共射极放大器的交流等效电路分析法

合集下载

共射、共集、共基

共射、共集、共基
ri=hie+(1+hfe) Re
Ui
hie
ri
Re
hfeIb
Uo
r i'
ro
ro '
ri'=Rb1//Rb2//[hie+(1+hfe) Re]
输出电阻 电压增益
ro=∞ ro'=Rc
AU =
-hfeRL'
hie+(1+hfe) Re
放大电路的分析步骤
1. 作静态分析 画出电路的直流通路→
计算法 图解法
hie=Ube/ IbUce=C hre=Ube/ UceIb=c hfe=Ic/ IbUce=C hoe=Ic/ UceIb=c
共射h参数模型
等效电路分析
ΔU be hieΔI b hreΔU ce
ΔI c hfeΔI b hoe ΔU ce
Ic
+
Ib
Ec ( Rc Re ) I EQ
UE IEQ
工作点稳定 射极偏置电路的分析 2. 动态分析
Ec
Ui Uo Re UE U0
I1
Ui
Re IEQ
Ui
hie
ri
Re
hfeIb
Uo
r i'
ro
ro '
工作点稳定 射极偏置电路的分析 2. 动态分析
电压增益
Ui
hie
ri
Re
hfeIb
Uo
-hfeIbRL' Uo AU = U i Ibhie+(1+hfe)IbRe
共射h参数模型
等效电路分析
U be U be U be U ce I b I b U ce I b U ce I c Ic I c U ce I b I b U ce I b U ce

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析3.2.1基本共射放大电路1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。

a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。

b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。

■■童■ Br - - ■:必)iy, :信号慷:I ■t>A放大电路!»!2.电路组成:(1)三极管T;(2)VCC :为JC提供反偏电压,一般几〜几十伏;(3)RC :将IC的变化转换为Vo的变化,一般几K〜几十K。

VCE=VCC-ICRC RC,VCC同属集电极回路。

(4)VBB :为发射结提供正偏。

(习R十一般为儿1 K - JLT-Rb一般,程骨V開=e7V当%*宀只£时;,V B,I B A(6)Cb1,Cb2 :耦合电容或隔直电容,(7)Vi :输入信号(8)Vo :输出信号(9)公共地或共同端,电路中每一点的电位实际上都是该点与公共端之间的电位差。

图中各电压的极性是参考极性,电流的参考方向如图所示。

其作用是通交流隔直流。

V⑵输入电阻RiI£黒 b ZCKt亡/〒气V.V2^3.共射电路放大原理f' h : 1112V峠变化% %变化7变化 %尸%-叫好变化 > %变化SOOK A 4KTHl/cc/jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址44.放大电路的主要技术指标放大倍数/输入电阻Ri /输出电阻Ro /通频带(1)放大倍数放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,慮频段九—中频段一■久高频詁(3)输出电阻Ro输出电阻是表明放大电路帯负栽的能力,饨大表明 放大电路带负载的能力差,心的宦义:R 、=4-g(町根捌图"}・在帯竝肘,测得!色 鶴 JF 跑时的繭dj 为J*畀 则;心人! 丁 乂(厂:=口}认C 」叫 / 4 K 10 — 1 : %注总:肚大倍数、输入电阻、输岀电阻通常^^;11在 E 弦信巧下的它渝琴®, iHr n-放k 电呂&处于威k 状态且输;IM 伙珥的条件卜V 们息义.(4)通频带放大电路的增率的歯数4在低预段和 高频段放大缶数祁要下降。

