉冲激光沉积(Pulsed laser depositi on,简称P LD)技术才成为一种重要的制膜技术得到了国际上许多科研工作者的高度重视。

经过实验人们发现,P LD 技术在超导体、铁电体、金刚石或类金刚石等以及有机物薄膜[3~4]的制备上显示了一定的优势和潜力。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器高频高压微纳秒脉冲发生器是一种用于产生微纳秒脉冲电压的设备,它在科研和工业领域具有广泛的应用。

本文将介绍一种基于Marx脉冲电路和脉冲变压器的高频高压微纳秒脉冲发生器,以及其原理、结构和应用。

一、高频高压微纳秒脉冲发生器的原理高频高压微纳秒脉冲发生器的原理是利用脉冲电路产生高压脉冲,然后通过脉冲变压器将其升压至需要的电压水平,最终输出微纳秒脉冲信号。

Marx脉冲电路是一种常用的脉冲产生电路,它由多个串联的脉冲发生单元组成,通过依次充电和放电,可以实现高压脉冲的输出。

脉冲变压器则是一种特殊的变压器,它能够将输入的脉冲信号升压至较高的电压水平,并且具有快速升压和降压的能力,非常适合用于产生微纳秒脉冲信号。

基于Marx脉冲电路和脉冲变压器的高频高压微纳秒脉冲发生器主要由脉冲发生单元、脉冲变压器、控制电路和输出电路等部分组成。

脉冲发生单元是脉冲电路的核心部分,其数量和结构根据需要的脉冲电压和输出波形来确定。

脉冲变压器则是用于升压的关键部件,它通常采用特殊的材料和结构设计,以确保高频高压微纳秒脉冲的输出。

控制电路主要用于控制脉冲发生单元的充放电过程,以确保脉冲的稳定性和准确性。

输出电路则用于接收和输出高频高压微纳秒脉冲信号,通常会配合相应的传感器和测量系统使用。

高频高压微纳秒脉冲发生器在科研和工业领域具有广泛的应用,主要包括以下几个方面:1. 超声探测技术:高频高压微纳秒脉冲发生器可用于超声探测技术中的脉冲发射和接收,能够实现更高的分辨率和探测深度。

2. 电子束加速器:在电子束加速器中,需要精确控制的高频高压微纳秒脉冲信号来实现电子束的加速和聚束,高频高压微纳秒脉冲发生器是其关键部件之一。

3. 电磁脉冲模拟:在电磁脉冲干扰分析和抗干扰设计中,常常需要模拟高频高压微纳秒脉冲信号,以评估和改进电子设备的抗干扰性能。

4. 其他科学研究:在物理、化学和生物等领域的实验研究中,也常常需要使用高频高压微纳秒脉冲信号来进行实验和测量,高频高压微纳秒脉冲发生器为这些实验提供了关键的技术支持。

