双馈式感应发电机(DFIG)说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双馈式感应发电机(DFIG)简介
刘大明
双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。
随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国内外的高度重视。
双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速范围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。
全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。
一、双馈式感应发电机(DFIG)基本原理
双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。
当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。
从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。
双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。
从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。
通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。
一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态,(2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态: (3)欠同步发电工作状态,(4)过同步电动工作状态。
双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。
其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。
图一(a) 欠同步转速发电(0<s<1)之功率流向
图一(b) 过同步转速发电(s<0) 之功率流向
二、双馈式感应电机之运转特性
GE 型风力发电机之基本结构如图二,风力发电机由一具有绕线转子(wound rotor) 之感应发电机、滑环(slip rings) 如图三、转子回路上之AC-DC-AC PWM电力转换器以及先进的电子控制器所组成。
型双馈式感应发电机之同步转速为每分钟1200 转(rpm),且有一变频电力转换器与发电机转子连接可使发电机之转速固定于800 至1600 rpm 之范围内,产生稳定60Hz 之高质量输出。
于风速超过14m/s时转速固定于1440 rpm,发电机输出可达额定值1500KW。
由于仅转子回路中约20%~30%之输出电力须经AC-DC -AC 转换器之调变,不似Gearless Type 风力发电机中所有之输出电力均须调变,因此调变所产生之损失明显减少,电力转换器所占之空间与重量亦显著降低,在其额定容量之运转效率可达97%以上。
GE 双馈式感应发电机其运转特性为:
(1)过同步运转模式(Over-synchronous mode):以高于同步速度之转速运转,为高风速时之运转模式,发电机定子输出75%电力,转子则经由电力转换器输出约25%
之电力。
(2)同步运转模式(Synchronous mode):以同步速度转速运转,在部分负载工作范围下,发电机定子负责输出100%之电力。
(3)欠同步运转模式(Sub-synchronous mode):以低于同步速度之转速运转,为低风速时之运转模式,在部分或轻负载工作范围下,发电机定子负责100%之电力输
出。
图二GE 型风力发电机基本结构图
图三绕线转子感应发电机转子之滑环(Slip rings)及碳刷(Carbon brush)
三、DFIG交流励磁变速恒频之运行原理
双馈式感应发电机变速恒频运行的原理可以用图四来进一步说明。
图四中n1为定子旋转磁场的转速,即同步转速;n2为转子旋转磁场相对于转子的转速;nr为转子的转
速;f1、f2分别为发电机之定、转子电流的频率;P为绕线式转子之极数(Pole)。
由电机学的知识可知,双馈式感应发电机在稳态运转的时候,定子旋转磁场和转子旋转磁场在空间上保持相对静止,即
n1 = n2 + nr
因n1=(120 f1) / P及n2=(120 f2) / P,故有
(120 f1) / P = (120 f2) / P + nr
所以
f1 = f2 + (P nr)/120
从上式可知,当风力发电机转子之转速nr随着风速的变化而变动时,可通过调节转子励磁电流的频率f2使定子输出电力之频率f1保持恒定,也就是与电力系统频率一致,即可实现风力发电机的变速恒频运行。
当定子旋转磁场以同步转速旋转时,转子旋转磁场相对于转子以转差角频率旋转,感应电机于不计损耗的理想条件下有:
Pr = s Ps
Pg = Ps - Pr
s = (ns – nr) / ns
其中,s为转差率;ns为同步转速;Ps为定子输出电功率;Pr为输入至转子之电功率;Pg为双馈式感应发电机之输出电功率。
PWM电力转换器随着风速的变化会自动进行下列三种工作模式之切换:
(1)当转子转速低于同步转速时:发电机处于欠同步运转模式,转子旋转磁场旋转方向和转子转向相同,即f2 > 0,此时转差率s > 0故Pr > 0,PWM电力转
换器向发电机转子输入有效功率并提供发电机转子正相序励磁。
(2)当转子转速高于同步转速时:发电机处于过同步运转模式,转子旋转磁场旋转方向和转子转向相反,即f2 < 0,此时转差率s < 0故Pr < 0,PWM电力转
换器输出有效功率至电力系统并提供发电机转子负相序励磁。
(3)当转子转速等于同步转速时:发电机处于同步运转模式,转子不需提供旋转磁场,即f2 = 0,此时转差率s = 0故Pr = 0,PWM电力转换器向发电机转子
提供直流励磁。
图五为GE DFIG之输出与转速关系曲线,图中可看出当转子转速低于同步转速时,PWM电力转换器向发电机转子输入有效功率;当转子转速高于同步转速时,发电机转子向PWM电力转换器输出有效功率。
图六为GE DFIG之输出与转子频率关系曲线。
图四双馈感应发电机之交流励磁变速恒频运行原理
图五GE DFIG之输出与转速关系曲线Ps
Pg
Pr
图六 GE DFIG 之输出与转子频率关系曲线
图七 GE 电力转换器之硬件架构图
-20 -12 20
四、PWM电力转换器
GE 风力发电机IGBT电力转换器之硬件架构如图七所示,电力转换器之控制模块透过CAN Bus与Bachmann PLC联机,其控制核心为tms320vc33 150 MHz之数字信号处理器(DSP),DSP 与外围设备之逻辑信号连接是由现场可程序化逻辑门阵列FPGA(Field Programmable Gate Array)所规划。
电力转换器之控制运算及程序需透过专用之规划软件编辑控制程序,再分别加载DSP及FPGA中。
图八为GE 风力发电机之PLC控制架构图,图中可看出塔架底部之Main Controller透过光纤网络(Ethernet)连接至机舱中之Nacelle Controller,再经由CAN_bus透过转轴滑环(Rotor Slip Ring) 连接至轮毂(HUB)中之Pitch Controller,来控制三支叶片之旋角。
五、结语
采用双馈式感应发电机,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,使机电系统之间的刚性连接变为柔性连接。
基于上述诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究重点和必然的发展趋势。
未来风力发电机将朝大型化(单机装置容量5~10MW)及离岸式(Offshore)发展,风力发电机技术之主流为无刷交流励磁双馈感应式发电机及永磁同步发电机两大类变速恒频风力发电技术。
国内学术界及产业界应对变速恒频交流励磁双馈发电机之相关技术投入更多资源,方能建立自主研发及维护之能力。
图八GE 风力发电机之PLC控制架构图
六、参考数据
1.GE Manual,「GE POWER CONVERSION WIND CONVERTER PRODUCT OVERVIEW」,2004。
2.:”Bachmann M1 WTG Controller System”.
3.桂人杰,「变速风机之控制系统」,精密机械制造与新兴能源机械技术专辑,2006年5月,~ 。
4.刘德顺,「各厂家风力发电仪控系统及特性比较」,台电林口训练中心风力发电维护班讲义,
九十六年八月七日。
5.陈祯南、刘德顺,「GE 风力发电机介绍(上)/ (下)」,发电通讯437/438期,台电发电处出版,
九十六年七月/八月刊。