二次函数与一元二次方程的关系及解析式求法

合集下载

初中数学一元二次方程与二次函数的关系

初中数学一元二次方程与二次函数的关系

一元二次方程与二次函数的关系方程与函数有着密切的联系,我们可以利用方程(组)解决函数问题,也可以利用函数解决方程(组)问题.我们知道,二次函数的一般形式是,而一元二次方程的一般形式是.显然当二次函数中时就能得到一元二次方程,所以一元二次方程与二次函数是特殊与一般的关系.一、知识链接透彻理解数学概念,提升你的数学内涵!1.利用一元二次方程解决二次函数问题:(1)对于二次函数来说,当时,就得一元二次方程,因此我们可以利用一元二次方程求二次函数图像与轴的交点坐标.进一步我们还可以探讨一元二次方程的取值与二次函数图像与轴的交点坐标的情况之间的关系:①当时,一元二次方程有两个不相等的实数根,抛物线与轴有两个交点;②当时,一元二次方程有两个相等的实数根,抛物线与轴有唯一交点(这个唯一交点就是抛物线的顶点);③当时,一元二次方程没有实数根,抛物线与轴没有交点(抛物线要不全部在轴上方,要不全部在轴下方).c bx ax y ++=2)0(≠a 02=++c bx ax )0(≠a c bx ax y ++=2)0(≠a 0=y 02=++c bx ax )0(≠a c bx ax y ++=2)0(≠a 0=y 02=++c bx ax )0(≠a x ac b 42-=∆x 042>-=∆ac b 02=++c bx ax c bx ax y ++=2x 042=-=∆ac b 02=++c bx ax c bx ax y ++=2x 042<-=∆ac b 02=++c bx ax c bx ax y ++=2x x x(2)我们还可以利用一元二次方程根与系数的关系解决有关二次函数图像与轴交点横坐标的有关求值问题:当一元二次方程有两个不相等的实数根、时,抛物线与轴交于两点A(,0)、B(,0),此时有,·.此时抛物线与轴两交点的距离为: AB==(公式①). (3)推广:我们可以利用一元二次方程来研究抛物线与与直线(当时为一次函数的图像,当时为平行于轴或与轴重合的一条直线)的交点情况.2.利用二次函数解决一元二次方程问题一方面,反过来,我们可以根据抛物线与x 轴的交点情况去判断一元二次方程的根的情况.另一方面,我们还可以利用二次函数图像比较直观地去解决有关一元二次方程的解的问题以及有关系数的值的问题.二、典例精讲参与数学解题过程,品味数学内在魅力! 例1(福州市中考题)已知二次函数的图象如图10-1所示,则下列结论正确的是()A .a >0B .c <0C .b 2-4ac <0D .a +b +c >0 x 02=++c bx ax 1x 2x c bx ax y ++=2x 1x 2x a bx x -=+211x ac x =2x 21x x -221)(x x -212214)(x x x x -+=224a ac b -=a ∆=c bx ax y ++=2b kx y +=0≠k 0=k x x b y =c bx ax y ++=202=++c bx ax c bx ax y ++=2分析:a决定抛物线的开口方向,c决定抛物线与y轴的交点情况,抛物线的对称轴由a、b共同决定,b2-4ac决定抛物线与x轴的交点情况.本题中,由于抛物线开口方向向下,因此a<0;抛物线与y轴的交点(0,c)在x轴上方,因此c>0;由于抛物线对称轴在y轴右侧,所以x=-b2a>0,所以b>0;由于抛物线与x轴有两个交点,所以b2-4ac>0.a+b+c是x=1时的函数值,而图像上点(1,a+b+c)在x轴上方,所以a+b+c>0.答案:D.技巧提升:本题是二次函数图像信息探究问题.解决这类问题就应熟练掌握a、b、c、x=-b2a、a+b+c、b2-4ac等与抛物线的位置特征之间的关系.例2(徐州市中考题)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位分析:因为二次函数y=(x-2009)(x-2008)的图象与x轴交于点(2008,0)和(2009,0),这两点间的距离为1,而二次函数y=(x-2009)(x-2008)的图象可由二次函数y=(x-2009)(x-2008)+4的图象向下平移4个单位得到. 答案:B .技巧提升:本题也可以倒过来想,容易知道抛物线y=(x-2009)(x-2008)+4经过点(2009,4)、(2008,4),这两点的距离围为1,要将这两点平移到x 轴上,应将图像向下平移4个单位.研究抛物线平移问题,一般我们要抓住特征对应点来分析.例3(镇江市中考题)已知实数x ,y 满足x 2+3x +y -3=0,则x +y 的最大值为.分析:可以利用二次函数最值方法来求,由x 2+3x +y -3=0得,x +y =-x 2-2x +3=-(x +1)2+4,所以当x =-1时,x +y 最大值为4;也可以尝试用换元法解决,设,则原方程可化为,因为这个关于必有实数根,所以,解得,所以(即x +y )的最大值为4.答案:4.技巧提升:第一种分析方法,由等式是一个关于x 的二次方程,也是关于y 的一次方程,所以可以联想到把式子转化为“x +y ”关于x 的二次函数,利用函数知识求解;第二种分析方法将问题转化为求关于x 的一元二次方程的参数的取k y x =+0322=-++k x x x 0)3(44≥--=∆k 4≤k k k值范围问题来解决,有异曲同工之效.例4(日照市中考题)如图10-2,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A(3,0),则由图象可知,不等式ax 2+bx+c <0的解集是.分析:由于已知了抛物线与x 轴的一交点为A (3,0),且与对称轴x =1的距离为2,所以根据抛物线的轴对称性可知抛物线与x 轴的另一交点应在对称轴左侧,且与直线x =1的距离也为2,其坐标应为(-1,0).观察图像可知,当-1<x <3时,抛物线在x 轴下方,所以不等式ax 2+bx +c <0的解集是-1<x <3答案:-1<x <3.技巧提升:不等式ax 2+bx +c >0(或<0)的解集就是二次函数y =ax 2+bx+c 的图象在x 轴上(下)方的点所对应的x 的取值范围,因此不等式ax 2+bx +c >0(或<0)的解集与抛物线与x 轴的交点的横坐标有关,所以解决一般这类问题要先利用一元二次方程求出抛物线与x 轴的交点坐标. 例5(咸宁市中考题)已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().(1)证明;(2)若该函数图象的对称轴为直线,试求二次函数的最小值. 分析:本题是二次函数问题,可借助一元二次方程与二次函2y x bx c =+-x m 3m -0m ≠243c b =1x =数的关系来解决.解:(1)证明:法一:依题意,,是一元二次方程的两根. 根据一元二次方程根与系数的关系,得,. ∴,,∴.法二:由题意得,①—②得,因为,所以.代入①得,所以,所以,,所以.法三:由抛物线的轴对称性可知其对称轴为,可得(下同法二).(2)解:法一:依题意,,∴. 由(1)得. ∴.∴二次函数的最小值为.法二:因为函数图象与轴两交点的坐标分别为(,0),(,0),所以由抛物线的轴对称性可知抛物线的对称轴是直线, 所以,所以,故抛物线与x 轴的两交点为、,所以抛物线的解析式为,当时,,∴二次函数的最小值为.技巧提升:本题两小题都给出了不同的解法,应注意体会不同解法的异同.一题多解,多中选优,平时解题的思考会带来解题能力的提升.例6(杭州市中考题)定义[]为函数的特征数,m 3m -20x bx c +-=(3)m m b +-=-(3)m m c ⨯-=-2b m =23c m =224312c b m ==⎩⎨⎧=--=-+039022c bm m c bm m 0482=+-bm m 0m ≠m b 2=0222=-+c m m 23m c =2124m c =22123m b =243b c =2)3(2m m b x -+=-=m b 2=12b -=2b =-2233(2)344c b ==⨯-=2223(1)4y x x x =--=--4-x m 3m -m x -=1=-m 1-=m )0,1(-)0,3(32)3)(1(2--=-+=x x x x y 1=x 4321-=--=最小y 4-,,a b c 2y ax bx c =++下面给出特征数为[2m,1-m,-1–m]的函数的一些结论:①当m =-3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x 轴所得的线段长度大于;③当m<0时,函数在x>时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点.其中正确的结论有()A .①②③④B .①②④C .①③④D .②④分析:把m =-3代入[2m ,1–m,–1–m],得a =-6,b =4,c =2,函数解析式为y =-6x 2+4x+2,易求出其图像顶点为(,),故①正确;当a=2m 、b=1-m 、c=-1-m 时,△=b 2-4ac =(1-m)2-4×2m ×(-1-m)=(3m+1)2,根据公式①可知函数图象截x 轴所得的线段长度为=,当m >0时,=>,故②正确;∵m <0,∴抛物线开口向下.∵抛物线对称轴为x =-==,∴在对称轴左侧,即当时,y 随x 的增大而增大,对称轴右侧,即当时,y 随x 的增大而减小.在∵<,所以当x>时,图像有可能一部分在对称轴左侧,一部分在对称轴右侧,故③不正确;对于抛物线31382341313821x x -a ∆=m m 2)13(2+=m m 213+21x x -m m m 2123213+=+322b a 122m m--⨯1144m -m x 4141-<m x 4141->141144m -41y=2mx 2+(1-m)x-1-m 时,当x=1时,y=2m+1-m+(-1-m)=0,∴当m ≠0时,抛物线一定经过(1,0)这个点,故④正确. 答案:B.技巧提升:本题综合考查了二次函数的各个方面的知识,比如二次函数图像顶点公式、二次函数的增减性、函数图像上的顶点问题、抛物线与x 轴交点之间的距离等.其中第③个问题体现了一元二次方程与二次函数关系的核心知识,应引起重视.例7(2008年扬州市中考题改编)若关于x 的一元二次方程的两根在1与2之间(不含1和2),则a 的取值范围是.分析:这是一个一元二次方程问题,如果直接用一元二次方程的根来列不等式组,需要列5个不等式,也就是:、、、 、,这样将会很麻烦.那么如何解才能比较简单呢?如果我们利用二次函数图像来帮助分析,0522=++ax x 0402>-=∆a 04402>-+-a a 14402<-+-a a 04402>---a a 14402<---a a解法将简单得多.令,如图10-3我们可以画出这个函数的大致图像.根据图像对称轴在y 轴右侧,可知,解得.再根据可得.根据图像特征可知图像上横坐标为1和2的两个点的纵坐标都是正数,所以可得,可解得.这样就能得到a 的取值范围是.答案:.技巧提升:利用一元二次方程解决二次函数问题,这种题型比较多,也容易想到.而反过来,利用二次函数解决一元二次方程问题,这种题型就比较少了,遇到的时候也不容易想到.以后遇到一元二次方程问题,用方程知识不好解决时,可以尝试用用二次函数.