高分子材料与工程论文高分子材料论文

合集下载

医用高分子材料论文

医用高分子材料论文

医用高分子材料论文医用高分子材料是指用于医疗器械、医药包装、医用卫生材料等方面的高分子材料。

随着医疗技术的不断发展和人们对健康的重视,医用高分子材料的应用范围和需求量也在不断增加。

本文将从医用高分子材料的特点、应用领域和发展趋势等方面进行论述。

首先,医用高分子材料具有良好的生物相容性和生物降解性。

在医疗器械和医用卫生材料方面,高分子材料需要与人体组织接触,因此其生物相容性是至关重要的。

良好的生物相容性可以减少对人体的刺激和损害,有利于医疗器械的安全使用。

同时,一些医用高分子材料还具有生物降解性,可以在一定时间内被人体代谢和吸收,避免二次手术带来的伤害,因此在医疗器械和医用卫生材料中有着广泛的应用前景。

其次,医用高分子材料在医药包装领域也有着重要的应用。

医药包装需要具备良好的密封性、保鲜性和防渗透性,以保护药品的质量和安全。

高分子材料由于其优异的物理和化学性能,可以满足医药包装的各项要求,同时还可以实现包装材料的轻量化和环保化,符合现代医药包装的发展趋势。

另外,医用高分子材料还在医疗器械和医用卫生材料中发挥着重要作用。

例如,医用高分子材料可以用于制备手术缝线、人工关节、医用胶水等医疗器械产品,同时也可以制备口罩、手套、敷料等医用卫生材料,为医疗行业提供必要的支持。

随着医疗技术的不断进步和人们对健康的不断追求,医用高分子材料的应用领域和需求量将会不断扩大。

未来,随着生物医学工程、纳米医学、智能医疗等领域的发展,医用高分子材料将会迎来更广阔的发展空间和应用前景。

综上所述,医用高分子材料在医疗器械、医药包装、医用卫生材料等方面具有重要的应用价值,其特点和应用领域决定了其在医疗行业中的不可替代地位。

随着医疗技术的不断发展和人们对健康的不断关注,医用高分子材料必将迎来更加广阔的发展前景。

功能高分子材料论文

功能高分子材料论文

专业: 材料科学与工程姓名:**学校名称:贵州大学论文题目:生物医用高分子材料学号:*******老师: ***生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。

关键词:功能高分子材料,生物医用高分子材料。

功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料.近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言.这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料.如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物.可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料.功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。

功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

高分子材料改性课程论文聚丙烯的亲水性改善研究

高分子材料改性课程论文聚丙烯的亲水性改善研究

高分子材料改性课程论文专业:材料科学与工程学生姓名:学号:导师:聚丙烯的亲水性改善研究摘要:聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,其与极性聚合物、无机填料及增强材料等相容性差,其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广应用。

本文利用聚丙烯固相接枝丙烯酸(AA)、聚丙烯与乙烯-丙烯酸共聚物(EAA)共混和聚丙烯中空纤维膜的表面活性剂浸渍处理,三个途径分别对聚丙烯进行亲水改性研究。

关键词:聚丙烯;亲水性;接触角;共混改性;因为PP不含任何极性基团而难以和金属"玻璃粘结,难以和其他许多高聚物"无机填料相容; 也难于进行印刷染色等!这些缺点限制了聚丙烯在某些领域中的应用!表面接枝法可以将强极性的亲水基团引入薄膜的表面,并且由于接枝链与基体薄膜以化学键相联! 改性后的表面具有极性和亲水性,从根本上改变现有的塑料薄膜印刷技术!PP接枝改性产物还可经压膜" 磺化"碱洗等工艺制得亲水性较好的离子交换膜,与亲水性差的膜相比具有容量大"高洗脱率"高再生率的特征!聚丙烯(PP) 材料作为第三大通用塑料,具有机械性能、耐腐蚀性及电绝缘性优良,无毒性、易加工及价格低廉等优点,受到广大学者及工业领域的极大青睐。

其薄膜、纤维、非织造布、片材及各种制品在日常生活中被大量应用。

其中,聚丙烯微孔膜主要用于锂离子电池隔离膜[1]、废水处理、气体分离等领域。

但是由于聚丙烯表面没有极性基团,其表面能很小,临界表面张力只有( 31 ~34) ×10–5 N/ cm,所以它的表面润湿性和亲水性很差,这不仅导致聚丙烯微孔膜的水通量小,而且导致其表面和溶质:之间存在憎水性相互作用,进一步导致膜污染现象。

膜污染将导致在水处理过程中膜清洗的次数和维护费用增加,甚至会产生不可逆的破坏,降低膜的使用寿命,从而限制了其在工业中的应用。

高分子材料—塑料

高分子材料—塑料

高分子材料—塑料标准化工作室编码[XX968T-XX89628-XJ668-XT689N]有机高分子材料的发展与应用论文摘要:材料在我们身边可谓是无处不在,而塑料在所有材料中用途是非常广泛的。

塑料以其优越的特性成为21世纪的宠儿,被广泛应用于各个领域。

虽然塑料对环境造成了危害,但塑料制品在我们生活中的作用是不容忽视的,而塑料也不会被其他材料替代,因为塑料有其优越的性能。

下面我就塑料的定义、特性、用途以及塑料的历史和新型塑料的发展作一下简单的介绍,以下是对塑料的分类论述。

关键词:塑料、塑料的定义、塑料的分类、塑料的特征、降解塑料、导电塑料、塑料光纤。

前言:随着塑料工业技术的迅速发展,当前世界塑料总产量已超过亿吨,其用途已渗透到国民经济各部门以及人民生活的各个领域,已和钢铁、木材、水泥并列成为四大支柱材料。

但随着塑料产量的不断增长和用途的不断扩大,其废弃物中塑料的重量比已达10%以上,体积比则达30%左右,它对环境的污染、对生态平衡的破坏已引起了社会的极大关注,为此,高效的塑料回收利用技术和降解塑料的研究开发已成为塑料工业界、包装工业界发展的重要发展战略,而且成为全球瞩目的研究开发热点。

一、塑料的定义塑料是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填加剂、润滑剂,着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。