9 共射极放大电路

9 共射极放大电路

江 阴 学 院
• 三极管微变等效电路模型的建立
1 使用条件
低频 小信号 变化量
江 阴 学 院
输入回路可等效为
ib
B
u be
B
等效为
ib
u be
江 阴 学 院
rbe
E
对于小功率三极管:
E
26(mV ) rbe 200( ) (1 β ) I E (mA )
rbe一般为几百欧到几千欧。
基极电流的瞬时值(交流分量+直流分量)
共射放大电路的电压放大作用
+UCC RB C1 + C2 + + iB iC + + T uCE uBE – uo – iE – iC RC
江 阴 学 院
+ ui

uo = 0 uBE = UBE uCE = UCE
uCE
无输入信号(ui = 0)时:
uBE UBE tO iB IB tO
分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。
江 阴 学 院
设置Q点的目的: (1) 使放大电路的放大信号不失真; (2) 使放大电路工作在较佳的工作状态,静态是 动态的基础。
分压偏置放大电路——工作点稳定
RB1、RB2——分压电阻,保证VB恒定。
U CC
RC
江 阴 学 院
RB1
波形分析
RB
iC
C1 +
+UCC RC
江 阴 学 院
ui
+
iB
t ui

t + + iB iC u T uCE C + uBE – – t iE

孙肖子模电第二版笫5章

孙肖子模电第二版笫5章
US RB2
-
RE
RL
+ U o -
第五章 基本放大电路
微变等效电路
I i
RS + RB1 U
i
Ib b
rbe
RB2
βI b
e
c
Ic
R // R U I L o e E A u r U U I i b be o
R (1 ) I b L r (1 ) I R I b be b L
RS es –
+
ui 短路 –
交流通路
RS
+ ui RB RC RL
es
+
– –
+ uO –
第五章 基本放大电路
放大电路的分析方法
估算法 静态分析 (直流通路)
图解法
放大 电路 分析
微变等效电路法 动态分析
(交流通路) 图解法 计算机仿真
静态分析
RB
估算法
+UCC RC C2 + + RL uo
电压放大倍数 小于且接近1
射极跟随器
1. 电压放大倍数 A u
US -
+
Ie
RE
Io
RL
+ U o -
-
2. 电流放大倍数 A i
R ( 1 ) I b E I o i RE RL A I I
+UCC
RE1 100, RE 2 900
求Au,Ri,Ro和Aus,并 与上例比较分析。
+ RE1
RE2
RS
+ RB2 US – –
RL uo