例8(潍坊市中考题)已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图10-4,若y 1<y 2,则自变量x 的取值范围是()A .-12 <x <2B .x >2或x <-32C .-2<x <32D .x <-2或x >32分析:当y 1<y 2时,在图象中反映的是直线在抛物线的上方,522++=ax x y 04>-a 0<a 0402>-=∆a 102-<a ⎩⎨⎧>+⋅+⨯>+⋅+⨯052220511222a a 213->a 102213-<<-a 102213-<<-a也就是两函数图像两个交点之间的部分,所以我们要求出这两个函数图像的交点.由解得、,因此满足要求的自变量x 的取值范围应该是-2<x <32. 答案:C .技巧提升:作为选择题,解答本题时,也可以不解方程组.先根据直线在抛物线的上方排除答案B 、D ,再根据两函数图像的右交点更靠近对称轴(y 轴)可排除答案A .例9(2007年“《数学周报》杯”全国初中数学竞赛试题)已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数的图象与线段AB 恰有一个交点,则的取值范围是.分析:要注意抛物线与线段AB 恰有一个交点应包含两种情况:⑴抛物线与x 轴只有一个交点,这个交点恰好在线段AB 上.由判别式解得.当时,,不合题意;当时,,符合题意.⑵抛物线与x 轴有两个交点,其中只有一个在线段AB上.设抛物线与x 轴的两个交点为C ()、D (),则.若只有点D 在线段AB 上,则,,显然,不合题意;若只有点C 在线段AB 上,则⎪⎩⎪⎨⎧+-==3212x y x y ⎩⎨⎧=-=4211y x ⎪⎩⎪⎨⎧==492322y x ()233y x a x =+-+a ()233y x a x =+-+()233y x a x =+-+012)3(2=--=∆a 0∆=323a =±323a =+123x x ==-323a =-123x x ==()233y x a x =+-+0,1x )0,(2x 21x x <321=x x 101<<x 212≤≤x 321<x x,.当点D 与点A 、B 都不重合时,函数如图10-5所示,从图像可以看出,图像上横坐标为1的点在x 轴上方,横坐标为2的点在x 轴下方,所以,解得.当当点D 与点A 重合时,由,得,此时,,符合题意;当点D 与点B 都重合时,由,得,此时,,不符合题意.综上所述,的取值范围是≤,或者.答案:≤,或者技巧提升:本题中要注意对不同情况进行分类讨论,既要考虑到一般情况,还要考虑到特殊情况.例10(全国初中数学联合竞赛试题)设是大于2的质数,k 为正整数.若函数的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.分析:函数图象与x 轴两交点的横坐标就是方程的两根,可考虑利用一元二次方程根与系数的关系来解决.解:由题意知,方程的两根中至少有一个为整数.由根与系数的关系可得,从而有①211≤≤x 22>x ⎩⎨⎧<+-+>+-+03)3(2403)3(1a a 112a -<<-031)3(12=+⨯-+a 1a =-11=x 32=x 032)3(22=+⨯-+a 12a =-21=x 232=x a 1-12a <-3a =-1-12a <-3a =-p 4)1(2-+++=p k px x y 04)1(2=-+++p k px x 04)1(2=-+++p k px x 21,x x 4)1(,2121-+=-=+p k x x p x x p k x x x x x x )1(4)(2)2)(2(212121-=+++=++(1)若,则方程为,它有两个整数根和.(2)若,则.因为为整数,如果中至少有一个为整数,则都是整数.又因为为质数,由①式知或.不妨设,则可设(其中m 为非零整数),则由①式可得,故,即.又,所以,即② 如果m 为正整数,则,,从而,与②式矛盾. 如果m 为负整数,则,,从而,与②式矛盾.因此,时,方程不可能有整数根. 综上所述,.技巧提升:由于方程两根之和为质数,所以只要有一个根是整数,则另一个根也必然是整数.我们也可以从方程根的1k =0)2(22=-++p px x 2-2p -1k >01>-k 12x x p +=-21,x x 21,x x p 2|1+x p 2|2+x p 2|1+x p 12x mp +=212k x m-+=121(2)(2)k x x mp m-+++=+1214k x x mp m-++=+12x x p +=-14k p mp m--+=+41)1(=-++mk p m (1)(11)36m p +≥+⨯=10k m->1(1)6k m p m-++>(1)0m p +<10k m-<1(1)0k m p m-++<1>k 04)1(2=-+++p k px x 1=k p特征来分析.根据一元二次方程求根公式可知方程的根应为,要使得其根为整数,根的判别式的值必须是完全平方数.由于是质数,因此当的值是完全平方数时,关于的二次三项式必然等于(为非负整数),也就是说应成为关于的一个完全平方式,因此可得其,可解得,(舍去).三.学力训练检测自己能力,体验成功乐趣! 1.选择题:(1)(天津市中考题)已知二次函数()的图象如图10-6所示,有下列结论:①;②;③;④.其中,正确结论的个数是() A .1B .2C .3D .4(图10-6)(图10-7)(图10-8)(2)(百色市中考题)二次函数y=-x2+bx +c的图象如图10-7所示,下列几个结论:①对称轴为x=2;②当y≤0时,x <0或x >4;③函数解析式为y =-x(x -4);④当04)1(2=-+++p k pxx216)1(42++-±-=p k p p x 16)1(42++-p k p p 16)1(42++-p k p p 16)1(42++-p k p 2)(n p ±n 16)1(42++-p k p p 064)1(162=-+=∆k 11=k 32-=k 2y ax bx c =++0a ≠240bac ->0abc >80a c +>930a b c ++<x ≤0时,y 随x 的增大而增大.其中正确的结论有() A .①②③④ B .①②③ C .①③④ D .①③(3)(“《数学周报》杯”2008年全国初中数学竞赛试题)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是()A .B .C .D .(4)(2008年全国初中数学竞赛浙江赛区初赛试题)在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y =-x2+6x -274的图象与x 轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是( ) A .5B .6 C .7 D .82.填空题:(1)(新疆维吾尔自治区中考题)抛物线y =-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_______.(2)(玉溪市中考题)如图10-9是二次函数在平面直角坐标系中的图象,根据图形判断①>0;②++<0;③2-<0;④2+8>4中正确的是(填写序号).(3)(2006年全国初中数学联合竞赛辽宁卷)函数y =x 2-2006|x |+2008的图象与x 轴交点的横坐标之和等于2y x mx n =++51249173612)0(2≠++=a c bx ax y c a b c a b b a a c__________.(4)(全国初中数学联合竞赛题)二次函数的图象与轴正方向交于A ,B 两点,与轴正方向交于点C .已知,,则.3.(佛山市中考题)(1)请在坐标系中画出二次函数的大致图象;(2)根据方程的根与函数图象的关系,将方程的根在图上近似的表示出来(描点); (3)观察图象,直接写出方程的根.(精确到0.1)(图10-10)4.(长沙市中考题)已知:二次函数的图象过点(1,0),一次函数图象经过原点和点(1,-b ),其中a>b>0且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点; (3)设(2)中的两个交点的横坐标分别为、,求的范围.c bx x y ++=2x y AC AB 3=︒=∠30CAO c =xx y 22-=122=-x x 122=-x x22y ax bx =+-1x 2x 12||x x -5.(肇庆市中考题)已知二次函数的图象过点(2,1).(1)求证:; (2)求的最大值;(3)若二次函数的图象与轴交于点,,,,的面积是,求.6.(2007年全国初中数学联合竞赛试题)设为正整数,且,二次函数的图象与轴的两个交点间的距离为,二次函数的图象与轴的两个交点间的距离为.如果对一切实数恒成立,求的值.7.(2009年“《数学周报》杯”全国初中数学竞赛试题)已知抛物线与动直线有公共点,,且.(1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 8.(全国初中数学联合竞赛试题)已知二次函数的图象经过两点P ,Q .(1)如果都是整数,且,求的值. (2)设二次函数的图象与轴的交点为A 、B ,与轴的交点为C.如果关于的方程的两个根都是整12+++=c bx x y P 42--=b c bc x 1(x A )02(x B )0ABP ∆43b n m ,2≠m mt x mt x y 3)3(2--+=x 1d nt x n t x y 2)2(2+-+-=x 2d 21d d ≥t n m ,2y x =c x t y --=)12(),(11y x ),(22y x 3222221-+=+t t x x 2y x bx c =+-(1,)a (2,10)a ,,a b c 8c b a <<,,a b c 2y x bx c =+-x y x 20x bx c +-=数,求△ABC 的面积.第10讲.一元二次方程与二次函数的关系参考答案 1.选择题:(1)D ;(2)C ;(3)C ;(4)C ;2.填空题:(1)-3<x <1;(2)②、④;(3)0;(4).3.解:(1)如图所示;(2)如图所示,抛物线与直线y=1的两个交点的横坐标就是方程的两根,也就是x 轴上点C 、点D 所表示的数; (3)方程的根为-0.4、 2.4.4.解:(1)设一次函数的表达式为y =kx(k 为常数,k ≠0).∵一次函数图象经过原点和点(1,-b ),∴把点(1,-b ),代入y =kx ,得-b =k,即k =-b . ∴一次函数的表达式为y =-bx . (2)∵y=ax 2+bx -2过(1,0)即a+b=2 由得①∵△=19x x y 22-=122=-x x 122=-x x≈1x ≈2x 2(2)2y bxy b x bx =-⎧⎨=-+-⎩22(2)20ax a x +--=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根,∴方程组有两组不同的解, ∴两函数有两个不同的交点.(3)∵两交点的横坐标x 1、x 2分别是方程①的解 ∴ ∴或由求根公式得出∵a>b>0,a+b=2,∴2>a>1 令函数,∵在1<a<2时y 随a 增大而减小, ∴,∴. 5.解:(1)∵的图象过点(2,1) ∴ ∴(2) 当时,此时, ∴当时,有最大值,最大值为2。