塑料主要有以下特性:①大多数塑料质轻,化学稳定性好,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。

二、塑料的分类塑料的分类体系比较复杂,各种分类方法也有所交叉,按常规分类主要有以下三种:一是按使用特性分类;二是按理化特性分类;三是按加工方法分类。

1、按使用特性分类根据名种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。

自修复水凝胶

自修复水凝胶

编号功能高分子设计(论文)题目:自修复水凝胶化学与材料工程学高分子材料与工程专业学号1050212219学生姓名范玉丽指导教师袁妍刘敬成二〇一五年四月自修复水凝胶高分子材料1202 范玉丽1050212219摘要:自修复材料近几年以其优异的损伤管理性能备受关注,而在这些自修复材料中自愈性水凝胶由其良好的亲水性等而在医用方面尤为突出.这种软物质由具有动态特性的交联网络构建形成.这种材料具有本征性的自愈性,一方面可对外界破坏造成的损伤,进行自我修复.另一方面动态化学键对多种环境刺激具有响应性,能自我调节以适应环境变化,为将自愈性水凝胶开发为自适性多功能智能新材料奠定了基础.水凝胶具有优越的生物相容性以及和生物组织的相似性,在生物医用材料中如药物控制释放、组织工程修复、生物仿生等领域发挥着越来越大的作用,而开发具有自愈性的多功能智能水凝胶,将进一步拓展其应用.综述了近来基于动态化学的自愈性水凝胶的制备及其在生物医用材料领域中的应用研究.[1]关键词:自修复、水凝胶、物理型、化学型引文:材料的力学强度来自于结构的稳定性,而其实现自愈则需要本身产生流动相,二者是相互矛盾与相互协同的关系.水凝胶软而脆,结构内缺少分子链间相互作用,交联结构不具有动态特性,体系中仍然缺乏流动相,难以实现自愈.自20世纪80年代末,美国军方首先提出了智能材料和结构的概念,科学家一直在探索材料“自愈能力”的方法至今已有很多,如右图[2].据美国媒体3月5日报道,美国加州大学圣迭戈分校的生物工程学家加州大学圣迭戈分校的科学家们通过机械学原理创建一条“侧悬高分子链”,由水凝胶主体结构垂悬下来,给受损水凝胶部分一个可以攀附上来并重新粘合的机会,从而制出了自愈水凝胶早期的自愈性高分子材料主要集中于微胶囊、微管破裂引发再聚合实现修复损伤.早期材料的自愈性可以算是修补过程, 由于再聚合时需要引发相应的单体实现损伤部位的修补,因此这种自愈性通常只能实现一两次,无法重复修复损伤.目前的研究则更多集中在通过对材料本身的结构设计实现对材料损伤的自修复.这种自愈材料有赖于流动相机理,水凝胶中含有的水自然的充当了流动相,这种流动相分散了外界能量造成的冲击,并使材料在维持其骨架的情况下对物质和能量重新分配来达到新的平衡态.[1]正文1.物理型自愈合水凝胶[3]凝胶材料内部的氢键、疏水相互作用、静电作用、π-π堆叠等非共价键充当交联点,可通过他们的破坏和再形成实现自愈合的功能.有以下几种类型:疏水作用自愈合水凝胶、大分子扩散作用自愈合水凝胶、静电作用自愈合水凝胶、金属配体自愈合水凝胶疏水作用自愈合水凝胶:例:丙烯酰胺/辛基酚聚氧乙烯(4)醚丙烯酸酯疏水缔合水凝胶;将疏水基的甲基丙烯酸十八烷酯或丙烯酸二十二烷酯与亲水性的聚合物共聚反应,在亲水性聚合物网络中引入疏水相互作用,长的疏水性侧链在水溶液中聚集,充当可逆交联点.大分子扩散作用自愈合水凝胶:例:纳米粘土/高分子聚合物自愈合水凝胶将纳米粘土引入到凝胶体系中,其中纳米粘土在体系中充当交联点的作用,高分子单体与纳米粘土之间以氢键相结合,当凝胶发生破坏时,将破坏的凝胶断面相接触,界面附近的亲水性高分子链相互扩散再次形成非共价键,实现自愈合功能.研究发现,自愈合能力与纳米粘土百分含量、自愈合温度和接触时间有关.化学型自愈和水凝胶:化学型自愈合凝胶是指在凝胶分子内部引入化学键如酰腙键、亚胺键、双硫键、DA可逆共价键等,通过这些化学键的破坏和再结合以及可逆反应等实现凝胶的自愈合功能.现有如下几种类型:酰腙键自愈合水凝胶、双硫键自愈合水凝胶、芳基硼酸酯自愈合水凝胶、三硫酯自愈合水凝胶酰腙键自愈合水凝胶:酰腙键在动态非共价键中属于结合较稳定的一类,具有相对稳定的网络结构.在不同pH 值条件下,弹性模量随pH 降低略有增加,具有明显的频率依赖性,加入苯胺后,酰腙键的平衡受到影响,在中性条件下表现出了动态可逆的特性,而宏观上实现了自愈.自愈前后的水凝胶力学性能不存在明显差异.由于酰腙键和双硫键分别具有的酸碱响应和氧化还原响应,使得水凝胶在加入酸、碱、氧化还原物质时会出现溶胶-凝胶的转变,说明材料具有自适性.亚胺键自愈合水凝胶:亚胺键对于不同反应底物其平衡常数范围很广,如不同的氨基和醛基在不同环境下,包括在不同pH 值、不同溶剂体系等条件下存在丰富的变化情况,为材料提供了更多的可调控性. 目前广泛应用于生物医用材料中的高分子如壳聚糖、聚赖氨酸、聚乙烯亚胺、葡聚糖、蛋白质及多肽等物质含有丰富的氨基,且在现有的生物相容性高分子,如聚乙二醇上通过化学改性修饰上氨基与醛基也相对简单.在水凝胶被打孔后,界面提供的微小能量即使水凝胶产生流动相,一段时间后孔洞消失,界面变得模糊,材料完成自愈合此外,亚胺键的动态特性使得水凝胶在宏观上对外界环境具有多重响应的特征,并可在外力方向上产生自适性的调节.如体系中加入维生素B6衍生物如盐酸吡哆醛,由于吡哆醛与壳聚糖上的氨基具有更强的结合能力,因此原有的交联点被新的动态平衡取代,使得水凝胶崩解变成溶胶,类似的溶胶-凝胶变化也可以通过加入其他生物活性物质如赖氨酸等富含氨基的小分子调控动态平衡实现.此外,可以加入木瓜蛋白酶等对壳聚糖骨架进行降解,造成水凝胶的解体.在不同的外界刺激条件下,药物模型分子表现出不同的释放行为,具有可控释放的特点.值得一提的是,大分子蛋白药物,即溶菌酶在释放后活性几乎不受影响,为这一水凝胶在后续可能的在生物医用材料方面的应用提供了良好的基础对于开发生物医用的水凝胶,良好的生物相容性是不可或缺的.在生物组织之中,细胞是以三维形式分布的,因此,三维细胞培养也是目前细胞培养的新趋势.为了更好地模拟细胞生存环境,就要求在体外培养细胞时也能具有类似于体内的三维环境.生物相容性极好的水凝胶就是一种非常具有应用前景的细胞三维培养材料.同时,动态化学键的存在使得水凝胶内的细胞本身处于一种动态的环境之中,体内三维环境的变化会导致细胞生长状况及形态学的改变,而动态环境有助于细胞相互间的接触传递信息以及与环境的互动等.在动态水凝胶中,相对于二维培养环境可以更好地模拟这种变化,在更接近生理环境的状态下培养并观察细胞.同时,一种新兴的治疗手段——细胞治疗也受到了人们越来越多的关注.该疗法将具有特定功能的细胞在体外进行培养增殖后回输入注入病患体内进行治疗.而常规的输入手段是直接将细胞悬液注入静脉,这势必会导致注射细胞随血液循环、体液流动而大量流失,极大地影响了治疗效果.将细胞包覆于水凝胶内直接对患处进行注射则可以较好地解决上述的问题,实现更有效的主动靶向给药.这时,自愈性水凝胶的优势得到明显的体现,如制备过程简易温和,不会造成细胞活性的损失; 注射后破坏的水凝胶在患处实现自愈后保持了材料的相对完整性,可将细胞固定于患处,并保护细胞免受代谢系统的破坏. [2]三硫酯自愈合水凝胶:该类水凝胶中含有C=S双键和C—S单键,c=S双键可与自由基发生加成反应,生成新的C—S和C=S键,原有的两个C—s单键中有一个发生断裂形成新自由基进而与另一三硫酯单元发生反应,通过这一反应建立动态平衡,实现可逆加成一断裂链转移自由基聚合,最终实现自愈合功能.结语:水凝胶自愈技术虽好,目前却还停留在试验阶段,本人认为若研究出并掌握这一技术可用于各种可用于各种领域下,医学方面如近视、远视、白内障、骨膜修复等的治疗,还可以根据这一发现做成各种化妆品等,做新型玩具等总之有很好的前景.只是同是也要考虑下污染处理的问题,怎样让它在设定的时间降解同时又不影响其品质也是一问题.参考文献[1] 张亚玲,杨斌,许亮鑫,等. 基于动态化学的自愈性水凝胶及其在生物医用材料中的应用研究展望[J]. 化学学报. 2013(71): 485-492.[2] Lin B, Lu J. Self-healing mechanism of composite coatings obtained by phosphating and silicate sol post-sealing[J]. Transactions of Nonferrous Metals Society of China. 2014, 24(8): 2723-2728.[3] 赵志桩,王法,张晓阳,等. 智能水凝胶研究进展[J]. 化学工程师. 2014, 28(1): 33-36.。