共射放大电路等效电路

共射放大电路等效电路

共射放大电路等效电路共射放大电路是一种常见的放大电路,它在电子设备中起着重要的作用。

本文将从等效电路的角度对共射放大电路进行介绍和分析。

共射放大电路由晶体管、负载电阻和输入电源组成。

它的作用是将输入信号放大,并输出到负载电阻上。

为了更好地理解共射放大电路的工作原理,我们可以将其抽象为一个等效电路。

等效电路是一种简化电路,能够保留电路的核心特性,但去除了一些不必要的细节。

在共射放大电路的等效电路中,晶体管被表示为一个放大系数为β的电流放大器。

负载电阻被替换为一个等效电阻RL,用来模拟负载的效果。

输入电源被表示为一个信号源VS,用来提供输入信号。

在等效电路中,我们可以更好地理解共射放大电路的工作原理。

当输入信号VS施加到基极时,会引起晶体管中的电流变化。

这个变化会通过晶体管的放大作用,将电流放大,并输出到等效电阻RL 上。

输出电流iL经过负载电阻RL后,产生一个电压VL。

这个电压VL 是输入信号VS经过放大后的输出信号。

因此,共射放大电路实现了对输入信号的放大。

在等效电路中,我们还可以看到晶体管的发射极与电源之间串联了一个电阻RE。

这个电阻的作用是为了稳定电流放大器的工作点。

通过调整RE的大小,可以控制电流放大器的偏置点,使其处于合适的工作状态。

在等效电路中,我们还可以看到输入电源的负极与晶体管的发射极、负载电阻和输入信号源的负极之间串联了一个电容CE。

这个电容的作用是为了阻隔直流信号,使得只有交流信号能够通过。

通过等效电路的分析,我们可以更好地理解共射放大电路的工作原理。

它通过晶体管的放大作用,将输入信号放大,并输出到负载上。

同时,通过调整电阻和电容的参数,可以使电流放大器处于合适的工作状态,并阻隔直流信号。

总结起来,共射放大电路是一种常见的放大电路。

通过等效电路的分析,我们可以更好地理解和掌握共射放大电路的工作原理。

同时,我们还可以通过调整电阻和电容的参数,来优化电流放大器的性能。

共射放大电路的等效电路为我们研究和设计其他类似电路提供了思路和方法。

三极管放大电路及其等效电路分析法

三极管放大电路及其等效电路分析法
详细描述
共集放大电路采用NPN或PNP三极管,输入信号加在基极和发射极之间,通过调整集电极和发射极之间的电压来 控制输出信号的幅度和相位。其输入阻抗较高,输出阻抗较高,电压放大倍数小于1,适用于信号跟随和缓冲。
04
CATALOGUE
三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
三极管放大电路常用于音频信号的放大 ,如音响设备、麦克风等。通过放大音 频信号,提高声音的响度和清晰度。
合理布线
优化电路板布线,减小信号干扰和寄生效应 。
电源滤波
采用电源滤波技术,减小电源噪声对电路的 影响。
三极管放大电路的调试与测试
静态工作点的调试
调整三极管基极和集电极的偏置电压 ,使放大器处于最佳工作状态。
动态性能测试
测试放大器的电压放大倍数、频率响 应和失真度等动态性能指标。
输入输出匹配调试
确保输入信号和输出信号之间的阻抗 匹配,减小信号损失。
VS
声音效果处理
在音频领域,三极管放大电路还可以用于 声音效果的添加和处理,如音调调整、混 响等。
在通信系统中的应用
信号放大
在通信系统中,三极管放大电路用于信号的 放大,确保信号传输的稳定性和可靠性。
调制解调
在无线通信中,三极管放大电路用于信号的 调制和解调,实现信号的发送和接收。
在自动控制系统中的应用
CATALOGUE
三极管放大电路的等效电路分析法
等效电路分析法的定义
等效电路分析法是一种将复杂电路简 化为简单等效电路的方法,通过等效 元件和等效参数来描述电路的性能。
在三极管放大电路中,等效电路分析 法可以将三极管内部结构及其工作原 理抽象化,以便于理解和分析。

共射极放大电路分析

共射极放大电路分析
3)作直流负载线 由输出方程 UCE=UCC-ICRC确定
注:静态工作点由直流负载线和 输出特性曲线上的IBQ线共同确 定Q点,属两者的交点
2020/1/19
16
模拟电子技术
第2章 晶体三极管及其应用
图解法求放大电路的静态工作点
2020/1/19
17
模拟电子技术
第2章 晶体三极管及其应用
二、 共射放大电路的动态分析
⑴三极管:电流放大
⑵电容C1和C2:隔直耦合 ⑶基极偏置电阻: Rb ⑷基极回路电源:UBB ⑸集电极电源:UCC ⑹集电极负载电阻:Rc
2020/1/19
8
模拟电子技术
第2章 晶体三极管及其应用
固定偏置共射放大电路图
2020/1/19
9
模拟电子技术
第2章 晶体三极管及其应用
共射放大电路实现信号放大的工作过程
c)温、湿度控制系统中采集的温、湿度变化转 化的电信号;
d)光敏器件检测到的光信号变化转化的电信号 等,
2020/1/19
4
模拟电子技术
第2章 晶体三极管及其应用
实际中需要将这些微弱的电信号加以放大,
放大到需要的数值,最后送到功率放大电路 中,功率放大到一定值,才能推动喇叭、继 电器、电动机、显示仪表等执行元件工作。
2.放大电路系统框图
2020/1/19
5
模拟电子技术
第2章 晶体三极管及其应用
2.3.2 共射极放大电路的组成
1.放大电路的基本组成
2020/1/19
6
模拟电子技术
第2章 晶体三极管及其应用
2.共射极放大电路的组成
2020/1/19
7
模拟电子技术
第2章 晶体三极管及其应用