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。

《二次函数与一元二次方程的关系》PPT赏析

《二次函数与一元二次方程的关系》PPT赏析

有两个相等的实数根
b2-4ac = 0
没有交点
没有实数根
b2-4ac<0
深入理解
1.一个足球被从地面向上踢出,它距地面的高度h(m) 可以用公式 h=-4.9t2+19.6t 来表示.其中t(s) 表示足球被踢出后经过的时间. (1)t=1时,足球的高度是多少? (2)t为何值时,h最大? (3)球经过多长时间球落地? (4)方程-4.9t2+19.6t=0的根的实际意义是什么? 你能在图上表示吗? (5)方程14.7=-4.9t2+19.6t 的根的实际意义是 什么?你能在图上表示吗?
解:(1)t=1时,h=14.7 (2)∵h=-4.9(t-2) 2+19.6 ∴当t=2时,h最大
(3)对于h=-4.9t2+19.6t 球落地意味着h=0, 即 -4.9t2+19.6t=0,解得t1=0(舍去),t2=4 . 即足球被踢出后经过4s后球落地.
(4) 方程-4.9t2+19.6t =0的根的实际意义是球离地 和落地的时间,图上表示为抛物线与x轴交点的横坐标.
二次函数y=ax2+bx+c何时为一元二次方程?它们 的关系如何 ?
一般地,当y取定值时,二次函数即为一元二次方程.
2. 已知二次函数y=kx2-7x-7的图象与x轴有交 点,求k的取值范围.
错解: 由△=(-7)2-4×k×(-7) =49+28k>0, 得k>- 9 . 4
正确解法:
此函数为二次函数,
二次函数与一元二次方程的关系
情境导入
我们已经知道,竖直上抛物体的高 度h(m)与运动时间t(s)的关系可用公式 h=-5t2+v0t+h0 表示, 其中h0(m) 是抛出 时的高度, v0(m/s)是抛出时的速度.