FPGA的数字脉冲延时发生器设计

FPGA的数字脉冲延时发生器设计

敬请登录网站在线投稿(t o u g a o.m e s n e t.c o m.c n)2021年第2期79F PG A的数字脉冲延时发生器设计陈泽洋(天津大学理学院,天津300072)摘要:本文主要介绍了一种数字式脉冲延时发生器的设计方法,该方案是基于A l t e r a(被I n t e l收购)的C y c l o n e I V系列F P G A实现的,为了同时满足高延时分辨率与大的可调范围,采用了粗细结合的延时方法,粗延时通过计数器法实现,细延时通过A D9501专用延时芯片实现;为了让用户与系统进行通信,在F P G A内部构建了N i o s I I软核处理器,并且编写软件程序实现人机交互㊂对系统的关键模块进行了仿真,仿真结果显示模块设计符合需求,最终延时系统可以实现精度为16.5p s㊁可调范围约为1.1s的延时㊂关键词:F P G A;A D9501;延脉冲发生时器;N i o s I I中图分类号:T N7文献标识码:AD e s i g n o f D i g i t a l P u l s e D e l a y G e n e r a t o r B a s e d o n F P G AC h e n Z e y a n g(S c h o o l o f S c i e n c e,T i a n j i n U n i v e r s i t y,T i a n j i n300072,C h i n a)A b s t r a c t:I n t h e p a p e r,a d e s i g n m e t h o d o f d i g i t a l p u l s e d e l a y g e n e r a t o r i s d e s i g n e d,w h i c h i s b a s e d o n A l t e r a's c y c l o n e I V s e r i e s F P G A.I n o r d e r t o m e e t t h e r e q u i r e m e n t s o f h i g h d e l a y r e s o l u t i o n a n d l a r g e a d j u s t a b l e r a n g e,c o m b i n e t h e c o a r s e d e l a y a n d f i n e d e l a y,t h e c o a r s e d e-l a y i s r e a l i z e d b y c o u n t e r m e t h o d,a n d t h e f i n e d e l a y i s r e a l i z e d b y A D9501s p e c i a l d e l a y c h i p.I n o r d e r t o e n a b l e u s e r s t o c o mm u n i c a t e w i t h t h e s y s t e m,N i o s I I s o f t c o r e p r o c e s s o r i s b u i l t i n F P G A,a n d s o f t w a r e p r o g r a m i s w r i t t e n t o r e a l i z e h u m a n-c o m p u t e r i n t e r a c t i o n.T h e k e y m o d u l e s o f t h e s y s t e m a r e s i m u l a t e d,a n d t h e s i m u l a t i o n r e s u l t s s h o w t h a t t h e m o d u l e d e s i g n m e e t s t h e r e q u i r e m e n t s.T h e f i n a l d e l a y s y s t e m c a n a c h i e v e a d e l a y a c c u r a c y o f16.5p s a n d a d y n a m i c r a n g e o f1.1s.K e y w o r d s:F P G A;A D9501;p u l s e d e l a y g e n e r a t o r;N i o s I I0引言脉冲延时发生器作为一种时序同步装置在激光系统[1-2]㊁雷达系统[3]㊁飞行时间质谱仪[4-5]等领域应用广泛,它可以对触发信号进行延时后输出脉冲信号,用户可以设定延时的大小㊂延时的分辨率与延时的可调范围是衡量其性能的两个重要参数,可以实现脉冲延时的方法有计数器法㊁存储器法[6]㊁专用延时芯片[7]等方法㊂计数器法与存储器法可以实现可调范围比较大的延时,不过延时精度由于受到时钟频率的限制只能做到纳秒量级,专用延时芯片法的延时精度可以做到皮秒量级,不过可调范围在微秒量级㊂F P G A是一种可编程逻辑器件,用户可以通过V e r i l o g H D L等设计文件在F P G A内部设计所需要的逻辑电路,与A S I C相比具有设计周期短㊁设计灵活等优点㊂本文介绍的延时脉冲发生器以A l t e r a(被I n t e l收购)的C y c l o n e I V系列F P G A为核心,采用粗细结合的延时方案,并且利用N i o s I I软核处理器用于系统控制,实现了脉冲延时发生器的设计㊂1基于F P G A的脉冲延时发生器整体设计延时系统的工作模式分为内触发模式与外触发模式㊂系统的设计框图如图1所示㊂工作在内触发模式时,触发信号由系统内部产生,用户可以设定触发信号的频率大小㊂工作在外触发模式时,触发信号由外部提供㊂整个延时系统的延时由粗延时部分和细延时部分组成,粗延时利用计数器法实现㊂计数器法的延时分辨率由采样时钟决定,本系统的采样时钟通过将外部50MH z晶振倍频得到,最终倍频数由系统能运行的最大时钟频率决定㊂细延时是利用A D9501实现的,A D9501通过8位控制字对单位粗延时进一步细分,得到16.5p s延时分辨率㊂P C机通过C P2102串口桥接芯片将设定的延时信息发送给N i o s I I软核处理器,延时信息包含用户设定的粗延时以及细延时,N i o s I I将粗延时信息经由P I O I P核传递到粗延时模块,细延时信息被转换成8位控制字,输出80M i c r o c o n t r o l l e r s &E m b e d d e d S ys t e m s 2021年第2期w w w .m e s n e t .c o m .c n图1 脉冲延时发生器的整体设计框图到A D 9501对其细延时进行控制㊂触发信号依次经过粗延时模块与A D 9501模块最终实现脉冲延时㊂其中内触发源模块㊁粗延时模块㊁N i o s I I 模块是在一块F P G A 内部㊂2 内触发源模块设计内触发源模块的作用是在内触发模式下提供触发信号㊂该模块的时序图如图2所示㊂图2 内触发源模块时序图c l k 为输入模块的时钟信号,d i v 为用户设定的分频数,c o u n t e r 为对时钟信号进行计数的计数器,o u t p u t 为最终输出的触发信号㊂当时钟信号到来时,启动计数器对时钟信号进行计数㊂当计数器计数的值等于d i v 时,将输出信号取反,同时计数器置零;当计数器的值不等于分频数时,输出保持不变,计数器持续对时钟信号进行计数㊂用户通过设置d i v 的值改变计数器的计数值,进而控制输出信号的跳变,从而达到对时钟信号进行分频的目的㊂3 粗延时模块设计粗延时模块负责对外部触发信号进行粗略延时,然后将延时后的脉冲输出到A D 9501进行细延时㊂该模块由输入时钟信号c l k ㊁触发信号t r i ㊁两个计数器p u l s e 1和pu l s e 2㊁两个计数器c o u n t e r 1和c o u n t e r 2组成㊂A D 9501的内部有一个斜波发生器,每次触发信号到来之后斜波发生器电压从0开始上升,当斜波发生器电压值与D A C 设定值相等时,拉高延时输出引脚电平,该斜波电压的置零是通过复位引脚实现的,拉复位引脚时,斜波发生器进行复位,如果不对其进行复位,则当下一个脉冲到来时,斜波发生器的电压是大于D A C 电压的,延时输出一直处于高电平状态,所以不能输出延时脉冲㊂由此可知,粗延时模块应该输出两个脉冲给A D 9501,分别为pu l s e 1和p u l s e 2,一个用于触发细延时,另一个用于将A D 9501斜波发生器置零㊂通过设定p u l s e 1与p u l s e 2之间的时间间隔就可以控制延时脉冲的脉宽大小㊂c o u n t -e r 1和c o u n t e r 2分别是延时计数器和脉宽计数器,通过延时控制字d e l a y 和脉宽控制字w i d t h 控制计数器计数到多少时输出脉冲信号,该模块的时序如图3所示㊂经过实验得知粗延时模块能够运行的最大时钟为240MH z,则粗延时分辨率为1/240MH z =4.2n s ,c o u n t e r 的位数设为28位,则最大延时为4.2n s ˑ228ʈ1.1s㊂图3 粗延时模块时序图4 细延时模块设计细延时模块是以A D 9501为核心实现的,它是在粗延时的分辨率基础上进一步细分实现更高分辨率的延时,A D 9501通过8位控制字对4.2n s 进行细分,则细分后的延时分辨率为4.2n s /28-1=16.5n s ㊂A D 9501的最小延迟(t P D )是触发电路延迟㊁斜坡发生器延迟和比较器延迟的总和㊂触发电路延迟和比较器延迟是固定的,斜坡发生器延迟是受线性斜坡变化率和偏移电压值影响的㊂最大延迟是t P D 和满量程(t D F S )的总和㊂斜坡发生器延迟是斜坡从其重置电压转换到D A C 电压所需的时间,D A C 电压由用户通过数字输入进行编程㊂满量程延迟(t D F S )由电容C e x t 和电阻R s e t 决定,范围为2.5n s ~10μs ,它们的关系如下:t D F S =R s e t ˑ(C e x t +8.5p F )ˑ3.84当满量程延时小于等于326n s 时,接C e x t 的引脚应当悬空;当满量程延时超过326n s 时,C e x t 引脚与电源之间可以最大加500p F 的电容㊂R s e t 的取值范围为50Ω~10k Ω㊂本设计想要实现满量程4.2n s 的延时,R s e t 大小应设置为128Ω,接C e x t 的引脚悬空㊂5 N i o s I I 控制模块设计从经济与系统复杂程度方面考虑,选用N i o s I I 软核处理器来实现P C 机对于系统的控制㊂N i o s I I 需要实现的功能为从P C 接收用户设定的延时值,然后将延时值发送给延时模块㊂利用Q s ys 自带I P 核可以实现加速设计,敬请登录网站在线投稿(t o u ga o .m e s n e t .c o m.c n )2021年第2期81图4 