第6讲 放大电路的分析方法

第6讲 放大电路的分析方法
交流通路
得: vCE = VCEQ+ ICQR L
图解分析 法
2.
通过图解分析,可得如下结论: 动态工作情况分析 1. vi vBE iB iC vCE |-vo| 2. vo与vi相位相反; 输入交流信号时的图解分析 3. 可以测量出放大电路的电压放大倍数; 4. 可以确定最大不失真输出幅度。
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。
2. 晶体管的h参数等效模型(交流等效模型)
• 在交流通路中可将晶体管看成 为一个二端口网络,输入回路、 输出回路各为一个端口。
u u BE f (iB, CE ) u iC f (iB, CE )
BJT的小信号建模
建立小信号模型的意义
在小信号情况下,对上两式取全微分得
dvBE diC vBE iB
VCE
diB
vBE vCE
IB
dvCE
i C i B
VCE
diB
i C vCE
IB
dvCE
用小信号交流分量表示 vbe= hieib+ hrevce
ic= hfeib+ hoevce
BJT的小 信号建模
解:(1)
IB VCC VBE 12V 40uA Rb 300k
共射极放大电路
I C I B 80 40uA 3.2mA
VCE VCC Rc I C 12V - 2k 3.2mA 5.6V
静态工作点为Q(40uA,3.2mA,5.6V),BJT工作在放大区。 V 12V I B CC 120uA I C I B 80 120uA 9.6mA (2)当Rb=100k时, Rb 100k

三种放大电路的微变等效电路

三种放大电路的微变等效电路

三种放大电路的微变等效电路一、引言放大电路是电子工程中最基本的电路之一,其作用是将输入信号放大到一定程度后输出。

在实际应用中,我们常常需要对不同类型的信号进行放大,因此需要设计不同类型的放大电路。

本文主要介绍三种常见的放大电路:共射极放大电路、共基极放大电路和共集极放大电路,并对它们进行微变等效电路的分析。

二、共射极放大电路1. 基本原理共射极放大电路(Common Emitter Amplifier)是最常见的一种放大电路,其基本原理如下图所示:![image-1.png](attachment:image-1.png)其中,Vcc为直流供电电压,Rb为输入信号源阻抗,Rc为负载阻抗,Re为发射极稳压器阻抗。

2. 微变等效电路在微变等效电路中,我们将所有直流元件短接或开路,并用小信号模型替换晶体管。

如下图所示:![image-2.png](attachment:image-2.png)其中,rπ为输入阻抗,gm为转移导纳(即传输系数),r0为输出阻抗。

3. 放大倍数计算根据微变等效电路可得到放大倍数的计算公式:Av = -gm(Rc||RL)其中,Rc为晶体管的负载电阻,RL为输出电路的负载电阻。

4. 特点和应用共射极放大电路具有以下特点:(1)输入阻抗较高,输出阻抗较低;(2)放大倍数较大,一般可达几十至上百倍;(3)适用于中频和高频信号放大。

三、共基极放大电路1. 基本原理共基极放大电路(Common Base Amplifier)是一种常见的低噪声、高频率的放大电路。

其基本原理如下图所示:![image-3.png](attachment:image-3.png)其中,Vcc为直流供电电压,Rb为输入信号源阻抗,Rc为负载阻抗。

2. 微变等效电路在微变等效电路中,我们将所有直流元件短接或开路,并用小信号模型替换晶体管。

如下图所示:![image-4.png](attachment:image-4.png)其中,rπ为输入阻抗,gm为转移导纳(即传输系数),r0为输出阻抗。

4.1.2-4.1.3-基本共射极放大电路的分析方法ok

4.1.2-4.1.3-基本共射极放大电路的分析方法ok
解:(1) I BQ
例题
VCC VBE 12V 40μA Rb 300k
共射极放大电路
ICQ βIBQ 80 40μA 3.2mA
VCEQ VCC Rc ICQ 12V 2k 3.2mA 5.6V
静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。 VCC 12V I 120μA ICQ IBQ 80 120μA 9.6mA (2)当Rb=100k时, BQ R 100k b
vBE=VBEQ+vbe iB=IBQ+ib iC=ICQ+ic vCE=VCEQ+vce
各值都含有直流分量和交流分量。
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线的影响 (2)对交流通路、交流分量、交流负载线的影响
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线有无影响
2. BJT的H参数及微变等效模型 H参数微变等效模型 受控电流源hfeib ,反 映了BJT的基极电流对集电 极电流的控制作用。电流源 的流向由ib的流向决定。 hrevce是一个受控电压 源。反映了BJT输出回路电 压对输入回路的影响。 H参数都是小信号参数,即微变参数或交流参数。
H参数与工作点有关,在放大区基本不变。
vs Vsm sinωt
vBE (VBB vs ) iB Rb
2. 动态工作情况的图解分析 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波 形 交流负载线 (交流负载线) vCE VCC iC Rc
2. 动态工作情况的图解分析 共射极放大电路中的电压、 电流波形
ICS 1.5
3 Q’