高分子材料成形加工 论文

高分子材料成形加工 论文

论文题目:注塑成型工艺——聚碳酸酯光盘生产技术课程名称聚合物加工姓名檀笑风学号0814121034专业08高分子材料与工程一班任课老师钱浩摘要:本文借助聚碳酸酯的光盘生产技术,对注塑加工工艺流程做了系统介绍。

从工艺特性、基材和注塑机的选取、工艺流程、工艺影响因素、常见问题和解决方案,几个角度作了清晰的介绍。

对今后的学习工作具有现实的指导意义。

关键词:光盘注塑工艺聚碳酸酯一、聚碳酸酯的工艺特性中文名称:2,2-(4-羟基苯基)丙烷聚碳酸酯英文名称:Polycarbonate化学结构:物化特性:①聚碳酸酯是一种无定型、无味、透明的热塑性工程塑料,其相对密度为1.20,具有良好的透光性,折光率为1.586;②聚碳酸酯主要特点是机械性能良好,既韧又刚、无缺口,冲击强度在热塑性塑料中名列前茅,接近玻璃纤维增强的酚醛或不饱和树脂,呈延性断裂。

成型的零件可达到很精密的公差,并在很宽的范围内保持尺寸稳定,优于聚酰胺ABS和聚甲醛;③热塑性好,热变性温度在135一145℃之间。

与其他塑料相比,聚碳酸酯的线胀系数低,且加人玻璃纤维后能降低l/3。

100℃以上长时间热处理,刚性稍有增加,弹性模量、弯曲强度、拉伸强度也随之增加,而抗冲值有所降低。

在100℃以上退火,可消除内应力;④聚碳酸酯具有良好的电性能,在较宽的湿度范围内,电绝缘性恒定,并耐电晕性。

聚碳酸酯体积电阻率和介电强度与聚酯薄膜相当。

另外还有自熄、易增强、阻燃、能着色等特性。

二、光盘制作对基材的要求在信息工业中,光盘生产已形成一项引人注目的高科技产业。

光盘基片由塑料加工而成,主要有两种加工方法:一种为刻录法,每片光盘先用4 种不同材料的塑料薄膜压制而成,然后用激光刻录。

这种方法生产速度慢、成本高,只适合于小批量生产。

另一种为注塑成型法,即通过塑料的注塑加工技术制作。

光盘主要通过塑料的精密注塑成型来完成。

注塑加工是光盘复制工艺过程的关键技术,在精密注塑过程中要将微小的凹槽精密地复制出来,不仅塑料基片的平面度要求很高,而且要求质量很均匀、残余应力很低,在进行检测时双折射要低。

高分子材料发展情况及趋势论文

高分子材料发展情况及趋势论文

高分子材料发展情况及趋势论文第一篇:高分子材料发展情况及趋势论文有机高分子材料发展情况及趋势摘要:高分子材料与金属材料、无机非金属材料成为科学技术、经济建设中的重要材料。

而高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。

其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。

合成高分子材料按使用性质划分,有塑料、橡胶、纤维、涂料等,按用途划分有结构型和功能型,同一用途不同层次则有通用型和高性能型之分,功能型细分则有光、电、磁功能和生物相容功能等。

高分子材料要继续发展,必须走与环境相协调的道路, 提高高新技术含量,开辟新型材料产业。

关键词:高分子材料研究概述进展医用高分子材料的发展导电塑料高分子碳纤维正文:一、有机高分子材料概述有机高分子材料是指区别于通用的、具有高性能或特殊功能等特点的有机高分子材料,表现为性能优异,价格高,产量低。

其特点覆盖面广、产品种类多;投资与技术高度密集,技术含量高;高风险、高收益。

按使用性质划分,有塑料、橡胶、合成纤维、专用及精细化学品等;按用途划分有结构型和功能型;按功能型细分则有光、电、磁功能和生物相容功能;以生物质为原料生产的高分子材料也被划入了新型有机高分子材料。

新型有机高分子材料应用广泛,工程塑料、复合材料、功能高分子材料、有机硅及氟系材料、液晶材料、特种橡胶、高性能密封材料等新型高分子材料被广泛应用于电子电器、交通运输、机械、建筑、生物、医疗及农业生产资料等领域。

二、有机高分子材料国内现状国内有机高分子材料的研究不断取得新的进展:国家重点科技攻关项目“聚醚砜、聚醚醚酮、双马型聚酰亚胺等类树脂专用材料及其加工技术”,通过了国家有关部门的验收;一种用于家电产品的新型紫外光固化涂料——JD-1紫外光固化树脂已开发成功;超高分子量聚丙烯酰胺合成技术在大庆油田化工总厂研制成功;“PTC智能恒温电缆”、“多功能超强吸水保水剂”、“粉煤灰高效活化剂”等等,都是我国在高分子材料领域取得的不俗成果。

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文1.高分子的定义高分子又称作聚合物,由小分子相互反应而形成,高分子与低分子的区别在于前者分子量很高。