二次函数与一元二次方程关系解题技巧

二次函数与一元二次方程关系解题技巧

一、一元二次方程及其解法解题技巧类型一巧用一元二次方程的定义解题【例1】若关于x的方程是一元二次方程,则=_______.【解析】一元二次方程的定义中包含三要素:(1)只含有一个未知数;(2)未知数的最高次数为2;(3)整式方程.依题意,得,解得;【答案】【小结】有关一元二次方程的概念,要把握住未知数的最高次数为2,且二次项的系数不为0,还要是整式方程.类型二巧用一元二次方程的根的意义解题【例2】关于的一元二次方程的一个根是0,则的值是________.【解析】把0代入一元二次方程即可得到关于的一元二次方程,从而求得.但二次项的系数,即,所以.【答案】【小结】将已知的一元二次方程的根代入该方程中即可求出字母系数的值,但要注意二次项系数不为零这一隐含条件.【例3】已知是方程的两根,且,则的值等于()A.-5 B.5 C.-9 D.9【解析】由于m、n是方程的根,将m、n代入该方程可得m2-2m-1=0,n2-2n-1 =0,即m2-2m=1,n2-2n=1.变形,得7m2-14m=7,3n2-6n=3,因此(7+a)(3-7)=8,所以a=-9.【答案】C【小结】从方程的根入手,将其根代入方程,进而构造出一个新的方程.在解本题的过程中,还应用了整体的思想,同时要注意把握条件与结论之间的关系,即括号中的7m2-14m、3n2-6n与已知方程之间的关系.从而使问题得到快速求解.类型三巧构一元二次方程的根【例4】已知一元二次方程(为常数)满足,则该方程的一根必为________.【解析】结合一元二次方程根的定义,当时,满足方程左、右两边都相等,由此判断方程的一根必为x =.【答案】x =【小结】估算一元二次方程的根时,应结合根的意义,通过观察,比较得出.类型四 判断一元二次方程根的范围【例5】根据下列表格中的对应值,判断方程(为常数)的一的范围是(A .B .C .D .【解析】由表格中的数据发现:当x =6.18时,代数式的值为-0.01;当x =6.19时,代数式的值为0.02,要从表格中判断=0的解,可发现未知数x 的值应处于6.18到6.19之间.【答案】C【小结】解决本题的关键在于理解根的意义,使方程左右两边相等的未知数的值就是该方程的解.类型五 与一元二次方程的根有关的开放题【例6】已知关于的一元二次方程的一个根是1,写出一个符合条件的方程:____________.【解析】答案不唯一,可先写出二次项,再写出一次项,最后写能使该方程有一根为1的常数项.【答案】答案不唯一,如:即等.二、实际问题与一元二次方程解题技巧近几年有关一元二次方程的应用题在中考中经常出现,此类题大多以现实生活中的热点新闻、热点事件为背景,形式多变.主要是考查分析问题、解决问题能力.1.列一元二次方程解应用题的一般步骤:(1)审;(2)设;(3)列;(4)解;(5)检验;(6)答. 2.一元二次方程的应用类型一增长率、减少率问题【例1】长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?【分析】(1)设平均每次下调的百分率为x,根据第一次下调后为,第二次下调后为列方程求解即可;(2)从购房和物业费两方面,比较方案①、方案②即可.【解】(1)设平均每次下调的百分率为x,根据题意,得.解得=10%,(不合题意舍去).所以平均每次下调的百分率为10%.(2)方案①的房款是:4050×100×0.98=396900(元);方案②的房款是:4050×100-1.5×100×12×2=401400(元).∵396900<401400,∴选方案①更优惠.【小结】增长(降低)率是列方程解实际问题最常见的题型之一,对于平均增长率问题,正确理解有关“增长”问题的一些词语的含义是解答这类问题的关键,常见的词语有:“增加”“增加到”“增加了几倍”“增长到几倍”“增长率”等等.弄清基数、增长(减少)后的量及增长(减少)次数,平均增长率公式为(为基数,为平均增长率,为增长次数,为增长后的量).同时解出未知数的值是否符合题意一定要考虑清楚.类型二病毒倍数传播问题【例2】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【分析】设一台每轮感染给x台电脑,则第一轮后有(1+x)台,经过第二轮感染后,共有.【解】设每轮感染中平均一台电脑会感染x台电脑,依题意,得.解得x=8或-10(负值不合题意,舍去).∵>700,∴若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【小结】“传播与裂变”问题在现实生活中是广泛存在的,常见的类型包括细胞分裂、信息传播、传染扩散、单循环赛等,是近年中考的热点与亮点,尤其是病毒传播速度成几何级数增长,随着传播轮数的增加,数量是十分惊人的,一定要画好分析图,尤其是要弄清每轮传播的源头与传播后的总和.解这类问题的关键是理解题意,设出适当的未知数列方程求解.类型三几何图形问题【例3】在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.同学们都认为小华的方案是正确的,但对小芳的方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由.【分析】设小路宽度为m,则花园的长为,花园的宽为,根据面积可得方程.【解】(1)不符合.设小路宽度均为m,根据题意得:,解这个方程得:但不符合题意,应舍去,∴.∴小芳的方案不符合条件,小路的宽度应均为2 m.【小结】几何图形问题一般是只给出一个几何图形(常见的有三角形、特殊四边形),要求在其四周设计边衬或对其进行分割、裁剪,设计一个新的图形或图案.在有关几何图形的面积表示中,通常有三种处理办法:直接表示、间接表示与变换表示.解决有关面积问题时,要注意将不规则图形分割成或组合成规则图形,找出各部分面积之间的关系,再利用规则图形的面积公式列出方程求解,进而对方程的根进行取舍.类型四市场经济与其它问题【例4】某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【分析】(1)由“第二个月单价降低x元”知第二个月的单价为(80-x),销售量为(200+10x)件,清仓时为总数量分别减去前面两个月的剩余量,即800-200-(200+10x);(2)销售额-成本=利润,由“获利9000元”建立方程进行求解.【解】(1)80-x,200+10x,800-200-(200+10x);(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000.整理,得x2-20x+100=0,解这个方程得x1= x2=10,当x=10时,80-x=70>50.答:第二个月的单价应是70元.【小结】市场经济问题(纳税、利息、分期付款、销售利润),匀变速运动、古诗词等问题都是值得关注,解答这问题时,不论背景如何变化,一定要抓住“关键词语”寻找等量关系,并注意根据实际意义对所列一元二次方程进行合理的取舍.【例5】百货大搂服装柜台在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?【分析】每件的利润是40-x元,因每件童装降价4元,那么平均每天就可多售出8件.则件数为件,抓住总利润列出方程进行求解.【解】设每件童装应降价x元,则,解得.因为要尽快减少库存,所以x=20.答:每件童装应降价20元.【小结】本题主要的数量关系是:销售利润=每件利润×件数,理解商品的销售的件数及商品价格的关系是解答本题的关键.三、二次函数及其图象解题技巧类型一抛物线的平移问题抛物线的平移问题,可以首先研究其顶点的平移问题,因此,一般要将其解析式转化为顶点式.【例1】把抛物线y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y =x2-2x-3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=-2,c=-1 D.b=-3,c=2【分析】y=x2-2x-3= (x2-2x+1)-4=(x-1)2-4,这个函数图象的顶点坐标为(1,-4),故原抛物线的顶点坐标为(-1,-1).验证:(-1,-1)(1,-4).∴y=x2+bx+c可化为y=(x+1)2-1.即y=x2+2x.∴b=2,c=0.【答案】B类型二抛物线的旋转和轴对称变换将抛物线绕顶点旋转180°,开口方向发生改变,顶点的坐标不变;抛物线的轴对称变换问题,也是从顶点的轴对称变换开始切入.【例2】将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A.y=-2x2-12x+16 B.y=-2x2+12x-16C.y=-2x2+12x-19 D.y=-2x2+12x-20【分析】将y=2x2-12x+16化为顶点式,得y=2(x-3)2-2.∴该抛物线的顶点坐标为(3,-2),将该抛物线绕顶点旋转180°后,顶点仍然是(3,-2),解析式中二次项的系数变为-2,所以所得抛物线的解析式为y=-2(x-3)2-2,即y=-2x2+12x-20.【答案】D类型三抛物线的对称性(重点)【例3】如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值是()A.0 B.-1 C.1 D.2【分析】∵该抛物线的对称轴为直线x=1,又经过点P(3,0),∴利用抛物线的对称性可知该抛物线还要经过点(-1,0),因此a-b+c=0.【答案】A类型四函数y=ax2+bx+c(a≠0)的增减性二次函数的增减性通常要结合其图象研究,明确开口方向及对称轴的位置,是研究的前提条件.【例4】已知二次函数y=ax2+bx+c(a≠0)中,其函数y与自变量x之间的部分对应值如下表所示:若点A(x1,y1),B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2 B.y1<y2 C.y1≥y2 D.y1≤y2【分析】从表中可以发现x=1和x=3时,y的值都是1.说明函数图象的对称轴为直线x=2,顶点坐标为(2,0),这时函数值最小,故该抛物线的开口向上,又因为1<x1<2,3<x2<4,所以点A(x1,y1)和点B(x2,y2)分别位于对称轴的左右两侧,且点A(x1,y1)比点B(x2,y2)到对称轴的距离近.因此y1<y2.【答案】B类型五根据条件确定最大值和最小值【例5】当-2≤x≤3时,二次函数y=x2-2x+3的最大值为______,最小值为______.【分析】y=x2-2x+3=(x-1)2+2,该函数图象的顶点为(1,2),画出满足条件-2≤x≤3的图象.如图所示.当x=1时,y有最小值,其最小值为2;当x=-2时,y有最大值,其最大值为11.【答案】11;2类型六利用“配方法”求特殊函数的最大(小)值【例6】(1)求函数y=x+(x>0)的最小值;(2)已知矩形的面积为a,一条边的长为x.当x为何值时,矩形的周长y最小,这个最小值是多少?【分析】可设法将x+“配方”.【解】(1)y=x+(x>0)==+2.当=,即x=1时,y有最小值,最小值为2.(2)y=2(x+)(x>0)==当=,即x=时,y有最小值,其最小值为4.∴当x=时,矩形的周长y最小,最小值为4.四、二次函数与一元二次方程关系解题技巧类型一抛物线的交点式(重点)一般地,若二次函数的图象与x轴交于A(x1,0),B(x2,0)两点,则其解析式可设为“交点式”即y=a(x-x1) (x-x2).【例1】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C(0,-4).其中x1,x2是方程x2-4x-12=0的两根,且x1<x2,求抛物线的解析式.【分析】已知抛物线与x轴的交点为(x1,0),(x2,0),故可设其解析式为y=a(x-x1) (x-x2).【解】∵方程x2-4x-12=0的解为:=-2,x2=6,故可设已知的抛物线的解析式为:y=a(x+2) (x-6).由x=0时,y=-4,得-4=a×2×(-6),∴a=∴该抛物线的解析式为:y=(x+2) (x-6),即y=x2-x-4.【名师点睛】虽然本题也可以利用给出的“一般式”来确定抛物线的解析式,但是没有设成“交点式”简单.【例 2】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,如果O B=OC=OA,那么b的值是()A.2 B.-1 C. D.-【分析】设OB=OC=OA=c,则A、B两点的坐标分别为A(-2c,0),B(c,0).故可设抛物线的解析式为y=a(x+2c) (x-c),即y=ax2+acx-2ac2.又∵OC=c,∴点C的坐标为(0,c),代入解析式,得-2ac2=c.ac=-(∵c≠0).∴b=ac=-.【答案】D类型二根据图象观察方程的解通过二次函数y=ax2+bx+c(a≠0)的图象,不仅可以观察一元二次方程ax2+bx+c=0的解的情况,还可以发现与之相关的一些方程的解的情况.【例3】如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点坐标为(1,8),则一元二次方程ax2+bx+c-8=0的根的情况是()A.有两个不相等的实根B.有两个异号实根C.有两个相等实根D.没有实根【分析】二次函数y=ax2+bx+c的最大值是8,因此ax2+bx+c≤8,只有当x=1时等号成立,因此方程ax2+bx+c=8.即ax2+bx+c-8=0有两个相等实根,即x1=x2=1.【答案】C【方法归纳】观察本题的图象,研究一元二次方程ax2+bx+c=k的解的情况,可以发现:①当k<8时,方程有两个不相等的实根;②当k=8时,方程有两个相等的实根;③当k>8时,方程没有实根.类型三根据图象观察不等式的解集利用二次函数的图象,还可以观察一些不等式的解集.【例4】抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.【分析】通过观察图象可以发现抛物线的对称轴为直线x=-1,与x轴的右交点的坐标为(1,0),利用对称性可以推断出抛物线与x轴的左交点的坐标为(-3,0).要使y>0,则-3<x<1.【答案】-3<x<1【例5】已知函数y1=x2与函数y2=-x+3的图象大致如图,若y1<y2,则自变量x的取值范围是()A.-<x<2 B.x>2或x<-C.-2<x<D.x<-2或x>【点石成金】本题中y1>y2时,取两边;y1<y2时,取中间.【分析】观察图象可以发现,位于点A、B之间的部分,有y1<y2成立,而此时,x的取值范围有选项A、选项C两种选择,进一步观察图象又可以发现A到y轴的距离大于B到y轴的距离,所以答案只能是-2<x<;此外本题也可以通过解方程组求出A、B两点的坐标,然后再判断.【答案】C【名师点睛】此题若改成y1>y2,则x的取值范围是x<-2或x>【例6】如图,抛物线y2=x2+1与双曲线y1=的交点A的横坐标是1,则不等式+x2+1<0的解集是()A.x>1 B.x<-1 C.0<x<1 D.-1<x<0【分析】先把+x2+1<0化为<-x2-1,再讨论函数y1=的图象与y3=-x2-1的图象之间的关系;作抛物线y2=x2+1关于原点成中心对称的抛物线y3=-x2-1.可以发现抛物线y3=-x2-1与双曲线y1=的交点的横坐标为-1.观察图象可发现当-1<x<0时,y1<y3,即<-x2-1,+x2+1<0.【答案】D类型四根据图象确定代数式的取值范围根据二次函数y=ax2+bx+c(a≠0)的图象可以发现一些含有a,b,c的代数式的取值范围.【例7】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的个数有()①abc>0;②b2-4ac>0;③8a+c>0;④9a+3b+c<0.A.1个B.2 个C.3 个D.4个【分析】①∵图象开口向上,∴a>0.∵对称轴在y轴的右侧,∴a、b异号.∴b<0.图象与y轴的交点在x轴的下方,故c<0,∴abc>0.正确②抛物线与x轴有两个交点,∴b2-4ac>0.正确③令x=-2,则y=(-2)2a+(-2)b+c=4a-2b+c.又∵-=1,∴b=-2a.∴y=4a-2b+c=8a+c.又∵x=-2时,y>0.∴8a+c>0.正确④利用抛物线的对称性可知x=3和x=-1时y的值相等,且都有y<0;而x=3时,y=9a+3b+c.∴9a+3b+c<0.正确综上所述正确结论的个数为4.【答案】D【方法归纳】设二次函数的解析式为y=ax2+bx+c(a≠0),【例8】如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点A在(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则(1)abc0;(2)a的取值范围是.【分析】(1)因为图象开口向下,所以a<0.对称轴在y轴右边,所以b>0.与y轴的交点在y轴的正半轴上,所以c>0,综合可得abc<0.(2)以D(1,3)为顶点,经过点(-1,0)的抛物线的“张口”最小,设这条抛物线为y=a1(x-1)2+3,令x=-1,y=0,得a1=-;以F为顶点经过点(-2,0)的抛物线的“张口”最大,设这条抛物线为y=a2(x-3)2+2,令x=-2,y=0,得a2=-,∴a的取值范围是-≤a≤-.【答案】(1)<;(2)-≤a≤-。