控制模块程序流程图实现数据接收与传输所需添加的主要I P 核有U A R T 与P I O ㊂P C 通过C P 2102将数据发送到U A R T I P 核的读寄存器,U A R T I P 核的r x d a t a寄存器接收到数据,使能读取中断,并将读取的数据在中断服务子程序中赋值给P I O ,就实现了P C 对延时系统的控制,图4为控制模块的程序流程图㊂6 关键模块仿真结果本设计的两个关键模块为内触发源模块与粗延时模块,编写测试文件对两个模块分别进行仿真,内触发源模块的仿真结果如图5所示㊂图5中信号从上到下依次是时钟信号c l k㊁复位信号r s t ㊁分频数d i v ㊁计数器c o u n t e r ㊁输出信号o u t ㊂可以看出,当分频数依次为0㊁1㊁2㊁3时,输出信号o u t 分别经过1个时钟周期㊁2个时钟周期㊁3个时钟周期㊁4个时钟周期发生电平的跳变,因此仿真结果表明,可以通过分频控制字d i v 来控制输出信号的分频数㊂粗延时模块的仿真结果如图6所示㊂图中信号从上到下依次是时钟信号c l k ㊁复位信号r s t ㊁触发信号t r㊁延时计数器c o u n t ㊁脉宽计数器c o u n t 1㊁延时控制字d e l a y㊁脉宽控制字w i d t h ㊁延时脉冲信号p u l s e 1㊁脉宽控制信号pu l s e 2㊂从仿真结果可以看出,当延时控制字为13㊁脉宽控制字为4时,触发信号到来之后的13个时钟信号输出p u l s e 1,pu l s e 1之后4个时钟信号输出p u l s e 2,该模块的设计符合需求㊂图5内触发源模块仿真结果图6 粗延时模块仿真结果7 性能比较将计数器法㊁专用延时芯片法㊁本设计的方法从可调范围㊁延时分辨率㊁功能扩展三个方面进行比较,结果如表1所列㊂表1 三种延时方法比较延时方法可调范围延时分辨率功能扩展计数器法m s ,s 量级n s 量级无法功能扩展专用延时芯片μs 量级ps 量级无法功能扩展本设计s 量级ps 量级便于功能扩展由表1中可知,本设计方法在保持计数器法与专用延时芯片方法优点的同时弥补了两种方法各自的不足,并且基于F P G A 灵活的特点,可以通过设计逻辑电路与编写N i o s I I 软核模块程序进行再次开发,以满足其他系统集成或者功能升级的需求㊂8 结 语目前国内的商用脉冲延时发生器主要依赖国外进口,价格一般在几万元到十几万元不等,价格昂贵并且性价比不高,本设计的脉冲延时发生器在满足高精度与大的可调范围的同时,成本方面也有很大的优势,整个系统制作成本仅为400元左右㊂在当今环境下,自主设计的脉冲延时发生器在商业与科技领域均具有重要意义㊂参考文献[1]蒋军敏,刘进元,刘百玉,等.用于激光打靶装置中的85敬请登录网站在线投稿(t o u ga o .m e s n e t .c o m.c n )2021年第2期85节的非线性特性耗费时间,无论系统的非线性多严重,均能按特定的关系进行转换㊂经数值分析将优化后的数据代入式(1)及联立式(1)和式(7),线性补偿前后物体位移y 和像点位移x 的关系如图6所示㊂y =270192x14216.256-398.32x+e d(8)图6 线性补偿前后物体位移y 和像点位移x 的关系5 结 语本文从反射式激光三角法测量原理公式㊁测量范围㊁分辨率及结构参数优化出发,用工程软件MA T L A B 对系统的各个参数之间的约束关系进行了分析与优化,使得参数优化过程得以简化,同时在实际中可根据器件因素和测量范围的要求不同随时改变,提高了设计的灵活性,降低了设计初期的费用,最后通过数值分析了造成物体位移与像点位移呈非线性的原因,并用线性补偿的方法使物体位移与像点位移线性输出,从而提高了测距传感器线性度与精度,降低了系统误差,实现了高精度大位移的测量㊂参考文献[1]王晓嘉,高隽,王磊.激光三角法综述[J ].仪器仪表学报,2004(S 2):601604,608.[2]L a r s L i n d n e r ,O l e g S e r g i y e n k o ,J u l i o C R o d r ígu e z Q u i ño n e z ,e t a l .M o b i l e r o b o t v i s i o n s y s t e m u s i n g c o n t i n u o u s l a s e r s c a n n i n gf o r i n d u s t r i a l a p pl i c a t i o n [J ].T h e I n d u s t r i a l R o b o t ,2016,43(4):360369.[3]S u Z h i q i ,H e Q i n g,X i e Z h i .I n d i r e c t m e a s u r e m e n t o f m o l t e n s t e e l l e v e l i n t u n d i s h b a s e d o n l a s e r t r i a n g u l a t i o n [J ].T h e R e -v i e w o f s c i e n t i f i c i n s t r u m e n t s ,2016,87(3):035117.[4]宋腾,张凤生,任锦霞.直射式激光位移传感器光束入射角对测量精度的影响[J ].机械,2017,44(2):3741.[5]Z h u a n g B H.N o n c o n t a c t m e a s u r e m e n t o f s c r a t c h o n a i r c r a f t s k i n s [J ].A p p l i e d l a s e r ,1997(2):4936.[6]任伟明,孙培懋,王亚雷,等.一种标定三角测量法激光位移计的方法[J ].光学技术,1997(3):1113,16.[7]赵景海,孙飞显.基于残差补偿的激光位移传感器测距方法[J ].计算机工程,2018,44(10):298302.[8]曹红超,陈磊,王波,等.一种改进型高精度激光三角位移传感器的结构设计研究[J ].激光杂志,2007(6):1415.[9]X u e l i H a o ,A i m i n S h a ,Z h a o yu n S u n ,e t a l .L a s e r b a s e d m e a s u r i n g m e t h o d f o r m e a n j o i n t f a u l t i n g va l u e o f c o n c r e t e p a v e m e n t [J ].O p t i k I n t e r n a t i o n a l J o u r n a l f o r L i gh t a n d E -l e c t r o n O pt i c s ,2016,127(1):274278.[10]胡纪五,史雪飞.仪表线性化优化设计[J ].电测与仪表,2000(2):58.[11]卢治功,贺鹏,职连杰,等.基于最小二乘法多项式拟合三角测量模型研究[J ].应用光学,2019,40(5):853858.[12]姜庆胜,计时鸣,张利.基于计算机视觉的机械零件平面曲线检测和识别研究[J ].机电工程,2005(7):47.樊鹏辉(硕士研究生),主要研究方向为传感器技术;杨光永(副教授),主要研究方向为传感器技术㊁机器人技术;程满(硕士研究生),主要研究方向为A G V 路径规划;刘叶(硕士研究生),主要研究方向为电机控制;徐天奇(教授),主要研究方向为传感器技术㊁自动化㊂(责任编辑:薛士然 收稿日期:2020-09-11) 新型同步系统的研究[J ].光子学报,2002(3):381383.[2]D T i a n ,G Y a n g .D e s i g n a n d d e v e l o p m e n t o f a m i n i a t u r e d i gi t a l d e l a y g e n e r a t o r f o r l a s e r i n d u c e d b r e a k d o w n s p e c t r o s c o p y[J ].I n s t r u m e n t a t i o n s c i e n c e &t e c h n o l o g y,2015(43):115124.[3]S Z h a o l i n ,L N a n ,W Y i n a n .H i g h r e s o l u t i o n p r o gr a mm a b l e d i g i t a l d e l a y g e n e r a t o r d e s i gn a n d r e a l i z a t i o n [C ]//2010I n -t e r n a t i o n a l C o n f e r e n c e o n I n t e l l i g e n t S y s t e m D e s i gn a n d E n -g i n e e r i n g A p p l i c a t i o n I E E E C o m p u t e r S o c i e t y,2010.[4]C L F e n g ,L G a o ,J H L i u .L a s e r m a s s s p e c t r o m e t r yf o r o n -l i n e d i ag n o s i s o f r e a c t i v e p l a s m a s w i th m a n y s p e ci e s [J ].R e -v i e w o f S c i e n t i f i c I n s t r u m e n t s ,2011(6):261434.[5]S V K o v t o u n ,R D E n gl i s h ,R J C o t t e r .M a s s c o r r e l a t e d a c c e l -e r a t i o n i n a r e f l e c t r o n MA L D I T O F m a s s s pe c t r o m e t e r :A n a p p r o a c hf o r e n h a n c e d r e s o l u t i o n o v e r a b r o a d m a s s r a ng e [J ].J o u r n a l o f th e A m e ri c a n S o c i e t y f o r M a s s S p e c t r o m e t r y,2002(13):135143.[6]邱有刚,黄建国,李力.基于F P G A 数字延迟单元的实现和比较[J ].电子测量技术,2011,34(9):6568.[7]马艳喜.数字延时器A D 9501的性能及其应用[J ].电子元器件应用,2002,4(11):2728.陈泽洋,主要研究方向为快点子学与离子光学㊂(责任编辑:薛士然 收稿日期:2020-08-19)。