通俗地说,高分子是一种许许多多原子由共价键连接而组成的相对分子质量很大的化合物。

更精确的描述是,高分子是指其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物,这样组成的高分子链的键的类型,除了共价键外,还可以包括某些配位键和缺电子键,而金属键和离子键是被排除在外的。

我对高分子的分类总结如下:其中合成高分子,又可分为橡胶、纤维和塑料三大类,常称为三大合成材料,合成橡胶的主要品种有丁苯橡胶、顺丁橡胶和异戊橡胶等。

合成纤维的主要品种有涤纶、腈纶、锦纶、维纶和丙纶。

塑料还可分为热塑性塑料和热固性塑料,前者为线性聚合物,受热可熔融流动,可多次重复加工成型,主要品种有聚乙烯、聚丙烯和聚苯乙烯;后者是网状聚合物,通常由线性聚合物或低聚物经交联得到,以后不能加热融化重复成型,主要品种有酚醛树脂、不饱和聚酯、环氧树脂等。

此外,聚合物还可作为涂料和粘合剂来使用,而且使用越来越广泛,也有人将他们单独列为两类,所以聚合物按应用分类,也应包括上述五大合成材料。

最近,着眼于聚合物所具有的特定的物理、化学、生物功能的功能高分子,也已成为新的重要一类。

天然高分子,也有有机高分子和无机高分子之分。

天然高分子,如人们所熟悉的石棉、石墨、金刚石、云母等,天然有机高分子,都是在生物体内制造出来的,储存能量的肝糖、淀粉,生物体外分泌物如蚕丝、蛛丝、植物的橡胶,还有储存遗传信息的核酸。

2.高分子材料科学的发展简史(以塑料的发展为例)从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。

其发展历史可分为三个阶段。

1.天然高分子加工阶段这个时期以天然高分子,主要是纤维素的改性和加工为特征。

1869年美国人J.W.海厄特发现在硝酸纤维素中加入樟脑和少量酒精可制成一种可塑性物质,热压下可成型为塑料制品,命名为赛璐珞。

高分子合成材料范文

高分子合成材料范文

高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。

高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。

在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。

1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。

2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。

3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。

4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。

1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。

塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。

橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。

2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。

常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。

3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。

通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。

1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。

此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。

2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。

3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。

4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。

总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。

高分子材料与工程论文

高分子材料与工程论文

高分子材料与工程论文
高分子材料是一种具有高分子化学结构的材料,具有独特的物理性能和化学性质。

在工程领域中,高分子材料的应用日益广泛,涉及到塑料、橡胶、纤维等多个领域。

本文将就高分子材料的特性、应用及未来发展方向进行探讨。

首先,高分子材料具有良好的加工性能,可以通过热塑性或热固性工艺进行成型。

其次,高分子材料具有较高的强度和韧性,可以用于制造各种结构件和零部件。

此外,高分子材料还具有良好的耐腐蚀性能和绝缘性能,适用于化工、电气等领域。

另外,高分子材料还具有较好的可塑性和可回收性,有利于环保和资源循环利用。

在工程领域中,高分子材料被广泛应用于汽车制造、航空航天、建筑材料、电
子产品等多个领域。

例如,汽车制造中的塑料零部件、航空航天中的复合材料结构件、建筑材料中的隔热材料、电子产品中的绝缘材料等,都离不开高分子材料的应用。

高分子材料的应用不仅可以降低产品成本,提高产品性能,还可以减轻产品重量,节约能源,有利于推动工程技术的发展。

未来,随着科学技术的不断进步,高分子材料的研究和应用将迎来新的发展机遇。

例如,纳米材料、生物可降解材料、功能性高分子材料等将成为研究热点,为工程领域提供更多的新材料和新技术。

同时,高分子材料的再生利用和循环利用将成为未来发展的趋势,有助于推动工程领域的可持续发展。

综上所述,高分子材料在工程领域中具有重要的地位和作用,其特性和应用对
工程技术的发展起着重要的推动作用。

未来,高分子材料的研究和应用将继续深入,为工程领域带来更多的创新和发展机遇。

希望本文能够对高分子材料及工程领域的相关研究和应用提供一定的参考和借鉴。

高分子材料论文3000字

高分子材料论文3000字

高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。

因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。

高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。

在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。

此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。

二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。

此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。

其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。

其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。

其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。

当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。

进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。

药用高分子材料论文

药用高分子材料论文

药用高分子材料论文药用高分子材料是一种具有广泛应用前景的新型材料,它在药物传递、医疗器械、组织工程等领域都有着重要的应用。

本文将从药用高分子材料的定义、特点、应用及发展前景等方面进行探讨。

首先,药用高分子材料是一类在医药领域中应用广泛的材料,它具有多种形态和结构,包括天然高分子材料和合成高分子材料。

天然高分子材料如明胶、壳聚糖等,而合成高分子材料如聚乳酸、聚己内酯等。

这些材料具有较好的生物相容性和可降解性,能够在人体内被分解和吸收,不会对人体造成损害。

其次,药用高分子材料具有多种特点,包括生物相容性、可降解性、可调控性和多样性。

生物相容性是指材料与生物体相容的能力,可降解性是指材料在生物体内能够被降解和代谢,不会对生物体造成损害。

可调控性是指材料的性能和结构可以通过合成方法和工艺条件进行调控,而多样性则是指材料可以根据不同的需求进行设计和制备,具有很大的灵活性。

药用高分子材料在药物传递、医疗器械和组织工程等领域有着重要的应用。

在药物传递方面,药用高分子材料可以作为药物的载体,能够提高药物的稳定性和生物利用度,减少药物的毒副作用。

在医疗器械方面,药用高分子材料可以用于制备各种医疗器械,如缝合线、人工关节、支架等,具有良好的生物相容性和可降解性。

在组织工程方面,药用高分子材料可以用于细胞培养支架的制备,可以提供细胞生长的支撑和生长环境,有助于组织再生和修复。

最后,药用高分子材料具有广阔的发展前景。

随着生物医学领域的不断发展和进步,对于药用高分子材料的需求也在不断增加。

未来,药用高分子材料将更加注重其在药物传递、医疗器械和组织工程等方面的应用,同时也将更加注重其在材料性能和结构上的调控和设计,以满足不同领域的需求。

综上所述,药用高分子材料具有广泛的应用前景和发展潜力,它将在生物医学领域中发挥越来越重要的作用。

相信随着科学技术的不断进步,药用高分子材料将会在医学领域中发挥更大的作用,为人类的健康事业做出更大的贡献。

生物降解高分子材料研究论文

生物降解高分子材料研究论文

生物降解高分子材料研究论文宿佩华烟台大学化学化工高分子材料与工程专业【摘要】可降解的高分子材料已成为高分子领域的一个重要研究课题,生物降解性高分子材料更是目前研究的热点。

