以太网交换机原理与应用

合集下载

《以太网交换基础》课件

《以太网交换基础》课件


复杂性

云计算
《以太网交换基础》PPT
课件
网络交换技术是现代计算机网络的核心,本课件将详细介绍以太网交换的基
础知识、原理和应用。
以太网交换基础介绍
了解计算机网络的基本概念和传输介质,掌握以太网交换的定义和作用。
以太网交换的原理和概念
1
MAC 地址
2
帧转发和过滤
3
无碰撞传输
了解 MAC 地址的作用和
掌握交换器利用 MAC 地
介绍交换器的管理接口,
讲解交换器的基本配置,
探索交换器的监控功能和
如控制台端口、Web 管理
如端口速度和双工模式。
故障排除方法,如端口监
界面和远程管理。
控和链路聚合的故障排查。
以太网交换的优缺点和应用
优点
缺点
应用场景

高速数据传输

网络安全性

企业局域网

低成本

广播风暴

数据中心

灵活性和可扩展性
10/100 交换机
高速交换机
软件定义网络(SDN)
回顾以太网交换器从最初的
介绍10GbE、40GbE和
展望SDN对以太网交换技术
10/100Mbps到后来的千兆交
100GbE等高速以太网交换技
的前景和变革。
换技术的演进。
术的发展。
以太网交换器的配置和管理
1
交换器管理接口
2
交换器配置
换器如何通
结构,理解以太网数据帧
址表进行帧转发和过滤的
过隔离链路和广播域实现
和帧头中的源 MAC 和目
过程。

局域网组建方法探究以太网交换机

局域网组建方法探究以太网交换机

局域网组建方法探究以太网交换机局域网(Local Area Network,LAN)是一个在有限的地理范围内连接多台计算机和其他网络设备的通信网络。

为了实现高效的数据传输和资源共享,局域网的组建方法至关重要。

本文将探究以太网交换机作为局域网组建的主要方法。

一、什么是以太网交换机在深入探究以太网交换机在局域网组建中的作用之前,先了解一下以太网交换机的基本概念。

以太网交换机是一种用于在局域网内传输数据的网络设备。

它通过接收、处理和转发数据包来实现计算机之间的快速通信。

交换机具有多个以太网端口,可同时连接多台计算机和其他网络设备。

二、以太网交换机的工作原理以太网交换机的工作原理基于MAC地址学习和转发。

当数据包从一个端口进入交换机时,交换机会查看数据包中的源MAC地址,并将它存储在一个MAC地址表中。

当交换机收到目标MAC地址的数据包时,它会查找该目标MAC地址,并将数据包只转发到与目标MAC地址对应的端口上,从而实现数据的快速传输。

三、以太网交换机的配置与管理在组建局域网时,正确配置和管理以太网交换机至关重要。

以下是一些常见的配置和管理方法:1. VLAN划分:虚拟局域网(Virtual LAN,VLAN)可以将不同的物理端口划分为逻辑上独立的子网,实现更好的网络隔离和安全性。