有源负载共射放大电路交流等效电路

有源负载共射放大电路交流等效电路

有源负载共射放大电路交流等效电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!有源负载共射放大电路交流等效电路引言有源负载共射放大电路是电子电路中常见的一种放大电路,它可以将输入信号放大到更高的电平,并通过有源负载来实现输出阻抗的调节。

模电第五章

模电第五章

关键是根据输入信号求出各极电流、 关键是根据输入信号求出各极电流、电压波形瞬时值
解:静态工作点如下
U BEQ = 0.7V
I CQ = 5mA
I BQ = 100µA
U CEQ = 10V
瞬时值是交流量叠加在直流量之上 1、晶体管发射结上的瞬时电压 、
uBE = UBEQ + ui = 0.7 + 0.025sin ωt(V )
+ uce

——输出交流负载线 输出交流负载线
′ uCE −UCEQ = −RL (iC − ICQ )
交流负载线过Q点 ①令iC = ICQ,则uCE = UCEQ,交流负载线过 点 ②斜率为
′ −1 RL 交流负载线比直流负载线陡
图解
′ ③令iC = 0,则 uCE = UCEQ + ICQ RL ,这是与横坐标的交点 ,
第五章 基本放大电路
1 − ′ RL

1 RC
Q
Q
UCEQ + ICQ (RC // RL )
第五章 基本放大电路
【结论】: ① 当ui=0时,即为静态。 时 即为静态。 此时u 此时 BE=UBEQ=0.7V, iB=IBQ=100µA,uCE=UCEQ=10V,iC=ICQ=5 mA , , , ② 当ui从零向正方向增大时→iB↑→ iC↑→uCE↓ 当ui从零向负方向减小时→iB↓→ iC↓→uCE↑ 图解法不仅形象地说明了放大器的工作过程, ③ 图解法不仅形象地说明了放大器的工作过程,而且可以求出各极电 流、电压幅值和相位关系。 电压幅值和相位关系。
图解
第五章 基本放大电路
2、画输出回路的交流负载线 、 在动态运用时, 都是在静态电流、 在动态运用时,iC和uCE都是在静态电流、电压的基础上随交流信号 作相应的变化。 作相应的变化。

(最新整理)第6讲放大电路的分析方法wang

(最新整理)第6讲放大电路的分析方法wang

RC IB IC
+UCC +
IC IB 3 7 .5 0 .0 4 m A 1 .5 m A U+B–ETU–CE
UC EUC CICRC
121.54V6V
注意:电路中IB 和 IC 的数量级不同
例2:用估算法计算图示电路的静态工作点。
+UCC 由KVL可得:
RB
RC IB IC
+
U C CIB R B U B EIE R E
适,晶体管进入截
• 截止失真
止区或饱和区工作, 将造成非线性失真。
Q'
Q设置过低,
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。
• 饱和失真
若Q设置过高
晶体管进入饱 和区工作,造成 饱和失真。
饱和失真产生于晶体管的输出回路!
消除饱和失真的方法
Rc↓或VCC↑
5. 放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是一个信
号源,可以将它进行戴维南等效,等效电源的内阻即为放
大电路的输出电阻。
RS
E
+ S_
Au 放大 电路
+
RL _U o
输出电阻是 动态电阻,与 负载无关。
ro
定义:
输 出 电 阻 Ro :UIoo
E
+
o_
+
RL _U o
输出电阻是表明放大电路带负载能力的参数。电路
rbe
60
4. 放大电路输入电阻的计算
放大电路对信号源(或对前级放大电路)来说,是一个负载, 可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也 就是放大电路的输入电阻。