本文简述了生物降解性高分子的生物降解机理、影响因素,着重综述了淀粉、聚乳酸、可生物降解塑料等几种具有生物降解性的高分子材料的最新研究进展及其发展趋势。

【关键字】生物降解高分子降解性塑料淀粉聚乳酸研究进展【前言】塑料是应用最广泛的高分子材料,按体积计算居世界首位,由于其难于降解,而其用量与日俱增,废弃塑料造成的白色污染已成世界性的公害。

我国目前的塑料生产和使用已跃居世界前列,每年产生几百万顿不可降解的废旧物,严重污染环境和危害我们的健康。

可见开发可降解高分子材料,寻找新的环境友好高分子材料已是当务之急。

1.生物降解高分子材料概述从化学角度来定义,高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联结的成百上千的一种或多种小分子构造而成[2]。

高分子材料的功能很多,因此应用十分广泛。

可是高分子材料在给人类创造美好生活的同时,也带来了一些负面效应,其中最明显的当属废旧塑料等引起的“白色污染”。

生物可降解高分子是指在一定条件下,一定时问内能被微生物降解的高分子材料。

按美国材料试验学会ASTM在1989年给可降解塑料下的确切定义,可降解塑料是指:在特定时间内造成性能损失的特定环境条件下,其化学结构发生变化的一种塑料,根据促进化学结构发生降解变化的因素来分类,降解塑料可分为生物降解塑料和光降解塑料两种。

前者在细菌、真菌和藻类等微生物的作用下,塑料产生分解直至消失;后者是在日光作用情况下,塑料产生分解直至消失[3]。

2.降解高分子材料的生物降解机理生物降解高分子的降解通常是以化学方式进行的,即在微生物活性(有酶参与)的作用下,酶进入聚合物的活性位置并渗透至聚合物的作用点后,使聚合物发生水解反应从而使聚合物大分子骨架结构发生断裂变成小的链段,并最终断裂为稳定的小分子产物,完成生物降解过程。

毕业论文-生物降解高分子材料--聚己内脂合成的研究进展--黄敬新-广东石油化工学院

毕业论文-生物降解高分子材料--聚己内脂合成的研究进展--黄敬新-广东石油化工学院

摘要综述了可生物降解高分子材料--聚己内酯的性质、合成与应用情况,重点介绍了由ε-己内酯合成聚己内酯所用的主要引发体系及聚己内酯与苯乙烯-丙烯腈共混相容性的研究进展。

聚己内酯作为一种可生物降解的聚酯材料,由于其具有在组织中可降解的能力,因此成为组织工程中可能被广泛应用的一种新材料。

文中对聚己内酯的一些特性和当前医学方面的应用进行了探讨,并指出在应用中存在的问题以及今后的研究方向。

关键词:生物降解;聚己内酯;合成;共混;应用AbstractThe properties, synthesis and application of biodegradable polymer material –polycaprolactone are reviewed. The main initiation systems of ε–caprolactone polymerization is introduced. It is summarized the advanced development of the compatibility study of blends of poly(-caprolacture) with copolyer of styrene and acryconitrile. Polycaprolactone as a biodegradable polymer, by virture of ability to naturally degrade in tissue, holds immense promise as a new type of material for application in tissue engineering. The article introduces some major properties of polycaprolactone and recently experimental progress in biomedical applications, it also points out the problems in application and the direction in the future.Key words: biodegradation; polycaprolactone; synthesis; blends; application引言近年来,人们对地球环境问题的关心日益高涨,不断增长的废弃高分子材料对环境的污染有日益加剧的趋势,而控制或限制高分子材料在各领域的消耗量显然是不现实的,因为它们具有优良的性能,在许多应用领域甚至是不可缺的。

AG-80环氧树脂的制备论文(1)

AG-80环氧树脂的制备论文(1)
(3) TDE一85#环氧树脂
随着科学技术发展,国防工业对材料的要求越来越高,迫切希望科研部门能够提供一种工艺性好、耐高温、高强度、高粘接强度的环氧树脂[17]。天津市合成材料工业研究所研制成功一种三官能度TDE-85#环氧树脂,特点是工艺性好、反应活性高,固化物耐高温、高强度。这种环氧树脂的学名是4,5-二环氧环已烷1,2-二甲酸二缩水甘油酷。这种树脂的马丁耐热为180℃(间苯二胺固化),弯曲强度215MPa,拉伸强度100MPa,用其配制高温粘接剂在使用温度150℃以下时,粘接强度比通用环氧树脂提高约5-6倍[18]。通过使用TDE-85粘接剂,磁钢与铁因粘接剂在高温下强度不够而分离的难题得到圆满的解决。尤其是其机械强度可提高50~80%,拉伸强度可达1000MPa,耐热性也可提高20~30℃。实验结果表明,这种树脂的工艺性、耐热等级、物理机械性能和电绝缘性,在同样条件下均比其他类型的环氧树脂好,因此它是电子绝缘灌封的理想材料[19,20]。
目前,环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种(1)在环氧基体中加入橡胶弹性体,热塑性树脂或液晶聚合物等分散相来增韧;(2)用含”柔性链”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的,(3)用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧从而使环氧树脂韧性得到改善[9]。
1
环氧树脂的品种很多,除双酚A树脂外,还有下列几个品种:
1.2.1
(1)卤代双酚A环氧树脂
卤代双酚A环氧树脂以部分卤代双酚A代替双酚A和环氧氯丙烷在碱存在下缩聚,得到的环氧树脂称作卤代双酚A环氧树脂,简称为卤代环氧树脂。卤代一般指氯代、溴代等。卤代环氧树脂的最大特点是具有自熄性,用于航空、船舶上的层压板等。我国浙江省化工研究所试制成功了四溴双A二缩水甘油醚型环氧树脂既具有普通环氧树脂的特性,还有自熄性和燃烧时不生成剧毒物质等特点,是一种比较优良的难燃性环氧树脂[10]。

高分子材料论文

高分子材料论文

高分子材料论文1课程设计题目选取课程设计选题合理与否,是课程设计改革的重要环节,应注意课题的综合性、实用性及层次性[2]。

课程设计环节中增加高分子材料改性及工艺探索的题目,目的在于加深学生对《高分子材料成型工艺学》、《聚合物改性原理及方法》等课程知识的理解,提高其理论联系实际和灵活运用知识的能力。

选择合适的题目是保证学生如期完成课程设计的前提。

课程设计环节比毕业设计环节少了8周的时间,因此课程设计选题应“小而精”,难度应明显低于毕业设计题目。

如果选取完全没有研究基础的题目,学生前期探索实验会花费过多时间,不利丁•课程设计顺利进行。

基于以上原因,笔者在以往毕业设计题目的基础上进行延伸,确定了课程设计相关题目。

例如往届学生曾做过“硅橡胶阻燃材料性能研究”的毕业设计题目,对丁•硅橡胶混炼及硫化工艺积累了一定的经验数据,而硅橡胶材料力学性能指标还不尽如人意,需要进一步改进配方。