九年级数学北师大版初三下册--第二单元2.5《二次函数与一元二次方程(第一课时)》课件

九年级数学北师大版初三下册--第二单元2.5《二次函数与一元二次方程(第一课时)》课件
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元
二次方程ax2+bx+h=15时,20t-5t2=15, t2-4t+3=0,
t1=1,t2=3. 当球飞行1s和3s时,它的高度为15m. (2)当h=20时,20t-5t2=20,
t2-4t+4=0, t1=t2=2. 当球飞行2s时,它的高度为20m. (3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(来自《教材》)
解:(1)函数h=-4.9t2+19.6t 的图象如图. (2)当t=1时,h=-4.9+19.6=14.7; 当t=2时,h=-4.9×4+19.6×2=19.6.
知1-练
(来自《教材》)
知1-练
(3)方程-4.9t2+19.6t=0的根的实际意义是当足球距
地面的高度为0 m时经过的时间;
的部分对应值如下表: x -1 0 1 3 y -3 1 3 1
下列结论:①抛物线的开口向下;②其图象的对
称轴为直线x=1;③当x<1时,函数值y随x的增
大而增大;④方程ax2+bx+c=0有一个根大于4,
其中正确的结论有( B )
A.1个 B.2个 C.3个
D.4个
1 知识小结

二次函数与一元二次方程了解二次函数的性质与一元二次方程的求解方法

二次函数与一元二次方程了解二次函数的性质与一元二次方程的求解方法

二次函数与一元二次方程了解二次函数的性质与一元二次方程的求解方法二次函数与一元二次方程:了解二次函数的性质与一元二次方程的求解方法二次函数是数学中常见且重要的函数类型之一。

它的函数表达式为f(x) = ax^2 + bx + c,其中a≠0。

本文将从以下几个方面,详细介绍二次函数的性质以及一元二次方程的求解方法。

一、二次函数的性质1. 函数图像二次函数的图像是一个平面上的抛物线。

通过观察二次函数的系数a、b和c,我们可以确定抛物线的开口方向、顶点坐标、对称轴以及图像在坐标轴上的截距。

2. 对称性二次函数具有轴对称性。

即,对称轴是x = -b/2a,它将抛物线分成两个对称的部分。

这意味着如果对称轴上存在一点(x₁, y₁),那么对称轴上也会存在另一个点(x₂, y₂),使得x₁ = -b/2a + h 且y₁ = y₂。

3. 零点与方程的关系二次函数的零点指的是函数f(x) = ax^2 + bx + c的解,即f(x) = 0的解。

零点与一元二次方程的解密切相关,后文将进一步探讨此关系。

二、一元二次方程的求解方法1. 一元二次方程的标准形式一元二次方程的标准形式为ax^2 + bx + c = 0,其中a、b、c为已知数,且a≠0。

为了解这个方程,我们可以根据二次函数的性质,运用以下求解方法。

2. 因式分解法当一元二次方程可以因式分解时,我们可以先尝试将其因式分解成两个一次因式的乘积形式。

然后,令每个一次因式等于0,求解得到对应的x值。

例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x +2)(x + 3) = 0。

通过令x + 2 = 0和x + 3 = 0,我们可以解出x的值分别为-2和-3,即方程的解为x = -2和x = -3。

3. 完全平方公式对于一元二次方程ax^2 + bx + c = 0,当其能够进行完全平方后得到一个平方数时,我们可以运用完全平方公式解方程。

二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式
2.(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法口诀:大于取两边,小于取中间.
3.恒成立问题的转化:a>f(x)恒成立⇒a>f(x)max;a≤f(x)恒成立⇒a≤f(x)min.
4.能成立问题的转化:a>f(x)能成立⇒a>f(x)min;a≤f(x)能成立⇒a≤f(x)max
值范围是
.
(2)已知函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是单调递减的,则实数a的
取值范围是(
)
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
答案 (1)[4,+∞)
(2)D
解析 (1)f(x)=-x2+2ax+3对称轴方程为x=a,
f(x)在区间(-∞,4)上单调递增,所以a≥4.故a的取值范围为[4,+∞).
【考点自诊】
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
2
(1)二次函数 y=ax +bx+c(x∈R),当

x=- 时,y
2
4 - 2
取得最小值为
.
4
( × )
(2)一元二次函数 y=ax2+bx+c(x∈R)的函数值恒为负的充要条件是
< 0,
2 -4 < 0.
x≥0,则3x≥2x≥1,∴f(3x)≥f(2x);若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x),
即f(bx)≤f(cx).故选A.
考向2 二次函数的最值问题
【例3】 (1)已知函数f(x)=(x+2 013)(x+2 015)(x+2 017)(x+2 019),x∈R,则

人教版 九年级数学讲义 二次函数与一元二次方程(含解析)

人教版 九年级数学讲义 二次函数与一元二次方程(含解析)

第6讲二次函数与一元二次方程知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数与一元二次方程之间的联系,能够根据二次函数与x轴的交点坐标联系相应方程的解的情况,此外了解二次函数与不等式之间的关系,能够根据图象写出相应不等式的解集等,本节课的难点是二次函数与方程、不等式之间的联系考查,希望同学们能够认真学习。

知识梳理讲解用时:10分钟二次函数与一元二次方程之间的关联求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标。

(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:①①=b2﹣4ac决定抛物线与x轴的交点个数;①①=b2﹣4ac>0时,抛物线与x轴有2个交点;①①=b2﹣4ac=0时,抛物线与x轴有1个交点;①①=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0),相应一元二次方程的根就是x1和x2.课堂精讲精练【例题1】在平面直角坐标系xOy中,二次函数y=x2+x+1的图象如图所示,则方程x2+ x+1=0的根的情况是()。

A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【答案】B【解析】此题主要考查了抛物线与x轴的交点,二次函数y=x2+x+1的图象如图所示,图象与x轴有两个交点,则方程x2+x+1=0的根的情况是:有两个不相等的实数根,故选:B.讲解用时:3分钟解题思路:直接利用二次函数图象得出方程x2+x+1=0的根的情况,即抛物线与x轴的交点情况,进而得出答案。

教学建议:利用数形结合分析。

沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)

沪科版数学九年级上册21.3二次函数与一元二次方程  课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二次方程二次函数与不等式二次函数与方程和不等式综合知识点1 二次函数与一元二次方程二次函数y =ax 2+bx +c 与一元二次方程ax 2+bx +c =0的关系.(1)一般地,二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是一元二次方程ax 2+bx +c =0的根;当二次函数y =ax 2+bx +c 的函数值为0 时,相应的自变量的值即是一元二次方程ax 2+bx +c =0的根;(2)若抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别为(1,0x ),2(,0)x ,那么对应方程ax 2+bx +c =0的两个根即为 12,x x ,结合一元二次方程根与系数关系可知12,b x x a +=-12c x x a⋅=(3)二次函数与x 轴的交点情况和一元二次方程根的情况的关系具体见下表:二次函数y =ax 2+bx +c 与x 轴交点情况a >0两个交点 一个交点 没有交点a <0两个交点一个交点没有交点24b ac -的值240b ac ->240b ac -=240b ac -<一元二次ax 2+ bx +c =0根的情况有两个不相等的实根有两个相等的实根没有实根例1.当a<0时,方ax2+bx+c=0无实数根,则二次函数y=ax2+bx+c的图象一定在()A. x轴上方B. x轴下方C. y轴右侧D. y轴左侧例2.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点。

(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(−3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;例3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根是;(2)不等式ax2+bx+c>0的解集是;(3)y随x的增大而减小的自变量x的取值范围是。

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系
有公共点,并说明理由.
(1) y=x2-x;
(2) y=-x2+6x-9;
(3) y=3x2+6x+11.
例3.求下列二次函数的对称轴:
(1)二次函数y=ax2+bx+c的图象与x 轴的交点坐标是(-7,0)、(-3,0);
(2)二次函数y=ax2+bx+c的图象经过 点 (2,5)、(4,5);
例6.已知抛物线y=x2-mx+m-2. (1)判断此抛物线与x轴有无交 点;
(2)当抛物线的顶点到x轴的距 离为1.25时,求函数解析式.
例7.已知下表.
(1)求a,b,c的值,并在表内空格处填入 正确的数.
(②2)画请你出根函据数上y=面a的x2结+b果x判+c断的: 图象,由 ①图aa实x是象x2数2+否+确b值b存xx定;++在若cc,当实不的>0x数存值?取x在为,什使,0?么二请若实次说存三数明在项值理,求式由时出.,这个
x
0
ax2
ax2+bx+c 3
1
2
1
3
例8.已知二次函数 y=2x2-4x-6. (1)求它的图象与x轴的交点; (2)X为何值时,y>0?
例9.已知函数y=x2+4x+3,请先画 出这个函数的图象,再观察图象, 回答下列问题.
(1)当x在什么范围内取值时,函数 的图象都在x轴的下方?
(2)当x在什么范围内取值时,函数 值y随x的增大而减小?
二次函数
一、二次函数与一元二次方程的关系
一般地,二次函数y=ax2+bx+c的图象 与一元二次方程ax2+bx+c=0的根有如下关 系:

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系二次函数和一元二次方程是高中数学中经常涉及的重要概念。