一种简易的超宽带纳秒级脉冲发生器设计

一种简易的超宽带纳秒级脉冲发生器设计

一种简易的超宽带纳秒级脉冲发生器设计赵红梅;马琳琳;崔光照【摘要】为了得到超宽带纳秒级窄脉冲信号,在对UWB脉冲产生方法分析总结的基础上,提出了一种基于数字逻辑器件的简单脉冲产生电路.对实际制做的电路进行了测试,能够得到重复频率为10 MHz,脉冲宽度约为4 ns,幅度约为500 mV的窄脉冲.该电路成本低,结构简单,易于制作,工程实用性较强.%In view of the existing methods, a kind of UWB signal generator based on the digital logic device is designed to obtain the ultra-wideband (UWB) nano-seconds narrow pulse signal. Practical circuit has been tested, and narrow pulses, in which the repeat frequency is 10 MHz, pulse width is about 4 ns and amplitude is about 500 mV, have already been obtained at the same time. This circuit has low cost, simple structure and is easy to construct, which, as a result, has strong practicability.【期刊名称】《现代电子技术》【年(卷),期】2012(035)019【总页数】3页(P12-14)【关键词】超宽带;纳秒级窄脉冲;数字逻辑器件;TTL【作者】赵红梅;马琳琳;崔光照【作者单位】郑州轻工业学院电气信息工程学院,河南郑州450002;郑州轻工业学院电气信息工程学院,河南郑州450002;郑州轻工业学院电气信息工程学院,河南郑州450002【正文语种】中文【中图分类】TN784-340 引言近年来,超宽带(Ultra-Wide Band,UWB)无线通信技术成为国内外研究的热点。

基于SiC MOSFET的纳秒级脉冲电源研制

基于SiC MOSFET的纳秒级脉冲电源研制

基于SiC MOSFET的纳秒级脉冲电源研制脉冲功率技术广泛应用于军事、环境保护、生物技术等领域,比如脱硫脱硝、脉冲杀菌、激光管驱动、阴极射线管扫描电路等。

传统脉冲电源的主放电开关主要以真空弧光放电管、氢闸流管、火花隙为主,存在成本高、寿命短、外围电路复杂等缺点。

随着电力电子技术的发展,功率MOSFET和IGBT的性能越来越高,众多研究学者利用MOSFET或IGBT串并联组成高压固态开关替代传统放电开关,进而设计出纳秒级上升沿的高重复频率脉冲发生器。

本文以SiC MOSFET为核心功率器件,设计了一台纳秒级脉冲电源,电源主要技术指标为:输出脉冲峰值可调范围为0~30kV,脉冲重复频率为10Hz~1kHz可调,最大输出电流为80A,脉冲上升时间小于100ns。

本论文的主要工作如下:设计了纳秒脉冲电源的拓扑结构,主电路采用三级Marx发生器结构,研究了SiC MOSFET串联开关的静态和动态电压不均衡机制,给出了影响SiC MOSFET串联均压的关键因素。

针对静态均压电路的特性,明确了均压电阻的设计方法,对于动态均压电路,采用负载侧RCD电路作为均压措施,并确定了相应参数的选取依据。

对比分析了正激式驱动、半桥驱动、反激驱动三种驱动方式的优缺点,确定采用半桥驱动的方式作为SiC MOSFET的串联驱动电路,该电路的隔离强度高、驱动电路设计方便,其驱动变压器的原边和副边绕组匝数均为1匝,可减少其分布参数的影响。

