水稻二化螟抗药性及防治措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水稻二化螟抗药性研究及防治措施
摘要:水稻二化螟是我国水稻上危害最为严重的常发性、钻柱性害虫。目前国内有关二化螟防治技术的研究较多,对其抗病性的研究却远远不足。因此,对二化螟抗病性的研究进行综合阐述是有必要的,这为部分地区二化螟的回升与抗药性的相关性以及对其进行综合防治提供了理论指导意义。本文主要从其抗药机理、抗药监测、抗药性水平、抗药性特点等方面综合阐述其抗药性,并提出防治方法。
关键词:水稻二化螟抗药性防治技术
前言
二化螟Chilo suppressalis Walker属鳞翅目,螟蛾科,又称钻心虫、蛀心虫,属鳞翅目螟蛾科。卵为扁平椭圆形,卵长1.2ram,乳白色至黄白色或灰黄褐色,卵块由数十至200粒排成鱼鳞状,幼虫浅褐色,老熟幼虫体长20~30毫米。是我国水稻上危害最为严重的常发性钻柱性害虫,它主要分布在我国南方各稻区,使水稻在分蘖期受害造成枯鞘、枯心苗,在穗期受害造成虫伤株和白穗,一般年份减产3%~5%,严重时减产在3成以上。水稻二化螟在国内各稻区均有分布,较三化螟和大螟分布广,但主要以长江流域及以南稻区发生较重,近年来发生数量呈明显上升的态势。二化螟除危害水稻外,还能危害茭白、玉米、高粱、甘蔗、油菜、蚕豆、麦类以及芦苇、稗、李氏禾等杂草。[1]总体来说,国内学者对水稻二化螟的研究主要从其抗药性特点、产生抗药性的机制、分子遗传水平上的抗药性研究、抗药性水平以及防治方法、措施、技术等方面进行了研究,现将其研究成果综述如下:
1、水稻二化螟抗药性特点及抗药性水平
2008年,安徽省植保总站周群芳通过对安徽省农作物主要害虫对主治药剂抗药性鉴定,摸索出主要病虫害对相关药剂的抗性情况,通过水稻二化螟对四种主要药剂的抗性倍数的抗药性监测(杀虫单、三唑磷、氟虫腈、阿维菌素)研究指出:分地区的二化螟对杀虫单都达到中、低抗水平;对三唑磷抗性基本为低抗至敏感降低,部分地区达中抗,且有逐年上升趋势;对锐劲特和阿维菌素基本处于敏感段,近两年抗性有所上升。[2]并在此基础上得出以下结论:
1.1区域性
害虫抗药性成为全省现象,但抗性形成具有明显区域性。在同一地区长期使用同一种药剂,对药剂抵抗力弱的个体很快死亡,而抵抗力强的个体则生存繁殖下来,经过一定的适应、繁
殖阶段,就形成了抗性群体,如褐飞虱对吡虫啉不同地区不同抗性说明这一点。
1.2普抗性
害虫几乎对我省所有类别的主要合成化学农药及生物农药均能产生抗药性。
1.3交互抗性
随着抗性的扩大,交互抗性现象的日益严重和多抗现象变得越来越普遍,害虫对新的取代农药抗性发展速度也有加快的趋势。
1.4可避免性
当一种农药已经引发了抗药性后,如果在一段时间内停止使用,抗药性现象有可能逐渐减退甚至消失。[3]孝感市对孝感市中南部的孝南、汉川、应城、云梦、孝昌等县市的水稻二化螟抗药性进行了检测,通过采卵室内孵化饲养F1,用全国农技推广服务中心提供的杀虫单、三唑磷、锐劲特和阿维菌素四种药剂进行了抗性测定,从测定结果看,水稻二化螟对杀虫单已产生了明显抗性,抗药性已达到中抗水平,对三唑磷、锐劲特和阿维菌素抗性处于敏感水平,从年度间比较,杀虫单的抗性呈上升趋势。