二次函数是指函数的表达式为二次多项式的函数,而一元二次方程则是指仅含有一个未知数的二次方程。

本文将探讨二次函数与一元二次方程之间的紧密联系。

一、二次函数的定义与图像特征二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数且a≠0。

其中,a决定函数的开口方向和形状,b则决定了函数图像在x轴上的平移,c则表示函数图像在y轴上的平移。

二次函数在坐标平面上呈现出的图像一般为抛物线。

当a>0时,抛物线开口向上,成为顶点向上的抛物线;当a<0时,抛物线开口向下,成为顶点向下的抛物线。

而顶点坐标则可以通过二次函数的顶点公式来求得:顶点坐标为(-b/2a, f(-b/2a))。

二、一元二次方程的定义与解法一元二次方程是指只含有一个未知数的二次方程,一般的形式为ax² + bx + c = 0,其中a、b、c为实数且a≠0。

解一元二次方程的一种常见的方法是使用求根公式,即二次方程的根公式:x = (-b±√(b²-4ac))/2a。

根据一元二次方程的判别式Δ = b²-4ac的值可以推断出方程的解的情况。

当Δ>0时,方程有两个不同的实数解;当Δ=0时,方程有两个相同的实数解;当Δ<0时,方程无实数解,但可以有复数解。

三、二次函数与一元二次方程的关系二次函数与一元二次方程有许多紧密的联系。

事实上,二次函数的图像与一元二次方程的解之间存在着深刻的关联。

首先,对于二次函数f(x) = ax² + bx + c来说,它的图像与x轴的交点就对应了一元二次方程ax² + bx + c = 0的解。

也就是说,如果求得二次函数的根,就可以得到对应一元二次方程的解。

其次,二次函数的顶点坐标(-b/2a, f(-b/2a))可以提供一元二次方程的最值情况。

二次函数与一元二次方程、求解析式

二次函数与一元二次方程、求解析式

二次函数与一元二次方程1、从关系式看二次函数y=x 2-2x-3成为一元二次方程x 2-2x-3=0的条件是什么?2、反应在图象上:观察二次函数y=x 2-2x-3的图象,你能确定一元二次方程x 2-2x-3=0的根吗?3、结论:一般地,如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点(x 1,0)、(x 2,0),那么一元二次方程ax 2+bx+c=0有两个不相等的实数根x=x 1、x=x 2。

反过来也成立。

4、观察与思考:观察下列图象:(1)观察函数y= x 2-6x+9与y= x 2-2x+3的图象与x 轴的公共点的个数;(2)判断一元二次方程x 2-6x+9=0和x 2-2x+3=0的根的情况;(3)你能利用图象解释一元二次方程的根的不同情况吗?归纳:一般地,二次函数y=ax 2+bx+c 图象与一元二次方程ax 2+bx+c=0的根有如下关系:1、如果二次函数y=ax 2+bx+c 图象与x 轴有两个交点(m,0)、(n,0),那么一元二次方程ax 2+bx+c=0有 实数根x 1= ,x 2= .2、如果二次函数y=ax 2+bx+c 图象与x 轴有一个交点(m,0),那么一元二次方程ax 2+bx+c=0有 实数根x 1=x 2= .3、如果二次函数y=ax 2+bx+c 图象与x 轴没有交点,那么一元二次方程ax 2+bx+c=0实数根.反过来,由一元二次方程ax 2+bx+c=0的根的情况可以判断二次函数y=ax 2+bx+c 图象与x 轴的交点个数。

当Δ=ac b4->0时,一元二次方程ax 2+bx+c=0的根的情况是 ,此时二次函数y=ax 2+bx+c 图象与x 轴有 交点;当Δ=ac b4-=0时,一元二次方程ax 2+bx+c=0的根的情况是 ,此时二次函数y=ax 2+bx+c 图象与x 轴有 交点;当Δ=ac b 4-<0时,一元二次方程ax 2+bx+c=0的根的情况是 ,此时二次函数y=ax2+bx+c图象与x轴有交点.随堂练习:1、根据图象回答下列问题.如图由图可得:a_______0 b_______0 c_______0 △______02.如图:由图可得:a_______0 b_______0 c_______0 △=b2-4ac______03.如图,一元二次方程ax2+bx+c=0的解为________________4、不画图象求函数y=-x2+x+6与x轴的交点坐标与y轴交点坐标求y=x2-2x-3与x轴交点坐标与y轴交点坐标求抛物线y=x2-2x-3与x轴交点坐标与y轴交点坐标5、判断下列函数的图象与x轴是否有公共点,说明理由.(1)y=x2-x (2)y=-x2+6x-9 (3)y=3x2+6x+116、已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.用待定系数法求二次函数解析式一、回顾知识1、二次函数y=ax2+bx+c用配方法可化成:y=a(x-h)2+k,顶点是(h,k)。

人教版九年级上册数学课件22.2 二次函数与一元二次方程

人教版九年级上册数学课件22.2   二次函数与一元二次方程

观察思考
图象如下图所示:
归纳总结
(1) 抛物线y=x2+x-2与x轴有两个公共点,它们
的横坐标是-2,1. 当 x取公共点的横坐标时,函
数的值是0. 由此得出方程x2+x-2=0的根是-2,1.
归纳总结
(2)抛物线y=x2-6x+9与x轴只有一个公共点, 它的横坐标是3.当 x=3时,函数的值是0.由此 得出方程x2-6x+9=0有两个相等的实数根3.
所以可以将问题中h的值代入函数解析 式,得到关于 t 的一元二次方程.如果方程 有合乎实际的解,则说明小球的飞行高度 可以达到问题中h的值;否则,说明小球的 飞行高度不能达到问题中h的值.
问题探究
解:(1)解方程
15=20t-5t2 , t2-4t+3=0, t1=1,t2=3. 当小球飞行1 s和3 s时,它的高度为15 m.
2
归纳总结 (2)二次函数的图象与x轴的位置关系有 三种: (1)有两个交点 (2)有一个交点 (3)没有交点
b2 – 4ac > 0
(方程有两个不相等的实数根)
b2 – 4ac= 0
b2 – 4ac< 0 (方程没有实数根)
(方程有两个相等的实数根)
典型例题
例 利 用 函 数 图 象 求 方 程 x2-2x-2=0 的 实数根(精确到0.1).
解:画 x2-2x-2=0的图象(如图所示,它与x轴
的公共点的横坐标大约是-0.7,2.7).
所以方程 x2-2x-2=0 的实数根为
x 1 0 .7 , x 2 2 .7 .
探究
观察函数 y= x2-2x-2 的图象可以发现,当 自变量为2时的函数值小于0,当自变量为3时的 函数值大于0,所以抛物线 y= x2-2x-2 在2<x<3

二次函数与一元二次方程的根与系数关系

二次函数与一元二次方程的根与系数关系

二次函数与一元二次方程的根与系数关系二次函数和一元二次方程在数学中都是重要的概念,并且它们之间存在着密切的联系。

在本文中,我们将探讨二次函数与一元二次方程的根与系数之间的关系,并研究它们之间的一些特性。

一、二次函数的定义与一元二次方程的定义首先,我们先来了解二次函数和一元二次方程的定义。

二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c 是实数,且a ≠ 0。

一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是实数,且 a≠ 0。

二、二次函数的图像与一元二次方程的根的关系二次函数的图像是抛物线,它的开口方向取决于二次项的系数 a 的正负。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

一元二次方程的根就是方程的解,也就是使得方程等式成立的x 值。

根据二次函数的图像性质,我们可以得出以下结论:1. 当二次函数的抛物线与 x 轴相交时,方程有两个实根;2. 当二次函数的抛物线与 x 轴相切时,方程有一个实根;3. 当二次函数的抛物线与 x 轴无交点时,方程没有实根。

因此,通过观察二次函数的图像,我们可以确定一元二次方程的根的情况。

三、二次函数的系数与一元二次方程的根的关系接下来,我们来研究二次函数的系数与一元二次方程的根之间的关系。

1. 根据一元二次方程的求根公式可知,方程的根的判别式 D = b^2 - 4ac。

判别式 D 的值能够决定方程的根的性质。

具体来说:a) 当 D > 0 时,方程有两个不相等的实根;b) 当 D = 0 时,方程有两个相等的实根;c) 当 D < 0 时,方程没有实根,而是存在两个共轭复根。

2. 通过对比二次函数和一元二次方程的一般形式可知,二次函数的系数与一元二次方程的根之间存在着如下关系:a) 二次函数的顶点坐标为 (-b/2a, f(-b/2a));b) 一元二次方程的根与顶点坐标的关系为 x1 + x2 = -b/a,x1 * x2 = c/a。

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系二次函数和一元二次方程是数学中常见的概念,它们之间存在着密切的关系。

本文将探讨二次函数与一元二次方程之间的联系,并强调它们在解题和图像分析中的作用。

一、一元二次方程的定义及求解方法一元二次方程是形如ax²+bx+c=0的方程,其中a、b、c是已知的实数,且a≠0。

一元二次方程的求解通常借助于求根公式,即:x = (-b±√(b²-4ac))/(2a)。

这个公式被称为“二次根公式”。

为了更好地理解二次根公式的应用,我们举一个例子:求解方程x²+3x-4=0。

根据二次根公式,我们可以得到两个解:x₁=(-3+√(3²-4×1×(-4)))/(2×1)=-4,x₂=(-3-√(3²-4×1×(-4)))/(2×1)=1。

因此,该方程的解集为{x|x=-4或x=1}。

二、二次函数的定义及图像特征二次函数是一种特殊的函数形式,它的一般表达式为f(x)=ax²+bx+c,其中a、b、c是已知的实数,且a≠0。

二次函数的图像通常是一个抛物线,其开口方向和形状与a的正负有关。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的图像还具有以下特征:当自变量x的取值在无穷小区间内变化时,函数值f(x)也在相应的范围内连续变化;二次函数的对称轴是与抛物线关于顶点对称的轴线;顶点坐标为(-b/2a,f(-b/2a));当x趋近于正无穷或负无穷时,函数值趋近于正无穷或负无穷。