通过实验测试了驱动电路的同步性,其驱动的延迟时间差异小于10ns,同步性良好。

采用Microchip公司的dsPIC33FJl28MC706作为主控制芯片,整个控制系统可以实现频率可调、脉冲幅值可调、过压和过流保护等,最终完成了实验样机的制作和调试,利用针-板反应器负载对电源的性能进行测试,实验结果表明电源满足了设计指标且基本性能良好。

pld激光脉冲沉积氟气的作用_解释说明以及概述

pld激光脉冲沉积氟气的作用_解释说明以及概述

pld激光脉冲沉积氟气的作用解释说明以及概述1. 引言1.1 概述PLD(脉冲激光沉积)技术是一种能够制备高质量薄膜和纳米结构的先进工艺。

在过去的几十年中,PLD已被广泛应用于材料科学与工程领域,具有很大的潜力和发展前景。

其中,PLD激光脉冲沉积氟气作为一种重要的方法之一,引起了广泛关注。

1.2 文章结构本文主要分为五个部分进行阐述。

首先,在引言部分对文章的研究背景和目的进行简要介绍。

其次,将详细解释和说明PLD激光脉冲沉积氟气的作用及其原理机制。

然后,对实验方法与结果进行分析,并探讨其相关性。

随后,在第四部分中将列举一些应用案例,并深入研究氟化物材料在能源领域的应用以及典型案例中PLD激光脉冲沉积氟气的作用与效果分析。

最后,在结论与展望部分对全文进行总结,并提出未来研究方向及改进方面的建议。

1.3 目的本文旨在全面了解和探索PLD激光脉冲沉积氟气的作用及其在材料制备中的应用。

通过对相关文献资料的调查与分析,我们将深入剖析PLD激光脉冲沉积技术原理,探讨其机理,并介绍实验方法与结果分析。

同时,结合实际应用案例,在特定领域中阐明PLD激光脉冲沉积氟气的作用与效果,为进一步挖掘和优化该技术提供参考。

最后,将总结研究成果并展望未来发展方向,以推动PLD激光脉冲沉积氟气在各个领域的广泛应用。

2. Pld激光脉冲沉积氟气的作用解释说明:2.1 Pld激光脉冲沉积技术简介:Pld激光脉冲沉积技术是一种利用高功率激光脉冲瞬间加热和蒸发材料靶,使其通过凝聚成为薄膜或纳米颗粒的方法。

在这个过程中,使用的气体环境可以对沈积物的形态、组分和性质产生重要影响。

其中,氟气作为一种常用的气体环境原料,在PLD激光脉冲沈积中发挥着重要作用。

2.2 氟化物在材料制备中的应用:氟化物化合物因其特殊的化学性质而广泛应用于材料制备领域。

例如,三氟化铁可以用于制备单晶铁铁酸盐电池正极材料;四氟化硅可被应用于低摩擦材料、绝缘涂层和管道防腐等方面;五氟化钒则可以作为催化剂使用;六氟硼酸铵常被用于制备氢燃料电池等。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器高频高压微纳秒脉冲发生器是一种重要的脉冲电子设备,广泛应用于激光器、雷达、射频加速器等领域。

本文将介绍一种基于Marx脉冲电路和脉冲变压器的高频高压微纳秒脉冲发生器设计。

一、Marx脉冲电路Marx脉冲电路是一种常见的高压脉冲发生器,能够产生高压、高能量的脉冲。

它由若干个串联的阻抗元件和开关元件组成,如图1所示。

当开关元件关闭时,阻抗元件串联起来,电荷能够储存在阻抗元件中;当开关元件打开时,储存的电荷会通过阻抗元件放电,从而产生高压脉冲输出。

Marx脉冲电路能够产生高压脉冲的原因在于它的串联结构,使得每个阻抗元件都能够充分利用储存的电荷,从而提高了输出的脉冲电压。

Marx脉冲电路还能够实现脉冲的叠加,通过合理设计阻抗元件和开关元件的数量和参数,可以实现多级串联,从而产生更高压的脉冲输出。

二、脉冲变压器脉冲变压器是一种能够实现高压升压的装置,通常在高压脉冲发生器中用于提高输出脉冲的峰值电压。

脉冲变压器的工作原理是利用电磁感应,当输入端施加脉冲电压时,通过变压器的电磁感应作用,能够将输入端的脉冲电压升高到输出端。

脉冲变压器的设计需要考虑因子包括匝比、铁心材料、绝缘材料等,以及变压器的绕组结构和绝缘保护等。

通过合理设计这些因子,可以实现高效的高压升压效果,将输入端的脉冲电压升高数倍甚至数十倍。

三、高频高压微纳秒脉冲发生器的设计在具体实现中,需要考虑Marx脉冲电路和脉冲变压器之间的匹配,尤其是在高频、微纳秒级脉冲输出的情况下,对变压器的响应特性和频率特性都有较高要求。

还需要考虑脉冲输出的稳定性和可控性,以及脉冲变压器的绝缘和耐压等性能。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器高频高压微纳秒脉冲发生器在科学研究和工业应用中扮演着重要角色。

它可以产生微纳秒级的脉冲信号,具有高频高压的特点,适用于多种领域的实验和应用。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器是一种常见的实现方式,下面将对其原理和应用进行详细介绍。

我们来了解一下Marx发生器。

Marx发生器是一种高压脉冲发生器,由数个串联的电容器和开关元件组成。

在工作时,每个电容器通过开关元件连接到下一个电容器,最终形成一个串联的电容电路。

当一定的电压施加到这个电路上时,每个电容器都会被充电,并在达到一定电压时通过开关元件放电,产生高压脉冲。

Marx发生器可以产生很高的脉冲电压,常用于工业领域和科学研究中。

接下来,我们来介绍一下脉冲变压器。

脉冲变压器是一种专门用于产生高压脉冲的变压器,它能够将输入的低电压高频信号转换成高电压的高频信号输出。

脉冲变压器通常由多级绕组和铁芯组成,通过耦合和变压作用实现电压的提升。

将Marx发生器和脉冲变压器结合起来,就得到了基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器。

其工作原理为:Marx发生器产生高压脉冲信号,然后通过脉冲变压器将这个高压脉冲信号转换成更高压的高频脉冲信号输出。

这种方式可以在保持高压的同时实现高频高压的输出,适用于需要微纳秒级高频脉冲的实验和应用。

1. 高频高压输出:通过脉冲变压器的作用,可以将Marx发生器输出的高压脉冲信号转换成更高压的高频脉冲信号,满足一些特定领域对高频高压信号的需求。

2. 微纳秒级脉冲:Marx发生器本身就能够产生微纳秒级的脉冲信号,结合脉冲变压器后,更加满足微纳秒级脉冲的需求,适用于一些精密的实验和应用。

3. 可定制化:基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器可以根据不同的需求进行定制,可以调整输出的脉冲频率、脉冲宽度和输出的高压电压等参数。