通过配置交换机上的VLAN,可以将不同的用户或设备隔离开来,提高网络性能和安全性。

2. STP协议:生成树协议(Spanning Tree Protocol,STP)可避免交换机之间形成环路,保证网络的稳定性和可靠性。

STP协议通过计算出最优的路径,关闭无效的链路,防止数据包的无限循环转发。

3. QoS配置:服务质量(Quality of Service,QoS)配置可根据不同应用程序的需求对网络流量进行优先级排序。

通过配置交换机上的QoS功能,可以保证重要的应用程序获得更快的网络响应时间,提高用户体验。

四、以太网交换机的选购与部署选购合适的以太网交换机对于局域网组建至关重要。

交换式以太网工作原理

交换式以太网工作原理

交换式以太网工作原理
交换式以太网是一种广泛应用于计算机网络中的局域网技术。

它的工作原理是基于数据包交换和MAC地址的。

下面是交换
式以太网的工作过程:
1. 数据包传输:当一台计算机发送数据时,数据被分成较小的数据包,并添加上目的MAC地址和源MAC地址信息。

2. 交换机的接收:交换机接收到数据包后,会检查数据包的目的MAC地址。

3. 寻址表:交换机维护一个寻址表,记录着网络中各个设备的MAC地址和对应的接口。

4. 学习过程:当交换机接收到一个数据包时,它会查找寻址表,以确定目的MAC地址所对应的接口。

如果目的MAC地址不
在寻址表中,交换机会将数据包发送到所有的接口(广播)。

5. 数据包转发:交换机根据目的MAC地址将数据包转发到正
确的接口上,并学习到数据包的源MAC地址和对应的接口。

6. 冲突域分割:由于交换式以太网采用全双工通信,交换机将每个接口分割成一个独立的冲突域,因此可以同时进行数据的发送和接收,避免了数据冲突。

7. 数据包交换:交换机根据接收到的数据包的目的MAC地址,将数据包转发到目标设备,而不会广播到整个网络。

总的来说,交换式以太网通过学习MAC地址和使用交换机进行数据包转发,实现了高效的数据传输和冲突域分割,提高了网络性能和可靠性。

工业以太网交换机原理与应用

工业以太网交换机原理与应用

工业以太网交换机原理与应用一、工业以太网交换机原理1.MAC地址学习:每个连接到交换机上的设备都有一个唯一的MAC地址。

交换机通过监控传入和传出的数据包,学习每个设备的MAC地址和其所在的端口。

这样交换机就能够在接收到数据包时快速找到目标设备的地址并将数据包发送至对应端口,从而实现数据的快速交换。

2.交换/转发机制:工业以太网交换机一般支持两种交换/转发机制:存储转发和直接转发。

存储转发会在接收到一个数据包后,先对其进行检查,然后将其存储在内存中,然后再判断目标设备的MAC地址,最后将数据包转发至对应端口。

直接转发则是在接收到数据包后立即进行判断,然后将其转发至目标端口,没有存储的过程。

存储转发相对于直接转发具有更好的稳定性和可靠性,但是速度上稍慢一些。

3.路由/交换表:交换机内部有一个路由/交换表,用于记录每个设备的MAC地址以及与之相对应的端口。

当交换机接收到一个数据包时,需要通过查询路由/交换表找到目标设备的MAC地址,并将数据包发送至相应的端口。

4.广播和多播:交换机能够将广播和多播数据包同时发送至所有连接的设备。

广播数据包的目标设备为所有设备,而多播数据包的目标设备是选择性的一组设备。

广播和多播在工业网络中常用于设备配置和组网等应用。

二、工业以太网交换机应用1.工业自动化:工业以太网交换机广泛应用于各类工业自动化系统中,如工业控制系统、机器人控制系统等。

它们通过连接各类工业设备,实现了数据的实时交互和控制。

2.物联网:随着物联网的兴起,工业以太网交换机越来越多地应用于物联网相关的设备和系统中。

例如,智能家居和智能建筑中的各类设备和传感器可以通过工业以太网交换机进行数据交互和控制。

3.视频监控:工业以太网交换机也广泛应用于视频监控系统中。

通过连接各类摄像机和监控设备,交换机可以实现视频流的传输和监控信号的分发。

4.机房建设:在大型机房中,工业以太网交换机是实现设备之间连接和数据交换的重要设备。

以太交换机工作原理

以太交换机工作原理

以太交换机工作原理以太交换机是一种网络设备,用于在局域网中传输数据包。

它的工作原理是基于以太网技术,能够实现数据包的快速转发和交换。

本文将详细介绍以太交换机的工作原理,包括数据包的转发过程、交换机的工作模式和数据包的过滤功能。

1. 数据包的转发过程以太交换机通过学习和转发数据包来实现局域网中不同设备之间的通信。

当一台设备发送数据包时,交换机会根据数据包中的目标MAC地址来确定数据包的转发路径。

如果交换机已经学习到了目标设备的MAC地址,它会直接将数据包转发到目标设备所在的端口;如果交换机还没有学习到目标设备的MAC地址,它会将数据包广播到所有端口,以便目标设备能够收到数据包并进行响应。

当目标设备响应后,交换机会学习到目标设备的MAC地址,并将其记录在转发表中,以便下次能够直接转发数据包。

2. 交换机的工作模式以太交换机有两种工作模式:存储转发模式和直通模式。

在存储转发模式下,交换机会先接收整个数据包,然后进行校验和处理,最后再将数据包转发出去。

这种模式可以确保数据包的完整性和正确性,但会增加延迟。

在直通模式下,交换机会在接收到数据包的同时进行转发,这样可以减少延迟,但无法进行校验和处理。

根据实际需求,用户可以根据需要选择不同的工作模式。

3. 数据包的过滤功能以太交换机还具有数据包的过滤功能,可以根据源MAC地址、目标MAC地址、源IP地址、目标IP地址等信息对数据包进行过滤和转发。

通过设置不同的过滤规则,用户可以实现对特定数据包的转发控制,从而提高网络的安全性和效率。

例如,用户可以设置只允许特定MAC地址的设备进行通信,或者禁止某些IP地址的设备进行通信。

总之,以太交换机是一种能够实现数据包快速转发和交换的网络设备,其工作原理基于以太网技术,包括数据包的转发过程、交换机的工作模式和数据包的过滤功能。

通过了解以太交换机的工作原理,用户可以更好地理解和使用这种网络设备,提高局域网的通信效率和安全性。

以太网交换机介绍

以太网交换机介绍

交换机/路由器配置与管理
Cisco Catalyst 4006的接线面板
交换机/路由器配置与管理
Catalyst 6500系列主要为企业和电信运营商网络提供高 度可用、安全的融合网络服务。这些交换机可满足骨干网、 分布层、布线室结构以及数据中心环境对高可用性、可扩 展性、高级服务和多层交换越来越高的要求。 该系列提供有3插槽、6插槽、9插槽和13插槽的机箱, 以及多种集成式服务模块,包括数千兆位的网络安全性、 内容交换、语音和网络分析模块,能提供48到576个 10/100/1000以太网端口,和支持192个1Gbps或32个10Gbps 骨干网端口,能作为每秒数亿个数据包处理能力的网络核 心交换机。
⑻ 支持流量控制 能够控制交换机的数据流量,HDX、FDX是通用的流量控 制标准,目前的交换机一般均支持。 ⑼ 易于扩展 对于核心层交换机,应注意其扩展性,通常应是模块化 的交换机,能在未来根据应用的需要,通过添加功能模块, 来增强交换机的功能和增加接口。
交换机产品简介 目前生产交换机的主流厂商主要有Cisco和华为 3COM公司,其生产的交换机是市场应用的主流。
交换机/路由器配置与管理
4.根据结构的不同,交换机可分为固定端口 交换机和模块化交换机。 固定端口交换机只能提供有限的端口和固定类 型的接口,从连接的用户数量和所使用的传输介 质上看,存在一定的局限性。这类交换机也有桌 面式和机架式之分,机架式便于安装和管理。 5.根据工作协议的层分类,交换机可分类第2层 交换机、第3层交换机和第4层交换机。 第2层交换机根据数据链路层的信息(MAC地址) 完成不同端口间的数据交换。接入层交换机一般 就采用第2层交换机。 第3层交换机具有路由功能,能识别网络层的IP信 息,并将IP地址用于网络路径的选择,并能够在不 同网段间实现数据的线速交换。