[4]杀虫单(双)抗性的普遍性据南京农业大学病虫监测与治理重点开放实验室持续多年的监测结果,二化螟普遍对杀虫单(双)产生抗性,[5]其中苏南的抗性水平最高,达20倍左右,为中等抗性;江淮稻区的抗性水平居中,为10~20倍;连云港等淮北稻区则处于敏感度下降阶段,并向低水平抗性发展,抗性水平为2~10倍[6]对于连云港市二化螟种群,其抗性发展的趋势轻于苏南地区,但对于某些杀虫剂如杀虫单等已向低水平抗性发展。据2002年及2003年的检测结果,杀虫单及三唑磷这两种药剂的抗性倍数虽有上升趋势(杀虫单的抗性倍数2002年为5.0,2003年上升到6.6;三唑磷的抗性倍数2002年为0.8,2003年上升到1.7),但在95%的置信限内属差异不显著,说明其抗性发展缓慢。李馨宇、沈晋良、曹明章等2002~2003年用点滴法检测了江苏省连云港市的二化螟种群4龄幼虫对多种(类)药剂的抗性。结果表明,该地区二化螟对沙蚕毒素类如杀虫单的抗性水平由敏感度下降阶段向低水平抗性发展;对有机磷类如三唑磷、丙溴磷、二嗪磷等均属敏感;对苯基吡唑类的氟虫腈和抗生素类的阿维菌素也属敏感。[7]
2 产生抗药性的机制
潘雅文[8]在害虫产生抗药性的原因及预防措施一文中指出:防治害虫时若连续使用某种药剂能使害虫产生抗药性。害虫抗药性的机制大致可分为以下几种:
2.1 改变作用部位
在某一昆虫体内存在一隐性的抗击倒基因,它改变了药剂到达作用部位的途径或改变了药性的作用部位。
2.2酶的改变
害虫作用点的酶对杀虫剂敏感性的降低。
2.3神经钝性
神经组织对毒物敏感性降低或不敏感。
2.4 生理性抗性
由于昆虫建立了解毒或其他生理机制而能忍受杀虫剂。如表皮通透性的降低、代谢力的增强或将药剂贮存在脂肪中的能力增强。
2.5 行为抗性
受刺激作用所致和非受刺激作用所致。
2.6 其它机制
一个机制就是产生了当作用部位受到抑制时,正常的生理过程走一个绕道,因而不受药剂的影响等。
3 分子遗传水平上的抗病性研究
南京农业大学植物保护学院农药科学系何月平、沈晋良根据生物进化理论深入理解害虫抗药性进化的遗传起源,并根据解释基因新功能进化的基因重复理论,推测认为基因重复为抗性基因变异提供了原材料。最后,根据现有抗性报道的例子将抗性突变的分子机制进行归类,并发现在多样化的抗性突变中存在一定的规律性,如靶标位点的点突变导致抗性的机制是靶标抗性机制的主要形式,基因扩增或基因过表达导致的代谢酶活性增加是代谢抗性的重要机制,这种规律性与变异的适合度密切相关。[9]在该文中,上述两学者通过研究得出:遗传变异是害虫抗药性进化的基础;基因重复为遗传变异提供了原材料,是抗性进化的主要根源。
[10]在该文中,上述两学者继续引用国内外权威说法,突变是所有遗传变异最本质的起源,但是从短期来看,普遍认为基因重复是新基因功能的主要原材料。[11-15]理论认为基因重复在初期阶段导致功能过剩,基因重复后,早期存在对保留原始功能的基因拷贝具有正向选择(positiveselection)作用,即其它重复基因有可能会简单地通过退化突变(degenerative mutations)而成为沉默基因或无功能基因,因随机漂变而生存下来。又因为大部分突变对适合度是有害的,故所有模型预测这种无功能化(1iOn—functionalization)是最常见的情况。极少数情况下,在一个基因拷贝保留原有的功能的基础上另一个拷贝可能接受了一个新的有益的功能,通过自然选择而被保持下来也即是新功能化(neofunctionalization)过程。虽然基因重复被进化成新功能的几率很罕见,但这些重复基因的随机沉默对新物种的被动起源进化起了明显作用。由于抗性进化是一种进化现象,基于以上理论,抗性基因变异