一种基于数字电路的纳秒级脉冲产生方法

一种基于数字电路的纳秒级脉冲产生方法

一种基于数字电路的纳秒级脉冲产生方法张涛;李熹;郭德淳【摘要】介绍了超宽带无线电的基本概念和技术特点,对几种典型的超宽带窄脉冲产生方法进行了描述和比较,提出了一种采用数字电路实现超宽带纳秒级窄脉冲的新方法,叙述了电路的基本原理和核心器件的主要性能,给出了电路结构,并对试验电路进行了测试.最后给出了测试结果并对测试结果进行了分析,得出了相关的结论.【期刊名称】《现代电子技术》【年(卷),期】2006(029)010【总页数】3页(P119-120,123)【关键词】超宽带;数字电路;脉冲;纳秒【作者】张涛;李熹;郭德淳【作者单位】北京理工大学信息科学技术学院,北京,100081;北京理工大学信息科学技术学院,北京,100081;北京理工大学信息科学技术学院,北京,100081【正文语种】中文【中图分类】TN789.11 引言超宽带(UWB)无线电是一种在频谱极宽,功率谱极低的情况下进行传输数据的无线电技术。

根据FCC对于UWB的定义,绝对带宽大于500 MHz或者相对带宽大于20%的无线电系统均可称为UWB系统。

大多数的超宽带系统都是基于无载波的窄脉冲信号,因为他的信号脉冲持续时间非常短,因此可以实现极高的数据率。

除了传输速度快之外,由于脉冲持续时间短,发射信号占空比小,因此在极宽的频谱上具有极低的功率谱密度,美国FCC已经批准在一定的限制条件下,可以与其他重叠频段的无线电系统共存。

当采用较高的发射功率时,可以穿透墙壁,探测到隐藏在墙壁和其他障碍物后面的人员等目标。

超宽带无线技术通过改变脉冲的幅度间距或持续时间来传递信息。

与其他无线通信技术相比,超宽带无线电系统有很多优点:频谱利用率高、系统结构简单、成本低、系统安全性能好、抗多径衰落能力强、系统容量大。

2 窄脉冲信号的产生原理窄脉冲产生的方法很多,大致可以分为2类,一类是将各种高速器件等效成开关,从而利用储能元件充放电得到短持续时间的信号,再经过脉冲成形网络整形成满足要求的波形和电压足够高的脉冲。

用于半导体激光器的大电流纳秒级窄脉冲驱动电路

用于半导体激光器的大电流纳秒级窄脉冲驱动电路

用于半导体激光器的大电流纳秒级窄脉冲驱动电路陈彦超;冯永革;张献兵【摘要】根据脉冲式半导体激光器对功率、脉宽、上升沿的要求,同时考虑电脉冲的注入便于测试激光器的各种性能,提出了一种以金属氧化物半导体场效应晶体(MOSFET)为开关器件,以雪崩晶体管为驱动器,可产生大电流、窄脉宽、陡上升沿脉冲的激光器驱动电路.讨论了预触发脉冲宽度和雪崩晶体管输出负载对MOSFET 输出脉冲在幅度和波形上的影响以及如何通过调整耦合电阻来控制脉冲的“下冲”和振荡.实验结果表明:在0~200 V供电电压下,该电路在1Ω电阻上产生了从0A 到148 A,具有陡上升/下降沿的10 ns级电脉冲.通过调整电路参数,可输出脉冲宽度窄至8.6 ns,幅度达到124 A的电脉冲.该驱动电路满足了脉冲式半导体激光器的工作要求和对器件测试的要求.【期刊名称】《光学精密工程》【年(卷),期】2014(022)011【总页数】7页(P3145-3151)【关键词】半导体激光器;驱动电路;大电流信号;纳秒级脉冲【作者】陈彦超;冯永革;张献兵【作者单位】北京大学地球与空间科学学院理论与应用地球物理所,北京100871;北京大学地球与空间科学学院理论与应用地球物理所,北京100871;北京大学地球与空间科学学院理论与应用地球物理所,北京100871【正文语种】中文【中图分类】TN248.41 引言脉冲式半导体激光器可用于激光测距、激光引信、激光雷达、泵浦固体激光器、脉冲多普勒成像、3D 图像系统、光纤测温传感器等领域。

高峰值功率、窄脉宽及陡上升沿的脉冲驱动可以增加激光器的作用距离并提高相关传感器的分辨率[1-4]。

对于脉冲激光测距,缩短激光脉冲的上升时间是提高精度最简单有效的方法[5]。

对于一些处于实验室阶段的新型半导体激光器,如GaN 基蓝紫光激光器,电脉冲的直接注入可以测试激光器的各种性能,比如观测激光器的增益光开关产生的延迟、过冲及拖尾的过程,脉冲光谱的展宽等[6]。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器高频高压微纳秒脉冲发生器是一种广泛应用于科研实验和工业领域的设备,它能够产生微纳秒级的高压脉冲,具有高频、高压、微纳秒等优良特性。

在实际应用中,脉冲发生器往往是通过与Marx发生器相结合来实现高压输出。

而脉冲变压器则是在高频高压脉冲发生器中起到非常关键的作用。

本文将着重介绍基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器的制作原理及其在实际应用中的优势。

高频高压微纳秒脉冲发生器的制作原理在制作高频高压微纳秒脉冲发生器时,首先需要核心的脉冲发生电路。

一般来说,脉冲发生电路有多种形式,其中Marx发生器是一种常用的高压脉冲发生电路。

Marx发生器是由数个串联的电容和开关组成的,当开关闭合时,电容充电,当开关打开时,电容的电荷通过放电电路产生脉冲输出。

Marx发生器之所以能够产生高压输出,是因为其串联多个电容,从而可以将电压叠加,得到较高的脉冲输出。

而在高频高压微纳秒脉冲发生器中,为了满足微纳秒级的脉冲输出,需要使用脉冲变压器。

脉冲变压器是一种特殊设计的变压器,它能够将输入的高压脉冲信号通过变压作用得到更高的输出高压脉冲信号。

通过将Marx发生器的输出接入到脉冲变压器中,可以实现高频高压微纳秒脉冲的生成。

脉冲变压器的作用是通过线圈的磁场感应效应,将高压脉冲信号转变为更高的高压脉冲信号。

基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器的优势基于Marx+脉冲变压器的高频高压微纳秒脉冲发生器在实际应用中具有许多优势。