三、二次函数与一元二次方程的联系二次函数与一元二次方程之间存在着密切的关系。

具体来说,当我们给定一个二次函数f(x)=ax²+bx+c时,如果我们要求解f(x)=0的解,就相当于求解一元二次方程ax²+bx+c=0的解。

同样地,当我们给定一个一元二次方程ax²+bx+c=0时,如果我们要分析该方程的图像,就可以将它转化为二次函数f(x)=ax²+bx+c,并通过分析f(x)的图像来获得有关方程的信息。

二次函数与一元二次方程及解决实际问题(解析版)

二次函数与一元二次方程及解决实际问题(解析版)

第5天二次函数与一元二次方程及解决实际问题【知识回顾】1.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c =0,解关于x的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).2.图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;1(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).3.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.△描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.△函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.4.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.23一.选择题(共10小题)1.(2019·北京市十一学校月考)已知二次函数23y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230x x m -+=的两实数根分别是( )A .121,1x x ==-B .121,2x x ==C .121,0x x ==D .121,3x x ==【答案】B【解析】方法一:△二次函数23y x x m =-+图象与x 轴的一个交点为(1,0),△013m =-+,解得2m =.△一元二次方程为2320x x -+=,即(1)(2)0x x --=,解得121,2x x ==.故选B .方法二:△二次函数图象与x 轴的交点横坐标即为对应一元二次方程的实数根, △二次函数图象的对称轴是直线32x =,△二次函数的图象与x 轴的另一个交点为(2,0),4 △关于x 的一元二次方程230x x m -+=的两实数根分别是121,2x x ==.故选B .2.(2019·广东郁南月考)已知二次函数y 1=ax 2+bx+c (a≠0)与一次函数y 2=kx+m (k≠0)的图象交于点A (﹣2,4),B (8,2),如图所示,则能使y 1>y 2成立的x 的取值范围是( )A .x <﹣2B .x >8C .﹣2<x <8D .x <﹣2或x >8【答案】D【解析】 △A (﹣2,4),B (8,2),△能使y 1>y 2成立的x 的取值范围是x <﹣2或x >8.故答案选D .3.(2020·天津南开期末)抛物线y =x 2﹣5x +6与x 轴的交点情况是( )A .有两个交点B .只有一个交点C .没有交点D .无法判断【答案】A【解析】△y=x2﹣5x+6=(x﹣2)(x﹣3),△当y=0时,x=2或x=3,即抛物线y=x2﹣5x+6与x轴的交点坐标为(2,0),(3,0),故抛物线y=x2﹣5x+6与x轴有两个交点,故选A.4.(2020·浙江杭州一模)已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程23=0 2ax bx c+++的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根【答案】D【解析】解:函数y=ax2+bx+c向上平移32个单位得到232y ax bx c'+++=,5而y′顶点的纵坐标为﹣2+32=﹣12,故23 2y ax bx c'+++=与x轴有两个交点,且两个交点在x轴的右侧,故23=0 2ax bx c+++有两个同号不相等的实数根,故选:D.5.(2020·安徽瑶海·合肥38中月考)由下表可知方程ax2+bx+c=0(a≠0,a、b、c为常数)一个根(精确到0.01)的范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20【答案】C【解析】由表可以看出,当x取6.18与6.19之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.△ax2+bx+c=0的一个解x的取值范围为6.18<x<6.19.故选:C.67 6.(2020·福建厦门一中月考)二次函数y =x 2+mx ﹣n 的对称轴为x =2.若关于x 的一元二次方程x 2+mx ﹣n =0在﹣1<x <6的范围内有实数解,则n 的取值范围是( ) A .﹣4≤n <5B .n ≥﹣4C .﹣4≤n <12D .5<n <12 【答案】C【解析】解:△抛物线的对称轴x =-2m =2, △m =-4,则方程x 2+mx -n =0,即x 2-4x -n =0的解相当于y =x 2-4x 与直线y =n 的交点的横坐标, △方程x 2+mx -n =0在-1<x <6的范围内有实数解,△当x =-1时,y =1+4=5,当x =6时,y =36-24=12,又△y =x 2-4x =(x -2)2-4,△在-1<x <6的范围,-4≤y <12,△n 的取值范围是-4≤n <12,故选:C .7.(2020·安徽合肥三模)若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为( )A .0B .12C .13D .1【答案】B【解析】解:(x+1−3m)(x−m)=x2+(1−4m)x+3m2−m,△无论x取何值,代数式(x+1−3m)(x−m)的值恒为非负数,△△=(1−4m)2−4(3m2−m)=(1−2m)2≤0,又△(1−2m)2≥0,△1−2m=0,△m=12.故选:B.8.(2020·山东岱岳二模)将抛物线y=﹣13x2﹣13x+2(x≤0)沿y轴对折,得到如图所示的“双峰”图象.若直线y=x+b与该“双峰”图象有三个交点时,b的值为()A.2,73B.2C.73D.0【答案】A89【解析】将抛物线y =﹣13x 2﹣13x +2(x ≤0)沿y 轴对折,得到抛物线为y =﹣13x 2+13x +2(x >0), 由抛物线y =﹣13x 2﹣13x +2(x ≤0)可知抛物线与y 轴的交点为(0,2), 把点(0,2)代入y =x +b 求得b =2, 由﹣13x 2+13x +2=x +b 整理得x 2+2x +3b ﹣6=0, 当△=4﹣4(3b ﹣6)=0,即b =73时,直线y =x +b 与该“双峰”图象有三个交点, 由图象可知若直线y =x +b 与该“双峰”图象有三个交点时,b 的值是2和73, 故选:A .9.(2020·全国)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:△小球在空中经过的路程是40m ;△小球抛出3秒后,速度越来越快;△小球抛出3秒时速度为0;△小球的高度30h m =时, 1.5t s =.其中正确的是( )10A .△△B .△△C .△△△D .△△ 【答案】D【解析】△由图象知小球在空中达到的最大高度是40m ;故△错误; △小球抛出3秒后,速度越来越快;故△正确;△小球抛出3秒时达到最高点即速度为0;故△正确; △设函数解析式为:()2340h a t =-+,把()0,0O 代入得()200340a =-+,解得409a =-,△函数解析式为()2403409h t =--+,把30h =代入解析式得,()240303409t =--+,解得: 4.5t =或 1.5t =,△小球的高度30h m =时, 1.5t s =或4.5s ,故△错误; 故选D .10.(2020·全国)如图,两条抛物线y1=-12x2+1,y2=-12x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为()A.8B.6C.10D.4【答案】A【解析】如图,过,y2=-12x2-1的顶点(0,-1)作平行于x轴的直线与y1=-12x2+1围成的阴影,同过点(0,-3)作平行于x轴的直线与y2=-12x2-1围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为4×2=8.故选A二.填空题(共5小题)11.(2019·北京市十一学校月考)二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c≥mx+n的x的取值范围是_____.11【答案】﹣3≤x≤0.【解析】解:由图可知,-3<x<0时二次函数图象在一次函数图象上方,所以,满足ax2+bx+c≥mx+n的x的取值范围是﹣3≤x≤0.故答案为:﹣3≤x≤012.(2020·北京市昌平区第四中学期中)二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.【答案】x<−1或x>5.【解析】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),1213所以不等式−x 2+bx +c <0的解集为x <−1或x >5.故答案为x <−1或x >5.13.(2020·四川南充月考)已知抛物线21y ax x =--与x 轴交于A ,B 两点,顶点为C ,如果ABC ∆为直角三角形,则a =________. 【答案】34【解析】出这两个距离,列方程求解,检验得出答案.【详解】解:△抛物线y=ax 2-x -1与x 轴交于A ,B 两点,△b 2-4ac >0,即1+4a >0,也就是14a >- △抛物线y=ax 2-x -1与x轴交点的横坐标为x =414a y a --=, △AB 的距离为|x 1-x 2|= ,顶点C 到x 轴距离CD 为414a a --, △当△ABC 为直角三角形,根据对称性可知它是一个等腰直角三角形,此时AB=2CD ,4124a a--=⨯14两边平方得:224144a a --⎛⎫=⨯ ⎪⎝⎭⎝⎭ 整理得:16a 2-8a -3=0 解得:1231,44a a ==- △14a >- △34a = 14.(2020·湖北武汉月考)二次函数y =ax 2+bx+c 的图象如图所示,下列结论:△ab >0;△a+b ﹣1=0;△a >1;△关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣1a.其中正确结论的序号是_____.【答案】△△△【解析】解:△由二次函数的图象开口向上可得a >0,对称轴在y 轴的右侧,b <0,△ab <0,故△错误;△由图象可知抛物线与x 轴的交点为(1,0),与y 轴的交点为(0,﹣1),△c=﹣1,△a+b﹣1=0,故△正确;△△a+b﹣1=0,△a﹣1=﹣b,△b<0,△a﹣1>0,△a>1,故△正确;△△抛物线与y轴的交点为(0,﹣1),△抛物线为y=ax2+bx﹣1,△抛物线与x轴的交点为(1,0),△ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣1a,故△正确;故答案为△△△.15.(2020·全国)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.【答案】-41516【解析】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出: 220.52x -=-+,解得:x =±17所以水面宽度增加到4.故答案是:4.三.解析题(共5小题)16.(2020·福建省连江第三中学月考)已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)求△ABC 的面积.【答案】(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24【解析】(1)在y =x 2-2x -8,令0x =,可得8y =-,即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-=△A 在B 的左侧△(2,0),(4,0)A B -(2)△(2,0),(4,0),(0,8)A B C --△6,8AB OC ==18S △ABC =12AB OC ⋅=1682⨯⨯=24 17.(2020·福建省连江第三中学月考)已知抛物线y =-x 2+4x -3.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【答案】(1)(2,1),直线x=2;(2)2【解析】解:(1)△y=-x 2+4x -3=-(x 2-4x+4)+1=-(x -2)2+1,△抛物线的顶点坐标为(2,1)、对称轴为直线x=2;(2)令y=0得-x 2+4x -3=0,解得:x=1或x=3,则抛物线与x 轴的交点坐标为(1,0)和(3,0),△线段AB 的长为2.18.(2020·全国)如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,其中点A 的坐标为(3,0)-,与y 轴交于点C ,点(2,3)D --在抛物线上.19(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PA PD +的最小值;(3)若抛物线上有一动点Q ,使ABQ △的面积为6,求点Q 的坐标.【答案】(1)223y x x =+-;(2)3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1--【解析】解:(1)△抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,△930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩△抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.△(2,3)D --,△C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC与20对称轴的交点时,PA PD +取得最小值,△最小值为AC ==(3)设点()2,23Q m m m +-, 令2230y x x =+-=,得3x =-或1,△点B 的坐标为(1,0), △4AB =.△6QAB S =, △2142362m m ⨯⨯+-=, △2260m m +-=或220m m +=,解得:1m =-+1--或0或2-,△点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1--.19.(2020·山东日照·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.21【答案】(1)见解析;(2)2610040053⎛⎫=-+<< ⎪⎝⎭y x x x ,见解析. 【解析】解:(1)证明:△矩形MEFN 与矩形EBCF 面积相等,△ME =BE ,AM =GH .△四块矩形花圃的面积相等,即S 矩形AMDND =2S 矩形MEFN ,△AM =2ME ,△AE =3BE ;(2)△篱笆总长为100m ,△2AB +GH +3BC =100, 即1231002AB AB BC ++=, △6405AB BC =-设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,22 则266404055y BC AB x x x x ⎛⎫=⋅=-=-+ ⎪⎝⎭, △6405AB BC =-, △402035EB x =->, 解得1003x <, △2610040053⎛⎫=-+<< ⎪⎝⎭y x x x . 20.(2020·云南一模)大学毕业生小李自主创业,开了一家小商品超市.已知超市中某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价必须低于34元,设每件商品的售价上涨x 元(x 为非负整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)利用函数关系式求出每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)利用函数关系式求出每件商品的售价定为多少元时,每个月的利润恰好是1920元?这时每件商品的利润率是多少?【答案】(1)y=80x+1800x 4,≤<(0且x 为整数);(2)每件商品的售价为33元时,商品的利润最大为1950元;(3)售价为32元时,利润为1920元.每件商品的利润率是60%.23【解析】(1)2y=3020+x)(180-10x)=-10x =80x+18000x 4,x -≤<((且为整数);(2)()2y 1041960x =--+,100-<,当x 4<时y 随x 的增大而增大,由0x 4≤<, 且x 为整数可得当x 3=时,y =1950最大答:每件商品的售价为33元时,商品的利润最大为1950元; (3)2192010x 80x 1800=-++,2x 8x 120-+=,即()2(6=0x x )-- 解得x 2=或x 6=,0x 4≤<,x 2∴=,()322020100%60%-÷⨯=∴售价为32元时,利润为1920元.每件商品的利润率是60%.。