共发射极放大电路的分析

共发射极放大电路的分析

共发射极放大电路的分析
一、直流分析:
1.确定工作点:首先需要确定晶体管的工作点,即输入直流电压和输出直流电压。

通过射极电阻的分压原理,可以计算出射极电阻的电流和电压,从而确定工作点。

2.确定偏置电路:为了使晶体管在工作点时处于线性放大区,并避免过饱和或者截止,需要设计偏置电路。

常见的偏置电路有电流镜电路、共射极负反馈电路等。

3.分析直流通路:根据电路的连接方式,确定各电阻的电压和电流。

通过欧姆定律和基尔霍夫定律,可以计算出各节点的电压和电流。

二、交流分析:
1.交流模型:根据晶体管的小信号等效模型,进行交流分析。

通常将晶体管看作是一个受控电压源和电阻组成的电路。

其中,受控电压源用于描述输入信号的影响,电阻用于描述晶体管的放大特性。

2.确定输入阻抗:通过交流模型,计算出输入阻抗。

输入阻抗可以反映输入信号对电路的影响程度。

3.确定输出阻抗:通过交流模型,计算出输出阻抗。

输出阻抗可以反映电路对负载的驱动能力。

4.确定增益:通过计算输入电压和输出电压之比,可以得到电路的增益。

增益可以衡量电路放大信号的能力。

在共发射极放大电路的分析中,还需注意以下几点:
1.负载:应根据负载特性,选择适当的电阻和电容,以提高电路的稳
定性和性能。

2.频率特性:晶体管的频率响应、输入输出阻抗随频率的变化等,也
需要进行分析和优化。

3.反馈:可以通过负反馈来改善电路的性能,增加稳定性和减小波动。

总结:。

共射放大电路交流等效电路

共射放大电路交流等效电路

共射放大电路交流等效电路
共射放大电路是电子线路中常用的一种放大电路,其交流等效电路对于理解其工作原理和性能至关重要。

以下是对共射放大电路交流等效电路的详细分析。

首先,我们需要了解共射放大电路的基本组成。

它主要包括一个晶体管、一个输入信号源、一个输出负载和一个偏置电路。

其中,晶体管是核心部分,采用NPN或PNP型硅管或锗管,具有三个电极——基极、集电极和发射极。

当我们考虑交流信号时,可以将共射放大电路看作一个线性时不变系统,可以用交流等效电路来表示。

该等效电路主要由两部分组成:一个是晶体管的交流通路,另一个是信号源内阻和负载电阻。

在交流等效电路中,我们将晶体管视为一个受输入信号控制的电压转换器。

具体来说,基极输入信号引起集电极输出信号的变化,通过晶体管的电压放大作用,实现信号的电压放大。

而输入信号源内阻和负载电阻则分别代表了信号源对放大电路的输入阻抗和放大电路对负载的输出阻抗。

为了更好地理解共射放大电路交流等效电路的工作原理,我们需要分析其性能参数,如电压放大倍数、输入电阻、输出电阻等。

这些参数可以通过晶体管的交流等效电路进行计算,对于评估放大电路的性能和优化设计至关重要。

在实际应用中,共射放大电路交流等效电路可以用于各种电子设备中,如音频放大器、视频放大器、计算机主机等。

通过合理地选择晶体管
和电阻值,以及优化偏置电路的设计,我们可以获得具有优异性能的共射放大电路,满足各种应用需求。

总之,共射放大电路交流等效电路是理解和设计共射放大电路的重要工具。

通过深入分析其工作原理和性能参数,我们可以更好地掌握共射放大电路的特性和应用,为电子工程领域的发展做出贡献。

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

二、放大电路动态指标的估算
1.性能指标估算
共射放大电路微变等效电路
(1)电压放大倍数的估算


AU
UO
.•
Ui


Ui Ib rbe


Uo Ib R'(L R'L RC // RL )


故共射放大电路的电压放大倍数为:

AU
UO
.•
Ui
I b R'L

Ibr be
R'L
rbe


如果不考虑 U i 和 U o各自的相位关系,则上式也可以写成:
AU
UO
.
Ui
I b R'L
Ibr be
R'L
rbe
式中“-”表示输入信号与输出信号相位相反。
空载时电压倍数:
Au
RC rbe
Au Au 说明:放大电路带上负载后放大倍数将降低。
(2)输入电阻ri
(3)输出电阻ro
ro Rc
2.输入电阻ri
放大电路的输入端可以用一个等效交流电阻ri来表示,它定义为:
ri
ui ii

rs
us -
+ ii
ui -
放大电路
ro
ri

uo′ -
+ io
RL
uo

ri
ro
放大器接到信号源上以后,就相当于信号源的负载电阻,ri 越大表示放
大器从信号源索取的电流越小,信号利用率越高。
3.输出电阻ro
一是放大倍尽可能大; 二是输出信号尽可能不失真。 主要技术指标有:放大倍数、输入电阻、输出电阻。

共基与共集放大电路

共基与共集放大电路
≈ VCC - ICQ RE
+VCC RB
IB
T
IE
RE
直流通路
二. 动态分析
b ib
ic c
RB C1 +
+ RS
+VCC + ui us -
T C2
-
rbe
βib
RB
e
+
RE
RL uo
-
RS
ui
u+s
-
-
+
RE
RL
uo
-
b ib
e - ie
共集电极放大电路
+ RS us+ ui
rbe RB
iC βib
2.3 共基和共集放大电路
放大电路的三种基本组态:共射 、共集 和共基
2.3.1 共基放大电路
C1
C2 T
+
+
ui
RE
RB2
Rc
RL
uo
-
CB
RB1
VCC
-
一. 静态分析
若静态基流很小, 则
UBQ =
RB1 RB1+RB2
VCC
IEQ =
UBQ - UBEQ RE
IBQ =
IEQ 1+β
≈ ICQ
R´E= RE // RL
Au =
uo ui
=
(1 + β) RE´
rbe + (1 + β)RE´
Au小于近似等于1 uo 与 ui 相位相同
3 . 输入电阻
b + Rs
ib rbe
e
- ie

共射极放大器的交流等效电路分析法

共射极放大器的交流等效电路分析法
*
解 由于RE=RE1+RE2=1kΩ,所以Q点不变。对于交流通路,现在射极通过RE1接地。交流等效电路为:
1
*
1
*
可见,RE1的接入,使得Au减小了约10倍。但是,由于输入电阻增大,因而Aus与Au的差异明显减小了。
*
2.6 共集电极放大器




U
o
U
i
U
s
R
s
R
B2
C
1
R
E



R
s
U
s
R
B1
I
b
R
o
R
B2
r
be
βI
b
b
c
I
c
I
e
R
E
R
L
I
o
R
i

I
i
e
*
图2.6.1 共集电极放大器及交流等效电路
(b)交流等效电路
U
i
R
i




R
s
U
s
R
B1
I
b
R
o
R
B2
r
be
βI
b
b
c
I
c
I
e
R
E
R
L
I
o
R
i

I
i
e
3.输入电阻Ri
*
Ri’显著增大,所以共集电极电路的具有高输入电阻的特性
R
L
R
o



U
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共射极放大器的交流等效电路分析法是评估放大器性能的重要手段。首先,通过直流通路估算直流工作点,进而确定放大器的交流通路和交流等效电路。在此基础上,可以计算放大器的各项交流指标,包括电压放大倍数、电流放大倍数、输入电阻和输出电阻等。其中,电压放大倍数表征了放大器对输入电压的放大能力,与晶体管的电流放大系数、集电极电阻和负载电阻等参数密切相关。电流放大倍数则反映了放大器对输入电流的放大效果。输入电阻是从放大器输入端看进去的电阻,它影响了放大器从信号源获取信号的能力。而输出电阻则是从放大器输出端看进去的电阻,它表征了放大器带负载的能力。这些参数应用中的电路设计和优化提供重要依据。
相关文档
最新文档