ethernet switch工作原理

ethernet switch工作原理

ethernet switch工作原理一、引言Ethernet switch(以太网交换机)是现代网络中常见的设备,它在局域网中起到连接多个设备的作用。

本文将介绍以太网交换机的工作原理,包括其基本功能、数据转发机制和工作模式。

二、基本功能以太网交换机是用来构建局域网(LAN)的关键设备之一。

它主要有两个基本功能:数据帧的转发和广播域的隔离。

1. 数据帧的转发当一个数据帧进入以太网交换机的端口时,交换机会读取帧中的目标MAC地址。

根据交换机的转发表,交换机会将该帧转发到相应的端口,以便达到目标设备。

这种转发方式被称为无碰撞、无冲突和无广播的点对点通信。

2. 广播域的隔离以太网交换机能够将局域网分割成多个互相隔离的广播域。

当一个设备发送广播帧时,交换机会将该广播帧发送到所有其他端口,以确保它能够被局域网中的所有设备接收到。

然而,交换机会阻止广播帧跨越不同的广播域,以避免广播风暴和网络拥塞。

三、数据转发机制以太网交换机的数据转发机制是其工作原理的核心。

它通过学习和转发机制来实现数据的高效转发。

1. 学习机制当一个数据帧进入交换机的端口时,交换机会将源MAC地址和其所在端口的映射关系记录在转发表中。

这个过程称为学习机制。

通过学习机制,交换机能够了解到哪个MAC地址位于哪个端口,从而在转发数据时能够快速定位目标端口。

2. 转发机制当交换机接收到一个数据帧时,它会通过目标MAC地址查找转发表,找到目标地址对应的端口。

如果转发表中存在该目标地址的记录,交换机会将数据帧转发到相应的端口。

如果转发表中不存在该目标地址的记录,交换机会将该数据帧广播到所有其他端口,以便学习到新的MAC地址。

四、工作模式以太网交换机有两种常见的工作模式:存储转发和剪辑转发。

1. 存储转发存储转发是一种保证数据帧完整性的转发模式。

当交换机接收到一个数据帧时,它会先将整个数据帧存储在缓冲区中,然后再进行校验和处理。

只有当数据帧没有错误时,交换机才会将该帧转发出去。

以太网交换机的工作原理

以太网交换机的工作原理

以太网交换机的工作原理
以太网交换机的工作原理主要分为三个步骤,即学习MAC地址、建立转发表和数据转发。

首先,交换机会通过学习MAC地址来建立转发表。

当一个数
据帧到达交换机时,交换机会查看数据帧首部中的源MAC地址,并将其与一个特定的端口关联。

如果该地址之前没有在转发表中出现过,交换机会将该地址与到达的端口关联起来,并在转发表中添加一条新的记录。

如果该地址已经存在于转发表中,交换机会更新该地址的关联端口。

接下来,交换机会根据转发表中的信息建立转发表。

转发表记录了到达交换机不同端口的MAC地址。

当交换机收到数据帧时,它会查看该数据帧首部中的目的MAC地址,并在转发表
中查找该地址的关联端口。

如果找到了目的MAC地址的关联
端口,交换机会直接将数据帧转发到该端口,而不会在其他端口上进行广播。

如果找不到目的MAC地址的关联端口,则交
换机会在所有端口上进行广播,以确保所有端口都能接收到数据帧。

最后,交换机会进行数据转发。

当交换机接收到一个数据帧时,它会根据转发表中的信息将该数据帧转发到目的MAC地址的
关联端口上。

交换机会利用硬件的转发表进行快速的转发,以确保数据帧能够以最快的速度到达目的地。

通过以上的学习MAC地址、建立转发表和数据转发的过程,
以太网交换机可以实现对数据帧的快速、准确的转发,提高了局域网的传输效率和带宽利用率。

以太网交换机的工作原理及功能

以太网交换机的工作原理及功能

以太网交换机是数据链路层的机器,是基于以太网传输数据的交换机,使用物理地址(MAC地址),48位,6字节。

其工作原理为:当接受到一个广播帧时,它会向除接受端口之外的所有端口转发。

当接受到一个单播帧时,检查其目的地址并对应自己的MAC地址表,如果存在目的地址,那么转发,如果不存在那么泛洪(广播),广播后如果没有主机的MAC地址与帧的目的MAC地址相同,那么丢弃,假设有主机相同,那么会将主机的MAC自动添加到其MAC地址表中。

交换机分割冲突域,每个端口独立成一个冲突域。

每个端口如果有大量数据发送, 那么端口会先将收到的等待发送的数据存储到寄存器中,在轮到发送时再发送出去。

以太网交换机的应用非常广泛,在大大小小的局域网中都可以见到它们的身影。

例如丰润达系列以太网交换机,性能稳定,档次齐全,价格优势,应用最为普遍。

另外以太网交换机端口速率可以不同,工作方式也可以不同,如可以提供10M、100M、1000M的带宽、提供半双工、全双工、自适应的工作方式等。

以太网交换机的主要功能:
1、学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

2、转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧那么转发至所有端口)。

3、消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议防止回路的产生,同时允许存在后备路径。

《以太网技术原理》课件

《以太网技术原理》课件

以太网交换机制
以太网交换机工作原理
以太网交换机是一种基于数据链路层的网络设备,能够实现多个 端口之间的数据交换。
以太网交换机转发方式
以太网交换机采用快速转发方式,能够快速地将数据帧从一个端口 转发到另一个端口。
以太网交换机交换方式
以太网交换机采用存储转发交换方式,能够将接收到的数据帧先存 储在缓冲区中,再根据目标地址将其转发到正确的端口。
CHAPTER
03
以太网设备与组网
以太网设备的类Байду номын сангаас和功能
交换机
集线器
以太网交换机是一种多端口的网桥, 它能够连接多个以太网段,实现数据 包的转发和过滤。
以太网集线器是一种物理层设备,它 能够将多个以太网段连接在一起,实 现数据的集中和广播。
路由器
以太网路由器是一种网络设备,它能 够将多个网络段连接在一起,实现不 同网络之间的数据传输和路由。
数据中心网络的以太网应用案例
总结词
数据中心网络中,以太网技术能够提供高效、灵活的数据传输服务,支持云计算和大数 据等新兴技术的应用。
详细描述
在数据中心网络中,以太网技术被广泛应用于连接服务器、存储设备和网络设备。以太 网技术提供了一种高效、灵活的数据传输方式,能够满足数据中心网络对于数据传输的 高要求,支持云计算和大数据等新兴技术的应用,提高数据中心的运营效率和数据处理
成本效益
以太网技术是一种广泛使 用的局域网技术,具有较 低的成本和较高的性价比 。
以太网技术的应用场景
企业网络
以太网技术广泛应用于企 业网络中,支持各种规模 的企业实现高效的数据传 输和管理。
校园网络
以太网技术也是校园网络 的主流技术之一,支持学 校内部的网络通信和资源 共享。

