简易数字电压表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第1章数字电压表概述 (1)
第2章系统总体方案选择与说明 (2)
2.1 项目分析及其设计 (2)
2.1.1 通道转换方案设计 (2)
2.1.2 显示部分方案设计 (2)
第3章系统结构框图与工作原理 (3)
3.1 系统结构框图 (3)
3.2 工作原理 (3)
第4章各单元硬件设计说明及计算方法 (4)
4.1 单片机的选择 (4)
4.2 时钟与复位电路的设计 (4)
4.3 LED显示电路设计与器件选择 (5)
4.4 A/D转化电路及测量电路的设计 (7)
第5章软件设计与说明 (9)
5.1 数字电压表系统软件设计方案确定 (9)
5.2 数字电压表应用程序设计 (11)
第6章调试结果及其说明与使用说明 (13)
6.1 调试结果及其说明 (13)
6.2 使用说明 (13)
总结 (14)
参考文献 (15)
附录A 元件清单 (16)
附录B 系统原理图 (17)
附录C 系统程序 (18)
第1章数字电压表概述
模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差,特别是受表头精度的限制,即使采用0.5级的高灵敏度表头,读测时的分辨力也只能达到半格。再者,模拟式电压表的输入阻抗不高,测高内阻源时精度明显下降。数字电压表作为数字技术的成功应用,发展相当快。数字电压表(Digital VoIt Me-ter,DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。特别是以A/D转换器为代表的集成电路为支柱,使DVM向着多功能化、小型化、智能化方向发展。DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。目前,DVM多组成多功能式的,因此又称数字多用表(Digital Multi Meter,DMM)。
DVM是将模拟电压变换为数字显示的测量仪器,这就要求将模拟量变成数字量。这实质上是个量化过程,即将连续的无穷多个模拟量用有限个数字表示的过程,完成这种变换的核心部件是A /D转换器,最后用电子计数器计数显示,困此,DVM的基本组成是A/D转换器和电子计数器。
DVM最基本功能是测直流电压,考虑到仪器的多功能化,可将其他物理量,如电阻、电容、交流电压、电流等,都变成直流电压,因此,还应有一个测量功能选择变换器,它包含在输入电路中。DVM对直流电压直接测量时的测量精度最高,其他物理量在变换成直流电压时,受功能选择变换器精度的限制,测量精度有所下降。
第2章系统总体方案选择与说明
实现数字电压表的方案很多,目前广泛采用的时基于74系列逻辑器件,本设计将介绍基于单片机实现的方案。
2.1 项目分析及其设计
方案设计此设计包含两个模块,通道转换和显示部分方案。2.1.1 通道转换方案设计
方案一:考虑到ADC0808的8路模拟量输入本质上也是模拟开关,因此可以利用其8个模拟通道中的3个作为通道转换器,即根据通道对应的电压测量范围确定对应的电压方法倍数设计对应的放大电路。
方案二:利用手动开关实现通道转换。该方案可简化控制程序,消减系统开销。缩短反应时间,不足之处在于操作麻烦。
综上所述:方案二所需元件少、成本低且易于实现,则选此方案。
2.1.2 显示部分方案设计
方案一:单片机的P0、P2口分别接74LS248和ULN2003A芯片来驱动四位数码管
方案二:直接用单片机的P1、P2口驱动数码管,此处把ADC0808的输出端接P1口,因为P1口能够驱动数码管。
综上所述,两个方案都可行,但方案二所需元件少、成本低,则选择此方案。
第3章系统结构框图与工作原理
3.1 系统结构框图
根据项目要求,确定该系统的设计方案,图3-1为该系统设计方案的结构框图。硬件电路由6各部分组成,即单片机、时钟电路、复位电路、LED显示电路、A/D装唤器和测量电压输入电路。
图3-1 系统结构框图
3.2 工作原理
系统采用12M晶振产生脉冲做AT89C51的内部时钟信号,通过软件设置单片机的内部定时器T0产生中断信号。利用中断设置单片机的P2.4口取反产生脉冲做AT89C51的时钟信号。通过键盘选择八路通道中的一路,将该路电压送入ADC0808相应通道,单片机软件设置ADC0808开始A/D转换,转换结束ADC0808的EOC 端口产生高电平,同时将ADC0808的EO端口置为高电平,单片机将转换后结果存到片内RAM。系统调出显示子程序,将保存结果转化为0.00-5.00V分别保存在片内RAM;系统调出显示子程序,将转化后数据查表,输出到LED显示电路,将相应电压显示出来,程序进入下一个循环。
第4章各单元硬件设计说明及计算方法
根据设计要求与思路,确定该系统的设计方案。硬件电路由5个部分组成,即单片机时钟电路、复位电路、4位显示器电路、A/D 转换电路和键盘及测量电路。
4.1 单片机的选择
根据初步设计方案的分析,设计这样一个简单的应用系统,可以选择带有EPROM的单片机,应用程序直接存储在片内,不用在外部扩展程序存储器,电路可以简化。此电路选择Atmel公司生产的AT89C51。AT89系列与MCS-51系列单片机相比有两大优势:第一,片内程序存储器采用闪速存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个电路体积更小。它以较小的体积、良好的性价比倍受青睐。
4.2 时钟与复位电路的设计
单片机工作的时间基准是由时钟电路提供的。在单片机的XTAL1和XTAL2两个管脚,接一只晶振及两只电容就构成了单片机的时钟电路。
电路中,电容C1和C2对震荡电路有微调的作用,通常的取值范围位(30+10)pF。石英晶体选择6MHz或12MHz都可以,其结果只是机器周期时间不同,影响计数器的计数初值,此设计取12MHz。
单片机的RST管脚为主机提供一个外部复位信号输入端口。复位信号是高电平有效,高电平有效的持续时间应为2个机器周期以上。
单片机的复位方式有上电自动复位和手工复位两种。图4-2所示是51系列单片机常用的上电复位和手动复位组合电路,只要Vcc上升时间不超过1ms,它们都能很好地工作。复位以后,单片机内各部件恢复到初始状态。
电阻电容器件的参考值:R1=200Ω,R2=1KΩ,C3=22μF。RET按键可以选择专门的复位按键,也可以选择轻触开关。电路图如图4-1所示。