可以在此基础上引出两个课程设计题目:“硫化剂种类及用量对硅橡胶力学性能的影响”、“结构控制剂种类及用量对硅橡胶力学性能的影响”,并由两个学生分别完成以上题目。

由丁•有前人的基础,学生在实验过程中没有重复探索相关工艺参数,实验直接切入主题,有利于在有限的时间内完成课程设计。

此外,两个课程设计题目虽各有侧重,但主要原材料及成型工艺都相同,故两个学生可共用一套成型设备,大大节约了设备预热及清理时间。

将学生按相近课题组成互助小组, 不仅提供设备利用率,也有利于学生在遇到问题时,相互讨论,相互促进[3] °2实验人员安排我校高分子材料与工程专业每年招生人数为80人,现有实验室设备条件尚不能满足全部学生同时开展材料改性及工艺制定等实践内容。

因此,合理安排课程设计环节进行材料改性及工艺制定的学生人数,是如期完成课程设计内容的必要保证。

按照人才培养方案, 本专业课程设计安排在第四学年秋季学期最后4周进行。

此时学生的专业课程学习已全部完成,学生对丁•口己的就业去向也有了初步规划。

2021高分子材料成型论文(最新10篇)范文3

2021高分子材料成型论文(最新10篇)范文3

2021高分子材料成型论文(最新10篇)范文 随着我国科学技术的不断发展,高分子材料作为一项新型技术得到了广泛的应用,高分子材料成型的工艺技术也在不断进步,为制造业、工业等相关行业的生产活动提供了有力的技术支持。

本文整理了10篇“高分子材料成型论文”,供该专业的学者阅读参考。

高分子材料成型论文(最新10篇)之第一篇:高分子材料成型加工技术的进展 摘要:现阶段随着我国经济与科技不断快速的发展,促使对材料的需求量每年都在增加, 而且因为材料属于技术进步的基础, 所以业界的相关人员都十分认可高分子材料的出现。

同时高分子材料具有十分良好的性能, 促使对其进行广泛的应用, 例如医学、建筑、生物、计算机等。

所以本文主要研究高分子的几种成型技术, 促使我国在成型的技术研究中对技术前沿进行掌握, 从而确保大力的推动我国高分子材料成型加工技术的发展。

关键词:高分子材料,成型加工,技术,发展 1引言 因为我国社会不断快速的发展,促使我国大部分特殊的领域对高分子材料的性能要求越来越高, 例如国防尖端工业、航空工业等领域。

而且高分子材料属于通过对各种制品进行制造, 不断对其具有的价值进行实现, 所以结合高分子材料的应用角度, 高分子材料成型加工技术的发展具有极其重要的作用与意义。

同时我国需要对技术的前沿进行把握, 不断对自主知识产权进行培育, 从而确保实现我国高分子材料成型技术的可持续性发展。

2高分子材料成型加工技术的发展趋势 因为随着我国科技不断快速的发展,促使人们对制造技术的要求与质量越来越高, 而且聚合物反应加工技术有传统的双螺杆轴剂出成型的技术所演化, 以及美国的Aerstart公司已经对更加稳定、高效的连续性与混炼挤出机进行研究, 能够对确保对其他同类型挤出机成型过程中存在的问题进行有效的解决。

但是我国这项技术正处于起步的阶段, 高分子才的成型加工技术主要针对塑料的缩聚反应的机械设备。

同时随着我国不断增加的需求与生产力度, 需要对合金材料的生产效率进行有效的增强, 但是我国传统的加工设备与技术无论是在混炼的过程中, 还是在传热技术的环节中都存在大量的问题, 以及设备也具有较大的投资费用、较高的能耗、较大的噪音等缺陷[1]。

半导体技术论文高分子材料论文半导体材料的发展现状(精)

半导体技术论文高分子材料论文半导体材料的发展现状(精)

半导体技术论文高分子材料论文:半导体材料的发展现状摘要在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化铟、磷化镓等称为第二代半导体材料;而将宽禁带(Eg>2.3eV)的氮化镓、碳化硅和金刚石等称为第三代半导体材料。

本文介绍了三代半导体的性质比较、应用领域、国内外产业化现状和进展情况等。

关键词半导体材料;多晶硅;单晶硅;砷化镓;氮化镓1 前言半导体材料是指电阻率在107Ω·cm~10-3Ω·cm,界于金属和绝缘体之间的材料。

半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料[1],支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。

电子信息产业规模最大的是美国和日本,其2002年的销售收入分别为3189亿美元和2320亿美元[2]。

近几年来,我国电子信息产品以举世瞩目的速度发展,2002年销售收入以1.4亿人民币居全球第3位,比上年增长20%,产业规模是1997年的2.5倍,居国内各工业部门首位[3]。

半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。

半导体材料的种类繁多,按化学组成分为元素半导体、化合物半导体和固溶体半导体;按组成元素分为一元、二元、三元、多元等;按晶态可分为多晶、单晶和非晶;按应用方式可分为体材料和薄膜材料。

大部分半导体材料单晶制片后直接用于制造半导体材料,这些称为“体材料”;相对应的“薄膜材料”是在半导体材料或其它材料的衬底上生长的,具有显著减少“体材料”难以解决的固熔体偏析问题、提高纯度和晶体完整性、生长异质结,能用于制造三维电路等优点。

许多新型半导体器件是在薄膜上制成的,制备薄膜的技术也在不断发展。

薄膜材料有同质外延薄膜、异质外延薄膜、超晶格薄膜、非晶薄膜等。

在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化铟、磷化镓、砷化铟、砷化铝及其合金等称为第二代半导体材料;而将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化锌和金刚石等称为第三代半导体材料[4]。

高分子材料论文(丝素蛋白)

高分子材料论文(丝素蛋白)

丝素蛋白的相关性质与用途丝素蛋白,是从蚕丝中提取的天然高分子纤维蛋白,由蚕茧缫丝脱胶而得到,来源丰富,是一种无生理活性的天然结构性蛋白。

而蚕丝是由70%~30%的丝胶蛋白和70%~80%的丝素蛋白以及极少量的色素、碳水化合物等构成的。

其中,丝胶蛋白是一种高分子量的球蛋白,其分子结构的支链上亲水基含量较高,链排列不紧密,故易溶于水、稀酸和稀碱,并能被蛋白酶等水解,还具有与明胶类似的凝胶、粘着等特性。

丝素蛋白由分子量为5万左右的小肽链和分子量为3O万左右的大肽链组成。

其蛋白质的氨基酸组成以甘氨酸、丙氨酸和丝氨酸为主,与人体的皮肤和头发的角朊极为接近,这成为一些研究中,将丝素用于人造皮肤制造的原因之一。

丝素蛋白的结晶部分为较为紧密的B折叠结构,在水中仅发生膨胀而不能溶解,亦不溶于乙醇等有机溶剂,但可在一些特殊的中性盐溶液中发生无限膨胀形成粘稠的液体,透析除盐即可得到丝素的纯溶液。