以太网交换机工作原理

以太网交换机工作原理

以太网交换机工作原理
以太网交换机是一种用于局域网中的网络设备,它通过将网络数据包从源地址转发到目标地址,实现了网络中各个设备之间的通信。

以太网交换机的工作原理可以简述为帧转发、自学习和广播控制。

首先,以太网交换机实现帧转发。

当一个数据包到达以太网交换机的某个端口时,交换机会检查这个数据包的目标MAC地址。

如果该目标地址已存在于交换机的MAC地址表中,交换机将会通过对应的端口转发该数据包。

如果目标地址不存在于MAC地址表中,交换机会通过广播方式将数据包发送到所有其他端口,然后继续观察数据包的源MAC地址,并将该地址与接收到的数据包绑定到MAC 地址表中。

其次,以太网交换机通过自学习机制来完善MAC地址表。

当数据包从某个端口经过交换机时,交换机会观察源MAC地址和端口的对应关系,并将这个关系记录到MAC地址表中。

当再次接收到目标MAC地址与已知源MAC地址的数据帧时,交换机会快速找到目标MAC地址对应的端口,并只将该数据包转发到该端口,这样可以减少网络中不必要的数据发送,提高了网络的传输效率。

最后,以太网交换机通过广播控制机制来实现网络中广播数据的控制和管理。

即当一个数据包传输到以太网交换机的端口时,交换机会判断该数据包是否为广播数据包。

如果是广播数据包,交换机会将该数据包广播到所有其他端口上。

这样确保了局域网中广播数据的传播,同时也保证了网络中的广播数据的控制和管理。

总的来说,以太网交换机工作原理是基于三个关键机制:帧转发、自学习和广播控制。

通过这些机制,以太网交换机实现了对数据的高效转发和管理,提高了网络中设备之间的通信效率,同时也保证了网络的安全性和稳定性。

交换式以太网组网技术

交换式以太网组网技术

存储转发
交换机首先存储整个数据帧,然 后根据MAC地址表进行转发。这 种方式可以避免风暴,但交换速 度较慢。
碎片丢弃
交换机在接收到小于一定长度 (如64字节)的数据帧时,直接 丢弃该帧。这种方式可以有效减 少网络中的小包流量,提高网络 性能。
03 交换式以太网的组网技术
CHAPTER
星型拓扑结构
交换式以太网组网技术
目录
CONTENTS
• 引言 • 交换式以太网的基本原理 • 交换式以太网的组网技术 • 交换式以太网的性能优化 • 交换式以太网的应用场景 • 总结与展望
01 引言
CHAPTER
交换式以太网的发展历程
01
02
03
起源
以太网技术起源于20世纪 70年代,最初是为了实现 简单、经济的局域网连接。
网状拓扑结构
总结词
网状拓扑结构是一种复杂的以太网组网 方式,其中节点之间有多条通信路径。
VS
详细描述
在网状拓扑结构中,节点之间有多条通信 路径,每个节点都可以直接或间接地与其 他节点通信。这种结构提供了高可用性和 灵活性,但需要复杂的配置和管理,同时 成本也较高。
04 交换式以太网的性能优化
CHAPTER
交换机通过学习源MAC地址,自动建立和维护MAC地址表。当 MAC地址发生变化时,地址表会自动更新。
去抖动处理
对于网络中的重复帧,交换机进行去抖动处理,确保只转发一次有 效帧。
交换式以太网的交换方式
直通交换
交换机在接收到数据帧时,立即 从相应的端口转发出去,不需要 存储整个数据帧。这种方式交换 速度快,但无法处理风暴。
前导码
用于同步,由7个字节的10101010和1个 字节的101010101组成。

