实验报告聚类分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告聚类分析
实验原理:K均值聚类、中心点聚类、系统聚类和EM算法聚类分析技术。
实验题目:用鸢尾花的数据集,进行聚类挖掘分析。
实验要求:探索鸢尾花数据的基本特征,利用不同的聚类挖掘方法,获得基本结论并简明解释。
实验题目--分析报告:data(iris)
> rm(list=ls())
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 431730 929718 607591
Vcells 787605 8388608 1592403
> data(iris)
> data<-iris
> head(data)
Species
1 setosa
2 setosa
3 setosa
4 setosa
5 setosa
6 setosa
#Kmean聚类分析
> newiris <- iris
> newiris$Species <- NULL
> (kc <- kmeans(newiris, 3))
K-means clustering with 3 clusters of sizes 62, 50, 38
Cluster means:
1
2
3
Clustering vector:
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
[41] 2 2 2 2 2 2 2 2 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
[81] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 3 3 1 3 3 3 3 3 3 1 1 3 3 3 3 1
[121] 3 1 3 1 3 3 1 1 3 3 3 3 3 1 3 3 3 3 1 3 3 3 1 3 3 3 1 3 3 1
Within cluster sum of squares by cluster:
[1]
(between_SS / total_SS = %)
Available components:
[1] "cluster" "centers" "totss" "withinss" ""
[6] "betweenss" "size" "iter" "ifault"
> table(iris$Species, kc$cluster)
1 2 3
setosa 0 50 0
versicolor 48 0 2
virginica 14 0 36
> plot(newiris[c("", "")], col = kc$cluster)
> points(kc$centers[,c("", "")], col = 1:3, pch = 8, cex=2)
#K-Mediods 进行聚类分析
> ("cluster")
> library(cluster)
> <-pam(iris,3)
> table(iris$Species,$clustering)
1 2 3
setosa 50 0 0
versicolor 0 3 47
virginica 0 49 1
> layout(matrix(c(1,2),1,2)) > plot
> layout(matrix(1))
#hc
> <- hclust( dist(iris[,1:4]))
> plot( , hang = -1)
> plclust( , labels = FALSE, hang = -1)
> re <- , k = 3)
> <- cutree, 3)
#利用剪枝函数cutree()参数h控制输出height=18时的系谱类别> sapply(unique,
+ function(g)iris$Species[==g])
[[1]]
[1] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa
[12] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa
[23] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa
[34] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa
[45] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica
[[2]]
[1] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
[8] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
[15] versicolor versicolor versicolor versicolor versicolor versicolor versicolor
[22] versicolor versicolor virginica virginica virginica virginica virginica
[29] virginica virginica virginica virginica virginica virginica virginica