它具有高频特性。

高频高压微纳秒脉冲发生器能够产生高频的脉冲输出,可以满足一些对高频信号源的需求,例如雷达脉冲信号源、微波通信脉冲信号源等。

它具有高压特性。

通过Marx+脉冲变压器的设计,高频高压微纳秒脉冲发生器能够输出较高的脉冲电压,可以满足一些高压实验的需求,例如击穿实验、等离子体研究等。

它具有微纳秒级的脉冲输出。

在一些需要精确控制脉冲宽度的应用中,高频高压微纳秒脉冲发生器可以提供精确的微纳秒级脉冲输出。

高功率全固态微波纳秒级脉冲源的设计与应用

高功率全固态微波纳秒级脉冲源的设计与应用
2. 1. 1 雪崩效应理论 一般晶体三极管的输出特性有四个区域:饱和区、线性区、截止区与雪崩区。对于 NPN 型晶体 管,当基极电流为正时( IB > 0),基射结正偏,此时处于线性区或饱和区。当基极电流为负时( IB < 0), 基射结反偏,一般为截止区。此时,逐渐增加集电极电压 UCE,当集电极电流 IC 随 UCE 和 - IB 急剧变 化时,则进入雪崩区。集电极电压很高时,阻挡层中电子被强电场加速,从而获得很大能量,它们与附 近的晶格碰撞时产生新的电子、空穴时,新产生的电子、空穴又分别被强电场加速而重复上述过程,于 是结电流便“ 雪崩”式迅速增长,这就是晶体管的雪崩倍增效应。 下面对雪崩管的动态过程进行分析。在雪崩管的动态过程中,工作点的移动相当复杂,现结合典 型的雪崩电路( 图 2)进行简要分析。
图 5 雪崩级联电路梳状 PCB 结构 Fig. 5 Comb PCB layout for avalanche series
图 4 为一 5 级 MARX 电路,触发脉冲加入前,各雪崩管截止,但已处于临界雪崩状态。Cl ~ C5
各电容均充有直流偏置电源电压 EC。 触发脉冲加入后,首先引起 Tl 雪崩击穿,于是 C2 左端电势等于 Cl 右端电势,即约等于 E(C 均指
( 国防科技大学电子科学与技术学院,湖南 长沙 410073)
摘 要:基于雪崩三极管雪崩效应,研制出了一种数千伏、纳秒级脉冲源。其为全固态微波 PCB 电路 结构形式,利用数字电路产生可控重频触发信号,脉冲全底宽度 400ps ~ 2ns 可调,重频 1k ~ 1000kHz 可调, 脉冲幅度 360 ~ 2600V 可调,峰值功率可达 135kW。详细讲述了电路设计、器件选择以及重要电路结构。 针对高压窄脉冲引起的特殊问题,提出了新颖的欠电荷充电法以及有效的梳状 PCB( 印刷电路板)结构。 电路性能优良、稳定可靠,已投入超宽带目标探测实验系统应用。

纳秒级高频脉冲发生电路

纳秒级高频脉冲发生电路

纳秒级高频脉冲发生电路
纳秒级高频脉冲发生电路是一种能够产生纳秒级高频脉冲信号的电路。

该电路可以应用于各种领域,如通信、医疗和科学实验等。

纳秒级高频脉冲发生电路通常由以下几个关键组件构成:
1. 时钟发生器:用于提供高频时钟信号,通常采用晶体振荡器或脉冲发生器等。

2. 脉冲发生器:用于产生纳秒级脉冲信号,通常采用快速开关元件,如晶体管或场效应晶体管等。

3. 驱动电路:用于控制脉冲发生器的开关动作,通常采用逻辑门电路或专用的驱动芯片等。

4. 输出电路:用于将脉冲信号送到外部电路或装置中,通常需要考虑信号匹配和阻抗匹配等问题。

在设计纳秒级高频脉冲发生电路时,需要考虑以下几个方面:1. 时钟频率:要选择合适的时钟频率,以满足具体应用的要求,同时要考虑到电路的速度和延迟等因素。

2. 快速开关元件:需要选择快速响应的开关元件,以实现纳秒级的脉冲信号发生。

3. 信号幅度和波形:需要考虑输出信号的幅度和波形要求,以及信号的稳定性和准确性等。

4. 电路布局和阻抗匹配:要进行良好的电路布局和阻抗匹配,以保证信号的质量和传输效率。

纳秒级高频脉冲发生电路具有高速、高精度和高稳定性的特点,能够满足一些特殊应用的需求,如激光器驱动、高速采样和超
高速通信等。

在实际应用中,需要根据具体要求进行电路设计和优化,以提高电路的性能和可靠性。

一种用于半导体激光器的皮秒级脉冲发生电路[发明专利]

一种用于半导体激光器的皮秒级脉冲发生电路[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910051936.X(22)申请日 2019.01.21(71)申请人 华东师范大学地址 200241 上海市闵行区东川路500号(72)发明人 陈少强 冉旭 刁盛锡 田赟鹏 李鹏涛 徐冬冬 王亚斯 (74)专利代理机构 上海蓝迪专利商标事务所(普通合伙) 31215代理人 徐筱梅 张翔(51)Int.Cl.H01S 5/042(2006.01)(54)发明名称一种用于半导体激光器的皮秒级脉冲发生电路(57)摘要本发明公开了一种用于半导体激光器的皮秒级脉冲发生电路,包括触发信号模块及CMOS脉冲产生模块,所述触发信号模块连接CMOS脉冲产生模块,CMOS脉冲产生模块产生脉冲输出。