然后通过喷丝、喷雾或延展、干燥等处理,可得到再生丝、凝胶、薄膜或微孔材料等产品。

对丝素蛋白的研究发现,与明胶、清蛋白等普通蛋白相比,其固化结晶方式具有多样化的特点:既可沿用一般天然蛋白的传统固化工艺,采用戊二醛做交联剂;也可以通过一些独特的处理方式来达到目的,如冷冻、热蒸、拉伸及低毒性有机溶剂浸泡等⋯。

特别是采用冷冻干燥,短时高温与乙醇浸泡的协同处理方式,可以很好地保持天然蛋白的高度生物亲和性,并适应药物载体应用中,一些对高温或某种固化剂敏感的负载药物的特殊要求,在应用方面体现出更大的灵活性。

在丝素蛋白的特性研究中,其良好的成膜性是最受人们关注的热点之一。

与传统应用较多的天然高分子材料——壳聚糖与胶原等相比,丝素蛋白膜成膜方便性更好,还可以保持高达98%以上的透明性,在高湿状态下的柔韧性与形态保持性能也较为突出,有利于制造一些在临床或实验中要求透明性,以便观测提取生物信息或体内高湿环境使用的生物医学产品。

另外,在成膜条件适当的情况下,丝素膜可以表现出优良的透氧透气性能,如lmm厚的丝素膜,其透氧率每平方米可高达33 mL/h ,不亚于甚至超过目前一般认为在这方面性能卓越的合成材料,如聚-L-亮氨酸膜或聚羟乙基丙烯酸膜。

高分子材料论文

高分子材料论文

高分子材料论文高分子材料已成为现代材料科学中的重要组成部分,并具有广泛的应用范围,如电子、医学、汽车制造、航空航天等领域。

因此,高分子材料研究的学术论文也非常重要。

本文将介绍高分子材料论文的写作流程和一些常见的论文类型。

一、高分子材料论文的写作流程1. 研究主题确定确定研究主题是高分子材料论文写作的第一步。

在选择主题时,需要考虑以下几个因素:领域的局限性、目标读者、研究可行性、已有文献、新颖性等因素。

2. 文献综述文献综述通常是高分子材料论文的第二步。

这一步通常包括以下几个方面:背景、目标、对已有文献的评论、研究方法、预期结果等。

3. 研究方法高分子材料论文的研究方法包括实验室研究、理论分析和数值模拟。

实验室研究是高分子材料研究的核心,因此重视实验室研究的合理设计和实验方法的正确操作至关重要。

理论分析是指对高分子材料基本性质进行研究,从而揭示其性能机理。

数值模拟通常用于探索高分子材料的物理过程,特别是那些很难在实验中测量的物理量。

4. 实验结果实验结果是高分子材料论文的重要组成部分。

它应该具有完整性、可预测性和准确性,因此实验前需要制定详细的实验方案,以避免无效的实验结果和浪费的研究资源。

5. 写作论文高分子材料论文的写作应该紧贴主题、简明扼要。

要避免过多的技术细节,以确保目标读者清楚地理解高分子材料的研究成果。

二、高分子材料论文的类型1. 研究论文这种类型的论文着重介绍一个新兴领域或一个特定的高分子材料的研究成果。

这种类型的论文通常具有创新性和实际价值。

研究论文应该包括以下几个方面:研究思路、实验设计、数据分析、结论和建议等。

2. 综述论文综述论文总结和分析已发表的文献,阐述高分子材料领域的最新进展。

这种类型的论文不仅是一个情报工具,而且可以帮助研究者在新的高分子材料研究领域中找到适当的研究方向。

3. 评论论文评论论文通过对高分子材料领域最新研究的评论,提供一种看法或议题。

这种类型的论文应该讨论该领域内争议的问题,并就具有争议性的结论提出建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料与工程论文高分子材料论文脲醛树脂基高分子材料改性研究摘要:本文简要介绍了脲醛树脂基高分子材料的基本生产工艺流程,探索玻璃纤维、纳米蒙脱土、丁腈橡胶粉以及玉米淀粉种类和用量对脲醛树脂基高分子材料耐电击穿性能的影响。

实验结果表明,选用玻璃纤维作为增强剂对脲醛树脂基高分子材料的耐电击穿强度影响最为明显,纳米蒙脱土次之,玉米淀粉的加入对脲醛树脂基高分子材料的耐电击穿强度影响不明显,而丁腈橡胶的加入对脲醛树脂基高分子材料的耐电击穿强度有明显的下降趋势,改性后的脲醛树脂基高分子材料的耐电击穿强度能超过17KV/mm,最佳耐压时间在100s以上。

关键词:脲醛树脂基高分子材料;改性;耐电击穿强度脲醛树脂基高分子材料在我国的发展已经有40多年的历史,随着国民经济的持续快速发展,以及石油危机的不断临近,作为煤化工后加工产品之一的脲醛树脂基高分子材料正受到各行各业的重视。

脲醛树脂基高分子材料是一个很有生命力的热固性塑料,其原料来源丰富,生产工艺简单,价格便宜,具备良好的性能,由此被各行各业广泛应用。

其制品拥有良好的机械和电性能,尤其是阻燃性能优良,加工方便,所生产的制品广泛的代替陶瓷,具备良好的发展前景,但是,目前我国在日用电器方面应用的原料还依赖于进口。

由此,本文就脲醛树脂基高分子材料的耐电击穿性能进行了系统的研究。

1 实验部分1.1主要原材料甲醛、尿素、乌洛托品、硬酯酸锌:均为工业级,市售;固化剂D:自配。

1.2 设备、仪器捏合机:ZNH-2型,如皋市昇光捏合机厂;网带干燥烘箱:南京湘宝钛白制品实业有限公司;四柱液压机:Y71M-500和Y71M-1000,浙江省余姚恒泰轻工机械有限公司;电热鼓风干燥箱:HG101-4A型,南京奥坂干燥设备厂;检测用模具、小型球磨机:自制;简支梁冲击试验机:XJJ-50型,承德市金建检测仪器有限公司;微机控制电压击穿试验仪:DJC-50kv,吉林省泰和试验机有限公司。

1.3 试样制备在四口烧瓶中按配方加入一定量的甲醛,在搅拌下依次加入乌洛托品和尿素,将温度升至58℃,反应1h左右。

将反应后的物料倒入烧杯中,加入固化剂D及一定量纸浆、硬酯酸锌和其它助剂,在64℃以下捏合40 min。

捏合后的物料在烘箱内进行干燥,控制干燥温度、干燥时间、空气排出量、料层厚度及翻料次数等,直到低分子化合物挥发完毕。

然后经粉碎、球磨、过筛得到脲醛树脂基高分子材料。

1.4性能测试脲醛树脂基高分子材料的流动性按GB13454-1992测试;脲醛树脂基高分子材料缺口冲击强度按GB/T1043-1993测试;脲醛树脂基高分子材料耐电击穿强度按GB1408-1989测试。