以太网技术的使用教程

以太网技术的使用教程

以太网技术的使用教程随着科技的发展,以太网技术已经成为现代社会中最常见的网络通信方式之一。

无论是家庭、企业还是学校,几乎每个地方都离不开以太网。

在本文中,我们将探讨以太网技术的基本原理和使用教程,帮助读者更好地了解和应用这一技术。

一、以太网的基本原理以太网是一种局域网技术,它通过使用双绞线或光纤等传输介质,将计算机、服务器、打印机等设备连接起来,实现数据的传输和共享。

以太网采用的是分组交换的方式,将数据拆分成小的数据包,然后通过网络交换机进行传输。

这种方式能够提高网络的传输效率和可靠性。

二、以太网的硬件设备要使用以太网,我们首先需要准备一些硬件设备。

首先是网络交换机,它是连接各个设备的核心设备。

根据网络规模和需求,我们可以选择不同端口数量和速度的交换机。

其次是网线,它是连接设备和交换机的媒介。

常见的网线有Cat5、Cat6等不同规格,根据需要选择合适的网线。

最后是计算机、服务器和其他设备,它们是网络的终端设备,通过网线与交换机相连。

三、以太网的配置和连接在使用以太网之前,我们需要进行一些配置和连接。

首先,将交换机与电源连接,并连接上网线。

然后,将网线的一端插入交换机的端口,另一端插入计算机或其他设备的网口。

确保网线插入牢固,不松动。

接下来,打开计算机或设备的网络设置,选择以太网连接,并通过动态IP或静态IP方式进行配置。

配置完成后,我们就可以开始使用以太网进行数据传输和共享了。

四、以太网的应用以太网技术广泛应用于各个领域。

在家庭中,我们可以通过以太网连接多台计算机,实现文件共享和互联网访问。

在企业中,以太网连接了各个部门的计算机和服务器,实现了内部数据的快速传输和共享。

在学校中,以太网连接了教室、实验室和图书馆等地的计算机,方便师生进行教学和学习。

五、以太网的扩展和升级随着科技的不断进步,以太网技术也在不断发展。

目前,最常见的以太网标准是10/100/1000Mbps,即千兆以太网。

但随着网络需求的增加,千兆以太网已经无法满足高带宽的要求。

以太网交换机技术原理

以太网交换机技术原理

以太网交换机技术原理以太网交换机的基本原理是通过多个以太网端口来接收和转发数据帧。

每个端口相当于一条通道,可以连接一个或多个计算机。

当一台计算机要发送数据时,它会将数据封装成数据帧,并将数据帧发送给交换机的一些端口。

交换机收到数据帧后,会读取其中的目标MAC地址,然后通过学习和转发的方式将数据帧发送给目标计算机。

交换机学习和转发数据帧的过程主要包括三个步骤:学习、过滤和转发。

学习:交换机收到数据帧后,会提取出数据帧中的源MAC地址,并将这个地址和收到这个数据帧的端口绑定在一起,形成一个表项。

这样,交换机就学会了源MAC地址所对应的端口。

如果收到的数据帧中的源MAC地址已经存在于之前的表项中,交换机会更新这个表项的时间戳。

学习的过程可以通过交换机的学习模块完成,该模块通常是一个CAM(Content-Addressable Memory)表。

过滤:交换机会检查数据帧的目标MAC地址,并与之前学习到的表项进行匹配。

如果目标MAC地址在表项中存在,则说明目标计算机直接连接在与该表项对应的端口上,交换机会直接转发数据帧到这个端口上。

如果目标MAC地址在表项中不存在,交换机会将数据帧广播到除了收到数据帧的端口之外的所有端口,这样可以确保数据帧能够传输到目标计算机。

转发:在进行广播之后,交换机会等待所有连接的计算机响应。

如果有计算机回应,交换机会将这个计算机的MAC地址和所在端口加入到学习表中,下一次发送该计算机的数据帧时可以直接转发到这个端口。

如果没有计算机回应,交换机会丢弃数据帧,避免网络拥堵。

除了学习和转发功能,以太网交换机还有一些其他的功能。

例如:虚拟局域网(VLAN)的实现,可以将交换机的端口划分为不同的虚拟局域网,实现隔离和安全性;链路聚合(Link Aggregation)的实现,可以将多个端口绑定在一起,提高带宽和冗余性;流控和管理功能,可以对流量进行限速和精细的管理等。