一元二次方程与二次函数的联系与区别

一元二次方程与二次函数的联系与区别

一元二次方程与二次函数的联系与区别一元二次方程和二次函数是高中数学中重要的概念,它们在数学领域有着广泛的应用和深远的意义。

本文将讨论一元二次方程和二次函数之间的联系与区别。

一、联系一元二次方程和二次函数都涉及到二次项、一次项和常数项,它们之间有很多联系。

1. 二次项系数代表抛物线的开口方向一元二次方程和二次函数的特点是二次项的系数。

在一元二次方程ax² + bx + c = 0 中,a 表示二次项的系数,当 a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。

同样地,在二次函数 y = ax² + bx + c 中,a 表示二次项的系数,其符号与一元二次方程保持一致,也能描述抛物线的开口方向。

2. 判别式和判别式与图像的关系一元二次方程的判别式Δ = b² - 4ac 表示二次方程的根的性质。

当Δ>0 时,方程有两个不相等的实根;当Δ=0 时,方程有两个相等的实根;当Δ<0 时,方程没有实根。

而对于二次函数 y = ax² + bx + c,判别式与函数的图像也有关系。

当Δ>0 时,函数的抛物线与 x 轴有两个交点;当Δ=0 时,函数的抛物线与 x 轴有一个切点;当Δ<0 时,函数的抛物线与 x 轴没有交点。

3. 解和零点一元二次方程是通过解方程来求得变量的值,方程的解即为方程的根。

而二次函数则是通过求函数的零点来求得变量的值,即函数在 x轴上的解。

一元二次方程和二次函数的解或零点有着一一对应的关系。

二、区别虽然一元二次方程和二次函数有很多联系,但它们之间也存在明显的区别。

1. 表达方式的不同一元二次方程的表达方式是通过等式来表示,例如 ax² + bx + c = 0。

而二次函数是通过方程 y = ax² + bx + c 来表示的,其中 y 表示函数的值,x 表示自变量的值。

2. 求解的对象不同一元二次方程的求解对象是方程中的变量,通过求解方程可以得到方程的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线y=ax2+bx+c与直线y=mx+n的公共点情况 方程ax2+bx+c=mx+n的根的情况。
2.二次函数解析式求法
例1、二次函数与一元二次方程
1、抛物线 与 轴有个交点,因为其判别式 0,相应二次方程 的根的情况为.
2、函数 ( 是常数)的图像与 轴的交点个数为()
A.0个B.1个C.2个D.1个或2个
2.已知关于x的方程ax2+bx+c称轴是直线x=2,则抛物线的顶点坐标为()。
3.已知二次函数y=-x2+(3-k)x+2k-1的图像与y轴的交点位于(0,1)的上方,则k的取值围()。
6.已知二次函数 的图象与 轴交于点 、 ,且 ,与 轴的正半轴的交点在 的下方.下列结论:① ;② ;③ ;④ .其中正确结论的个数是个.
2.在直角坐标平面中,O为坐标原点,二次函数 的图象与y轴交于点A,与x轴的负半轴交于点B,且 .
(1)求点A与点B的坐标;(2)求此二次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.
1.不论x为何值,二次函数y=ax2+bx+c的值恒为负的条件( )。
A.a>0,b2-4ac<0B .a>0,b2-4ac>0C.a<0,b2-4ac<0D.a<0,b2-4ac>0
1.一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x轴)的公共点的个数。抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:
(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0) 一元二次方程ax2+bx+c=0有两个不等实根 △=b2-4ac>0。
4.y=x2+(1-a)x+1是关于x的二次函数,当x的取值围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值围是()。
A.a=5B.a≥5C.a=3D.a≥3
5.已知抛物线y=ax2+bx+c,经过A(4,-2),B(12,-2)两点,那么它的对称轴是( )
A.直线x=7B.直线x=8C.直线x=9D.无法确定
4.抛物线y= x2+(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
5.抛物线 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.
6.抛物线y=ax2+4ax+1(a﹥0)与x轴的两个交点间的距离为2,求抛物线的解析式。
1、
2、
3、
4、
5、
7.抛物线y=x2-2x+(m2-4m+4)与x轴有两个交点,这两点间的距离等于抛物线顶点到y轴距离的2倍,求抛物线的解
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.
8.下图是二次函数 的图像,与 轴交于 , 两点,与 轴交于 点.
(1)根据图像确定 , , 的符号,并说明理由;
(2)如果 点的坐标为 , , ,求这个二次函数的函数表达式.
6.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值围.
7.已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(﹣2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2﹣10x+24=0的两个根.
11.已知抛物线y=(m+1)x2+(m+2)x+1与x轴有唯一公共点,求抛物线的解析式。
1.下列命题:①若 ,则 ;
②若 ,则一元二次方程 有两个不相等的实数根;
③若 ,则一元二次方程 有两个不相等的实数根;
④若 ,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是( ).
A.只有①②③B.只有①③④C.只有①④D.只有②
3、关于二次函数 的图像有下列命题:①当 时,函数的图像经过原点;②当 ,且函数的图像开口向下时,方程 必有两个不相等的实根;③函数图像最高点的纵坐标是 ;④当 时,函数的图像关于 轴对称.
其中正确命题的个数是()
A.1个B.2个C.3个D.4个
4、已知函数 .
(1)求证:不论 为何实数,此二次函数的图像与 轴都有两个不同交点;
析式。
8.已知直线y=ax-a2(a≠0) 与抛物线y=mx2有唯一公共点,求抛物线的解析式。
1、
2、
3、
4、
9.已知关于X的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x2+(m+1)x+3解析式。
10.已知抛物线y=(a+2)x2-(a+1)x+2a的顶点在x轴上,求抛物线的解析式。
(2)若函数 有最小值 ,求函数表达式.
例2 二次函数解析式
1.已知抛物线y=ax +bx+c 经过A( ,0),B( ,0),C(0,-3)三点,求抛物线的解析式。
2.已知抛物线y=x2-2ax+a2+b 顶点为A(2,1),求抛物线的解析式。
3.已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y= a(x-2a)(x-b)的解析式。
(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点 一元二次方程ax2+bx+c=0有两个相等实根,
(3)抛物线y=ax2+bx+c与x轴没有公共点 一元二次方程ax2+bx+c=0没有实数根 △=b2-4ac<0.
(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况 方程ax2+bx+c=h的根的情况。
相关文档
最新文档