脲醛树脂基高分子材料的固化成型时间:将脲醛树脂基高分子材料放入一定温度的检测模具内,按照脲醛树脂基高分子材料成型步骤测定成型固化时间。

测试工艺条件:上模150℃,下模145℃,模压25 MPa,成型总时间在60 s左右,放气时间视固化时间而定,在15 s 和25 s各排气一次。

2 结果与讨论2.1 纳米蒙脱土对脲醛树脂基高分子材料耐电击穿性能的影响(温度25℃,湿度50%)图 2 纳米蒙脱土加入量对脲醛树脂基高分子材料耐电击穿性能的影响从图2 可以看出, 加入纳米蒙脱土后, 各个脲醛树脂基高分子材料试样的耐电击穿电压升高趋势。

这可能是由于当纳米蒙脱土分散于脲醛树脂基高分子材料当中,由于纳米蒙脱土和脲醛树脂基高分子材料中脲醛树脂的氨基键的相互作用,使得其中的极性基团转动困难,导致耐击穿电压升高。

脲醛树脂处于纳米蒙脱土片层之间, 受到纳米蒙脱土片层的限制作用, 抑制了其中极性基团的运动,也导致极化困难,从而使纳米蒙脱土改性之后的耐击穿电压有升高趋势,但是不是很显著,超过7%后升高的更不明显,趋于平缓。

2.2 玻璃纤维对脲醛树脂基高分子材料耐电击穿性能的影响玻璃纤维具有高的比电阻和低的电介质常数。

玻璃纤维的电性能主要取决于玻璃的化学成分,特别是碱氧化物的含量。

本文所选用的是无碱玻璃纤维,其碱含量小于0.8%,是一种铝硼硅酸盐成分。

它的化学稳定性、电绝缘性能、强度好。

从图3 可以看出, 加入无碱玻璃纤维后, 脲醛树脂基高分子材料的耐电击穿电压升高,而且提高的程度比加入纳米蒙脱土明显。

这可能是由于当无碱玻璃纤维分散于脲醛树脂基高分子材料当中,由于纳米蒙脱土和脲醛树脂基高分子材料中脲醛树脂的氨基键强烈的相互作用,使得其中的极性基团难以转动, 导致极化困难,从而使脲醛树脂基高分子材料耐击穿电压升高。

2.3 丁腈橡胶对脲醛树脂基高分子材料耐电击穿性能的影响从图4中可以看到,随着丁腈橡胶粉用量的增加,脲醛树脂基高分子材料试样的耐电击穿强度有明显的下降趋势,这主要是因为丁腈橡胶大分子中存在的易被电场极化的腈基,从而导致脲醛树脂基高分子材料的耐电击穿强度下降。

2.4 玉米淀粉对脲醛树脂基高分子材料耐电击穿性能的影响从图5中可以看到,随着玉米淀粉用量的加入,对脲醛树脂基高分子材料的耐电击穿性能影响不是很显著,维持在空白样的基础上。

这是因为玉米淀粉是由单一类型的糖单元组成的多糖,依靠植物体天然合成。

玉米淀粉的加入对脲醛树脂基高分子材料的耐电击穿强度没有什么影响。

2.5 改性脲醛树脂基高分子材料耐电压性能的影响在进行改性脲醛树脂基高分子材料的耐电击穿强度测试结果的基础上,又对上述试样的耐电压性能进行了测试,具体结果见表1。

统一设定的压力为33KV,所有增强剂用量为7%,测试温度25℃,湿度50%,媒质为变压器油。

明显可以看到采用玻璃纤维为增强剂,耐压时间在100s以上。

表 1 纳米蒙脱土加入量对脲醛树脂基高分子材料耐电压性能的影响3 结论经过对脲醛树脂基高分子材料改性对耐电击穿强度和耐电压性能的研究,得到如下结论:(1)通过玻璃纤维、纳米蒙脱土、丁腈橡胶粉和玉米淀粉的对比分析,得到选用玻璃纤维作为增强剂对脲醛树脂基高分子材料的耐电击穿强度影响最为明显,纳米蒙脱土次之,玉米淀粉的加入对脲醛树脂基高分子材料的耐电击穿强度影响不明显,而丁腈橡胶的加入对脲醛树脂基高分子材料的耐电击穿强度有明显的下降趋势;(2)通过对各种添加剂的比较,改性后的脲醛树脂基高分子材料的耐电击穿强度能超过17KV/mm;(3)通过对耐电压性能的表征,得到玻璃纤维的加入对脲醛树脂基高分子材料在33KV的额定电压下,最佳耐压时间在100s以上。

参考文献[1]汪多仁.氨基树脂的生产与应用进展[J].建筑人造板.1998(1):26-28.[2]杨国华,黄以民,刘土生.国内外脲醛树脂基高分子材料的现状与发展趋势[J].热固性树脂,2006,21(1):49-52.[3]韩书广,吴羽飞.改性氨基树脂合成工艺与性能的关系[J].南京林业大学学报(自然科学版) ,2005 ,29 (3):73-76;[4]马松海,刘军深,刘春萍等.氨基树脂的固化机理及其应用[J].北京林业大学学报,2007,29(4):90-94.[5]罗云,顾丽莉,严顺英.合成氨基树脂的反应模型研究[J].中国胶粘剂,2008,17(2):10-13.[6]王莹莹,黄悦刚,陈山.蔗汁冷冻干燥工艺条件实验[J].广西轻工业,2004(3):13-16.[7]徐任信,崔昌盛,单云刚等.BaTiO3/环氧树脂/玻璃纤维复合材料介电性能研究[J].纤维复合材料,2008,6(2):25-27.[8]于治会.抗电击穿试验中几个问题讨论[J].电子机械工程,2000,84(2):45-49.[9]朱兴松,刘立柱,张国伟等.环氧树脂/蒙脱土纳米复合材料的介电性能研究[J].绝缘材料,2005,(2):27-29.The based on the urea-formaldehyde resin polymer materials Study of modificationXU Ning 1GUAN Qi 1YANG Xiaoyan 1 WU Kaifei 1YNAGYuming 2(1Nanjing College of Chemical Technology, Nanjing,210048,China 2Nanjing Xiangbao Taibai products industrial Co., Ltd.,Nanjing,211301,China )Abstract:In this article the basic production process of the urea-formaldehyde resin polymer materials was briefly introduced ,and the influence of the fiberglas,nanometer montmorillonite ,butyronitrile rubber powder, category and amount of cornstarch were explored.The result showed that the influence of fiberglas was the greatest when it’s as intensifier. The influence of nanometer montmorillonite was greater, and the influence of cornstarch was small to the intensity of anti-electrical Breakdown Strength.When butyronitrile rubber were added,the intensity of anti-electrical Breakdown Strength was obviously decline. The intensity of anti-electrical Breakdown Strength exceeded 17KV/mm after reshaping.The best withstand voltage time was above 100s.Keywords :urea-formaldehyde resin polymer materials;modification;anti-electrical Breakdown Strength。

相关文档
最新文档