总结起来,以太网交换机的技术原理是通过学习和转发方式来实现计算机之间的数据交换,同时可以提供很多其他的功能来满足网络的需求。

以太网交换机结构和原理

以太网交换机结构和原理

以太网交换机结构和原理1.物理结构:交换机的内部由多个交换模块组成,通常包括端口管理模块、转发引擎和交换矩阵。

端口管理模块负责管理每个端口的状态,包括连接状态、速度和双工模式等。

转发引擎用来处理数据包的转发和接收,以及生成和更新MAC地址表。

交换矩阵是交换机的核心部分,负责实现快速、准确的数据包转发。

2.数据转发和交换算法:以太网交换机的关键任务是根据数据包的目的MAC地址转发数据包。

当交换机接收到数据包时,它会通过查找MAC地址表来确定数据包的目的地址所对应的端口。

如果交换机的MAC地址表中没有对应的地址,它会广播数据包到所有连接的端口上。

交换机使用不同的交换算法来确定数据包的转发路径。

其中,最常用的算法是学习算法和转发算法。

学习算法用来学习和记录设备之间的MAC 地址和端口的对应关系,以建立和更新MAC地址表。

转发算法用来确定数据包的转发路径,以保证数据包能够快速、准确地到达目的地。

3.网络流量控制:流量控制的主要方法包括速率限制、拥塞控制和碰撞检测。

速率限制用来限制每个端口进出的数据包速率,以避免网络拥堵。

拥塞控制主要针对网络中的拥塞情况,通过调整转发速率,避免数据包堆积和丢失。

碰撞检测用来检测并解决网络中的碰撞问题,以确保数据的可靠传输。

此外,以太网交换机还支持虚拟局域网(VLAN)的功能。

VLAN可以通过将不同的设备划分到不同的虚拟网络中,以实现安全隔离和更好的网络性能。

总结起来,以太网交换机通过物理结构、数据转发和交换算法以及网络流量控制来实现多个设备之间的数据传输。

它的设计和实现使得局域网中的数据传输更加高效、可靠,并且支持多种功能,如VLAN等。

随着技术的发展,以太网交换机的性能和功能还将不断提升,以适应不断变化和发展的网络需求。

以太网交换机结构和原理

以太网交换机结构和原理

以太网交换机结构和原理以太网交换机是一种基于以太网技术的网络设备,主要用于实现局域网的数据交换。

它的主要作用是根据目的MAC地址和端口的对应关系,将数据包从一个端口复制并转发给目标端口,从而实现数据的快速传输和转发。

下面将从交换机的结构和原理两方面进行详细介绍。

一、交换机的结构1.交换机的外部结构交换机通常具有多个接口,用于连接多台终端设备,如计算机、服务器、打印机等。

每个接口都有一个端口号,用于标识不同的接口。

交换机能够通过不同的端口号将数据发送到相应的接口。

2.交换机的内部结构交换机内部通常包含以下几个主要部分:(1)端口:交换机的每个端口都与一个终端设备相连,可以通过端口来接收和发送数据。

(2)转发引擎:转发引擎是交换机的核心部分,主要负责实现数据包的转发和处理。

转发引擎通常由ASIC芯片(专用集成电路)组成,能够对数据包进行快速处理和转发。

(3)存储器:交换机通常具有一定的存储器容量,用于存储MAC地址表、数据包缓存等。

(4)控制板:控制板通常由CPU、操作系统和管理功能组成,用于控制和管理交换机的运行。

二、交换机的工作原理交换机的工作原理主要有两种模式:存储转发模式和直通模式。

1.存储转发模式(1)数据接收:当交换机接收到一个数据包时,首先会通过物理层和数据链路层的处理将数据包的帧头提取出来,并将源MAC地址记录到MAC地址表中。

(2)MAC地址表:MAC地址表存储了每个端口对应的MAC地址,以及MAC地址和接口的对应关系。

当交换机接收到一个新的数据包时,会根据源MAC地址在MAC地址表中查找对应的接口。

(3)根据MAC地址转发:如果在MAC地址表中找到了源MAC地址对应的接口,则将数据包发送到相应的接口,并更新源MAC地址的端口信息。

如果没有找到源MAC地址对应的接口,则将数据包广播到所有的端口上。

(4)根据目的MAC地址转发:当交换机接收到一个数据包时,会根据目的MAC地址在MAC地址表中查找对应的接口。

以太网交换机工作原理

以太网交换机工作原理

以太网交换机工作原理
以太网交换机是一种网络设备,用于在局域网(LAN)中转
发以太网帧。

它的工作原理如下:
1. MAC地址学习:当交换机收到一个以太网帧时,它会提取
帧中的目标MAC地址,并将该地址与输入端口关联起来,以
此学习哪个MAC地址位于哪个端口。