本发明利用与门输入与输出之间竞争的关系,从而产生一个短脉冲。

脉冲的幅度和脉宽能够通过调节变容管和MOSFET的偏压大小来控制。

可以产生脉宽在80ps -270ns范围,幅度最高达到1.8V的电脉冲信号。

可以方便的应用于半导体激光器的驱动。

权利要求书1页 说明书4页 附图2页CN 109861076 A 2019.06.07C N 109861076A1.一种用于半导体激光器的皮秒级脉冲发生电路,其特征在于,该电路包括:触发信号模块及CMOS脉冲产生模块,所述触发信号模块连接CMOS脉冲产生模块,CMOS脉冲产生模块产生脉冲输出;其中:所述触发信号模块包括晶振U1、电位器R1、电阻R2、电容C5、电容C6及电容C7,所述晶振U1的VCC端通过并联的三个电容C5、电容C6及电容C7接电源VCC,GND端接地,OUT端通过连接电位器R1控制晶振输出信号的幅值,调节后的输出信号接入到下级CMOS 脉冲产生模块,电阻R2与触发信号模块的输出端并联后接地;所述CMOS脉冲产生模块包括CMOS脉冲产生芯片Pulse_G、电位器R3、电位器R4、电容C7、电容C8及电容C9,其中CMOS脉冲产生芯片Pulse_G拥有数个管脚分别对应:脚0为Vss端接地;脚1为IN端接前级触发模块输出的触发信号;脚2为TB控制端接电位器R3有效端,电位器R3左右两端一端接电源VDD、一端接地;脚3为OUT端为脉冲信号输出端,脚4为PAD_VDD端接电源VDD;脚5为CORE_VDD端通过并联电容C8、电容C9和电容C10接电源VDD;脚6为TA控制端、接电位器R4有效端,电位器R4左右两端一端接电源VDD、一端接地。

脉冲激光沉积

脉冲激光沉积
• 使用高致密度的靶材,同时选用靶材吸收高的激光波长。
因为液滴产生的情况在激光渗入靶材越深时越严重。靶材对激光的吸 收系数越大,则作为液滴喷射源的熔融层越薄,产生的液滴密度越低。
• 通过基于速率不同的机械屏蔽技术来减少颗粒物(由于 PLD产生的颗粒物的速率要比原子、分子的速率低一个数量级)。
1)在靶材与衬底之间加一个速率筛,只让速率大于一定值的物质通过并 沉积在衬底上,而速率较慢的颗粒物则被拦截下来 2)偏轴激光沉积,即衬底与靶材不同轴地进行薄膜的沉积,通过烧蚀物 粒子与粒子之间以及粒子与气氛的相互碰撞与散射作用来减少较大颗粒 物到衬底的沉积 3)瞄准阴影掩模版,即通过同轴的掩模版来阻挡液滴到达衬底 4)在靶材与衬底间加一个偏转电场或磁场来减少液滴的沉积,等等。
备薄膜的均匀性较差。 • (3) 某些材料靶膜成分并不一致。对于多组元化合物薄膜,
如果某些种阳离子具有较高的蒸气压,则在高温下无法保 证薄膜的等化学计量比生长。
9
5.2 PLD的基本原理
• PLD是一种真空物理沉积方法,当一束强的脉冲激光照射 到靶材上时,靶表面材料就会被激光所加热、熔化、气化 直至变为等离子体,然后等离子体(通常是在气氛气体中) 从靶向衬底传输,最后输运到衬底上的烧蚀物在衬底上凝 聚、成核至形成薄膜。
3
5.1 脉冲激光沉积概述
• PLD • 发展过程 • PLD的优点 • 待解决的问题
4
PLD
b
脉冲沉积系统一般由脉冲激光器,
光路系统(光阑扫描器,会聚透
镜,激光窗等),沉积系统(真
空室,抽真空泵,充气系统,靶
材,基片加热器),辅助设备
(测控装置,监控装置,电机冷
c
却系统)等组成。如图5-1所示。

纳秒级高压脉冲电源的设计与仿真

纳秒级高压脉冲电源的设计与仿真

纳秒级高压脉冲电源的设计与仿真张晗【摘要】利用电力电子技术与脉冲功率技术设计了一台纳秒级高压脉冲电源。

电源低压部分采用电力电子技术中的BUCK电路与串联谐振电路,高压部分采用脉冲功率技术中的磁脉冲压缩(MPC)网络与半导体断路开关(SOS)。

对高压脉冲电源的整体设计作了阐述,介绍了可饱和变压器与磁开关、晶闸管、半导体断路开关的参数设计。

利用PSPICE软件和泰克示波器两种方式对所设计的电源进行了仿真和试验。

试验测得在输出负载上产生了一个峰值高达50kV、半高宽为120ns 的负极性脉冲。

【期刊名称】《电器与能效管理技术》【年(卷),期】2016(000)008【总页数】6页(P63-68)【关键词】电力电子技术;脉冲功率技术;纳秒级高压脉冲电源;磁脉冲压缩;半导体断路开关;PSPICE软件【作者】张晗【作者单位】南方电网超高压输电公司检修试验中心,广东广州510663【正文语种】中文【中图分类】TM910.2脉冲电源可应用于等离子体物理、强脉冲X射线技术、高频脉冲焊接、核医疗γ照像机高功率激光、大功率微波、电磁脉冲、电爆炸、闪击航空和航天器的模拟等,范围极其广泛。

近年来,随着半导体开关技术的发展,逐步实现了开关技术的大功率、耐高压、大电流驱动等优点,实现了脉冲电源的高电压峰值与窄脉冲宽度[1-8];磁脉冲压缩技术从工作电压、峰值电流、重复频率、使用寿命等方面有效地克服了火花隙开关、IGBT、闸流管、晶闸管等大功率开关性能的不足给脉冲功率系统带来的限制。

近年来,以非晶态合金、铁基纳米晶为代表的新一代高频软磁材料的出现,打破了磁开关在高重复率脉冲功率系统中应用的限制,且最近出现的一种新颖电路解决了磁芯复位这一难题,使得磁开关能够达到更高的重复频率[9-16]。

因此,本文结合电力电子技术和脉冲功率技术,设计了一台纳秒级高压脉冲电源。

首先利用电力电子技术中的整流、逆变、串联谐振等原理设计了一台串联谐振电源,然后利用磁脉冲压缩(MPC)技术与半导体断路开关(SOS)技术将脉冲升压和整形,最终得到一个纳秒级的高压脉冲电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档