交换机将这些信息记录
在一个地址表中。

2. MAC地址转发:一旦交换机学习到某个MAC地址位于特
定的端口上,它将只向该端口转发帧,而不是向所有端口广播。

这种方式可以提高网络的效率和安全性。

3. 广播和未知目标处理:当交换机收到一个广播帧时,它会将该帧发送到所有的端口上,以便其他设备能够接收到。

对于目标MAC地址未知的帧,交换机将其发送到除接收端口外的所
有端口上。

4. 数据转发速度:以太网交换机通常具有高速转发能力。

它能够以硬件方式进行帧的交换和转发,这使得数据能够以线速进行传输,减少了网络延迟。

5. VLAN支持:一些以太网交换机支持虚拟局域网(VLAN)
功能。

VLAN可以将一个物理局域网划分为多个逻辑上的局域网,实现隔离和安全性。

总的来说,以太网交换机通过学习和转发MAC地址来提高网
络效率和安全性。

它有效地减少了网络拥塞和冲突,提供了快速而可靠的数据传输。

以太网交换机结构和原理

以太网交换机结构和原理

以太网交换机结构和原理首先是端口模块,它负责外部设备和交换机之间的物理连接。

每个端口模块通常包括一个物理接口和一个逻辑接口。

物理接口是接入线缆的接口,常见的有RJ-45接口、光纤接口等。

逻辑接口则负责管理该端口的数据流动,对接入的数据进行分析和处理。

交换矩阵是以太网交换机的核心组件,它负责处理数据包的转发和交换。

交换矩阵通过运用复用技术,将多个数据包同时传输到不同的端口的输出队列中,然后根据目的地址进行匹配,找到正确的输出端口并将数据包转发至目标设备。

常见的交换矩阵有共享总线、矩阵式、共享内存等。

共享总线矩阵是一种较为简单的交换机结构,它通过共享一个总线来实现数据包的转发。

当一个数据包到达时,交换机首先会将其存储在内存中,然后通过共享总线依次将数据包发送至目标端口。

这种结构的特点是成本较低,但是容易因总线带宽约束而造成阻塞。

矩阵式交换矩阵采用了矩阵交换技术,能够同时处理多个数据包的转发。

它通过交换矩阵将每个输入端口连接到每个输出端口,并根据目的地址将数据包传输至目标端口,实现了快速的数据转发。

共享内存交换矩阵利用了内存的并行读写能力,能够同时处理多个数据包的转发。

数据包在输入端口接收后暂时存储在共享内存中,然后由交换矩阵根据目的地址将其转发至目标端口。

这种结构的优点是速度快、容量大,但成本较高。

控制模块是以太网交换机的管理中心,它负责控制端口模块和交换矩阵的运行。

控制模块通过解析数据包的目的地址,确定数据包的传输路径,并向交换矩阵下发相应的控制指令。

此外,控制模块还负责维护交换表,记录数据包的源地址、目的地址和对应的输出端口,以便下次转发时快速匹配。

1.当数据包到达交换机时,交换机首先会通过端口模块接收和解析数据包的源地址和目的地址。

2.交换机会检查交换表,查询目的地址对应的输出端口。

如果找到了匹配项,则直接将数据包转发至相应端口;如果未找到匹配项,则将数据包发送至所有的输出端口。

3.接收到数据包的目标设备将会返回一个应答信号,交换机会将该信号交给控制模块进行处理,更新交换表中的源地址和目的地址的映射关系。

以太网交换机

以太网交换机
交换机分割冲突域,每个端口独立成一个冲突域。每个端口如果有大量数据发送,则端口会先将收到的等待 发送的数据存储到寄存器中,在轮到发送时再发送出去。
面临问题
面临问题
以太网交换机作为一种数据传输设备,是局域网中重要的设备之一,内部结构端口均为同主机连接,可以在 连接多个端口的同时,实现数据传输,也不会产生冲突。除此之外,以太网交换机成本较低,可以满足不同层次 的实际需求,在大数据时代背景下,以太网交换机技术不断发展,扩展形成了很多复杂的业务。在这个过程中, 以太网交换机也面临着较为严重的安全问题,主要包括以下几个方面:第一,广播恶意攻击;第二,网络攻击; 第三,MAC地址攻击;第四,MAC恶意欺骗;第五,环路攻击。以广播恶意攻击为例,网络是一个开放的平台,交 换机在接受大流量广播数据时,就会通过广播的形式转发这些数据,如果数据的传输控制功能不够完善,那么网 络宽带就会被这些垃圾数据充满,交换机需要具备面对众多数据的传输控制功能。
应用
应用
以太网交换机应用最为普遍,价格也较便宜,档次齐全。因此,应用领域非常广泛,在大大小小的局域网都 可以见到它们的踪影。以太网交换机通常都有几个到几十个端口,实质上就是一个多端口的网桥。另外,它的端 口速率可以不同,工作方式也可以不同,如可以提供10M、100M的带宽、提供半双工、全双工、自适应的工作方 式等。
以太网交换机
交换机
01 概念
03 应用
目录
02 关键技术 04 特点
05 工作原理
07 转发方式
目录
06 面临问题
基本信息
以太网交换机是基于以太网传输数据的交换机,以太网采用共享总线型传输媒体方式的局域网。以太网交换 机的结构是每个端口都直接与主机相连,并且一般都工作在全双工方式。交换机能同时连通许多对端口,使每一 对相互通信的主机都能像独占通信媒体那样,进行无冲突地传输数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

版权所有
由于光纤尾纤直接就是 2 条线缆,已有收发之分,一般不会出错,所以这里就不提出了。
我们现在已经了解到什么是级连以及方法,下面我们来看一下交换机间另一种常见的连 接方式“堆叠”。
首先,为什么需要“堆叠”呢?前面我们提到过,交换机的级连个数不得超过 7 个,举 一个很简单的例子,一个 200 节点的网络,如果使用普通 24 口交换机级连几乎无法实现, 因为 24 个端口乘以 7 台交换机等于 168 个端口,级连还要用掉一些,大约还有 156 个端口 可用,那么剩余的 44 台主机就没有位置来连接了,当然还可以使用路由,不过没有路由的 情况下应该如何实现呢?这类问题早在集线器时代就普遍存在了(HUB 尤其明显,因为最 多级连个数 10 兆 4 个、百兆 2 个(class II 规范)),解决办法就是使用堆叠技术。
交换机同时还支持全双工,有学习、过滤和转发的工作原理来优化工作环境,那么什么 是“学习、过滤和转发”呢?我们来看下图:
在图中,如果设备是集线器的话,PC1 想要寻找 PC2 并进行通讯,会经历以下过程: 首先 PC1 发送的寻址请求(目标地址是 PC2 的 MAC 地址)会交由集线器设备,设备会在 所有的端口“广播”,也就是发送寻址广播到所有端口所连接的主机,目标 PC2 获取到之后 发现目标是自己,就回应一个数据给 PC1,从而让 PC1 知道了 PC2 所在的位置是端口 5, 并能够进行通讯。
宽总线式交换机是在交换机主板上预留一条“数据总线”,就像一条大家公用的公路, 每个端口都可以利用其其中一部分带宽,假如这个总线带宽为 200 兆的话,也就是说最多同 时是允许 2 组 100 兆端口同时可以通讯,其余端口如果也要通讯还是需要等待的,因为带宽 已经分配完毕了。所以,这种方式的设备比较理想工作状态还有一点差距,但是因为几乎不 会有普通交换机的端口会都在同时通讯,总会有些端口处在闲置的状态,所以满足绝大部分 的网络要求是可以满足的。因此,交换机有一项性能参数,叫做“交换容量”,也叫做“背 板带宽”,指的是“交换机可以同时进出所有端口数据量的总合”,其实也就是数据的吞吐能 力。
碎片隔离式也叫改进型直通式交换,利用到直通式的优势就是转发迟延小,同时会检查 每个数据帧的长度。因为原理上,每个以太网帧不可能小于 64 字节,大于 1518 字节。如果 交换机检查到有小过 64 字节或大于 1518 字节的帧,它都会认为这些帧是“残缺帧”或“超 长帧”,那么也会在转发前丢弃掉。这种方式综合了直通交换和存储转发的优势,很多高速 交换机会采用,但是并没有存储转发方式来的普及。
高骞
biteedu@
版权所有 翻录必纠

版权所有
我们可以发现,交换机内部存在着桥接的环境,理论上每个端口之间都有独立的通路, 而不是像集线器一样共享带宽。所以,当 1 口与 2 口间正在通讯的时候,3 口与 4 口也可以 同时进行通讯。这样一来理论上不会发生冲突,也就是说不会造成效率的降低。因为这个原 因,交换机才会在今天非常的普及。
高骞
biteedu@
版权所有 翻录必纠

版权所有
那么“过滤”呢?既然交换机会“学习”MAC 地址和端口的对应关系,并凭借它来“转 发”数据,人为的也可以作出一些策略,比如禁止某个地址与端口的转发关系,从而可以“过 滤”数据。
版权所有
前面我们描述了很多的原理,对应下来级连交换机时有以下几种情况:
Hale Waihona Puke UpLink 到另一设备的普通端口,可使用直通线缆。 ----------------------------------------------------------------------------------------------------------------------
UpLink 到另一设备的 UpLink 端口,需使用交叉线。 ----------------------------------------------------------------------------------------------------------------------
从上面我们看到,交换机的名称由来,其实就是所谓数据“转发”过程。这个转发过程 其实还有一些差异,主要有:直通式交换式、存储转发式、碎片隔离式三种。
所谓直通式交换,也就是交换机在收到帧后,只要查看到此帧的目的 MAC 地址,马上 凭借 MAC 地址表向相应的端口转发;这种方式的好处是速度快,转发所需时间短,但问题 是可能同时把一些错误的、无用的帧也同时转发向目地端。
注意堆叠不是使用普通的网络电缆,而是专用堆叠电缆,从设备的主板之上直接连接, 所以早期也有所谓背板堆叠之说。既然是直接在主板上连接(需要有专用堆叠端口),大家 不妨这样想象,两台交换机在出厂的时候造成了两台独立的设备,后期我们使用堆叠技术从 主板相连,就像把主板焊接在了一起一样,所以堆叠起来的设备逻辑上算是一台设备。那么 类似下图中的拓扑,堆叠上两组交换机,设备的端口就成倍增加了,而且不占用级连的个数, 从而可以达到增加端口的目的:
这种问题在小型以太网中并不会造成很大问题,并且可以很好的工作,但是如果网络上 的通讯量有增加,或者连接的节点数目很多的时候,“冲突”会严重影响网络的性能,比如 我们在第一章中讲解以太网原理的时候就解释过优化“冲突域”的问题,这时候我们需要能 够隔离“冲突”的设备,交换机就可以完成这个功能了。
交换机在连接的时候,各个端口之间都可以同时通讯,也就是说端口间是不冲突的,也 可以用来隔离冲突。那么,什么样的原理造成交换机可以达成这个能力呢?我们来看看下图:
高骞
biteedu@
版权所有 翻录必纠

版权所有
当然,处在网络核心的一些交换机对这个参数是有要求的。大家不妨考虑下这种状况: 某台核心交换机用 16 个千兆端口连接 16 栋楼宇内的交换机,这台交换机绝对会要求 16 个 端口同时通信,并可能带宽达到饱和状态,也就是说它需要至少 16G 的交换总容量,才能 满足网络需求,这也是我们以后选择交换机交换容量的一种参考。同时我们还要为未来升级 预留扩展,那么为其准备 1 倍的升级空间,即此设备最好有 32G 的交换总容量。为了让大 家对交换机的这个能力有个印象,我们举一些例子,如一般厂商的系列交换机中,低端部门 工作组级交换机的交换容量一般是 2G 左右,汇聚层设备一般为 20G 左右,核心设备从 30G 到 180G 不等。
普通端口到普通端口,也需要交叉线。
此外还要注意,处于造价考虑,大部分厂商的 UpLink 端口和相邻端口有“共用”关系, 也就是说比如 UpLink 与 1 口相邻,UpLink 端口连线后 1 口就不能使用了,图解如下:
高骞
biteedu@
版权所有 翻录必纠

----------------------------------------------------------------------------------------------------------------------
高骞
biteedu@
版权所有 翻录必纠

所以各大厂商出于形象考虑,大部分设备使用的是存储转发机制,也就是交换机的每个 端口被分配到一定的缓冲区(内存空间,一般为 64k 大),数据在进入交换机后读取完目标 MAC 地址,凭借 MAC 地址表掌握到转发关系后,数据会一直在此端口的缓冲区内存储, 直到数据填满缓冲区然后一次把所有数据转发到目的,在数据存储在缓冲区期间,交换机会 对数据作出简单效验,如果此时发现错误的数据,就不会转发到目地端,而是在这里直接丢 弃掉了;当然这种方式可以提供更好的数据转发质量,但是相对的转发所需时间就会比直通 交换要长一点。
其实在最早的星型拓扑中,标准的线缆集中连接设备是“HUB(集线器)”,但是集线 器存在着:共享带宽、端口间冲突等问题,因为大家都知道,标准的以太网是一个“冲突的 网络”,也就是说在一个所谓“冲突域”里面,最多只有两个节点可以互相通讯。而且,虽 然集线器有很多端口,但是其内部结构完全是以太网所谓的“总线结构”,也就是说其内部 只有一条“线路”来进行通信。如果上图中的设备是集线器的话,举个例子来说,假如端口 1 和 2 之间的节点正在通信,其它端口是需要等待的。直接造成的现象也就是,比如端口 1 和 2 所连接节点之间传送数据需要 10 分钟,端口 3 和 4 所在的节点在此同时也开始通过此 集线器传输数据,互相间冲突,造成大家所需的时间都会变久,时间可能会达到 20 分钟才 能传送完毕。也就是说集线器上互相通讯的端口越多,冲突越严重,传送数据所需的时间越 久。
但是,只要有过成功通讯后,交换机会把来源节点的 MAC 地址和端口对应关系记录在 本机的“MAC 地址表”中,也就是会把 PC1 的 MAC 地址对应端口 1 的关系记录下来,同 理 PC2 的 MAC 地址也会记录对应端口 5。表项类似:“0050ba000001(PC1 的 MAC 地址)= 端口 1”、“0050ba000005(PC2 的 MAC 地址)=端口 5”。这就是所谓的“学习”能力。之 后,如果 PC1 又要和 PC2 通讯,寻找目标 PC2 的 MAC 地址的请求会进入交换机,交换机 首先会比对自己的“MAC 地址表”,发现目标 PC2 的 MAC 地址已经在表中存在,也就不会 再“广播”寻址,而是凭借端口对应关系,直接从端口 1 向端口 5 转发数据,从而减少了网 络上的寻址广播。这就是所谓的“转发”。
版权所有
1. 以太网交换机原理
以太网交换机,作为今天我们广为使用的局域网硬件设备,一直为大家所熟悉。它的普 及程度其实是由于以太网的广泛使用,作为今天以太网的主流设备,几乎所有的局域网中都 会有这种设备的存在。看看以下的拓扑,大家会发现,在使用星型拓扑的情况下,以太网中 必然会有交换机的存在,因为所有的主机都是使用电缆集中连接到交换机上从而能够互相连 接的:
刚才我们说交换机理论上可以让所有端口通讯互不影响,为什么强调理论上呢?因为, 事实上出于造价,很少有交换机可以达到我们上图中的所谓“矩阵式交换”的能力,因为大 家从图上也可以看到,为了让端口间绝对的存在可利用通路,每个端口都要预留到任何一个 端口的线路,这种全矩阵交换机的模型实现起来造价非常昂贵,因为要利用大量的 CPU 和 内存,这种工作方式的交换机动辄要价会达到几十万人民币,普通网络环境根本无法使用。 所以造成今天大部分的交换机其实是利用所谓“宽总线式交换”,牺牲带宽来换取造价,其 原理如下图:
相关文档
最新文档