《电磁屏蔽技术》PPT课件
《EMC基础知识讲解》课件
电磁辐射:由电 磁波产生的辐射
产生原因:电磁 波在空间中传播
影响:对人体健康、 电子设备、通信系 统等产生影响
控制措施:屏蔽、 滤波、接地等方 法减少电磁辐射
电磁辐射测试与标准
电磁辐射测试:通过测量电磁场强度、频率、方向等参数,评估电磁辐射对人体健康的 影响
国际标准:国际电工委员会(IEC)、国际电信联盟(ITU)等组织制定了一系列电磁 辐射测试标准
工业设备:如电机、电焊机等
电力设备:如高压输电线、变电站等
照明设备:如荧光灯、LED灯等
通信设备:如无线电台、卫星通信等
医疗设备:如X光机、核磁共振等
设备内部干扰源
电源线:电源线中的电磁波干 扰
信号线:信号线中的电磁波干 扰
电路板:电路板上的电磁波干 扰
电子元器件:电子元器件中的 电磁波干扰
电磁敏感度分类
设计:优化敏感设备的电 路设计,提高抗电磁干扰 能力
测试:定期进行电磁敏感 度测试,确保设备性能稳 定
电磁屏蔽原理与技术
电磁屏蔽原理: 屏蔽材料:金 屏蔽技术:屏
通过屏蔽材料 属、导电塑料、 蔽罩、屏蔽线、
阻挡电磁波的 导电橡胶等
屏蔽层等
传播,降低电
磁干扰
滤波技术:通 过滤波器滤除 特定频率的电 磁干扰,提高
滤波设计:使用滤波器,如电 源滤波器、信号滤波器等,抑 制电磁干扰
屏蔽设计:使用屏蔽材料,如 金属外壳、屏蔽罩等,减少电 磁干扰
电源设计:使用低噪声电源, 减少电磁干扰
信号传输设计:使用屏蔽线、 光纤等,减少电磁干扰
EMC整改流程与方法
确定整改目标: 制定整改方案: 明确需要整改 根据问题制定 的EMC问题 具体的整改措
《电磁屏蔽技术》课件
电磁场屏蔽
总结词
通过抑制或减少电磁场的影响,保护电子设备免受干扰。
总结词
电磁场屏蔽的关键在于选择合适的导电和导磁材料、设计 合理的屏蔽结构和接地方式,以确保电子设备的正常运行 。
详细描述
电磁场屏蔽主要采用导电和导磁材料组合使用,如金属网 和铁板等,将电子设备包围起来,以同时减少外部电场和 磁场对设备内部电子元件的影响。
根据屏蔽方式的不同,电磁屏蔽技术 可分为被动屏蔽和主动屏蔽两种。
电磁屏蔽技术的原理
利用导电材料将电磁波限制在一定区 域内,阻止其传播,从而减少电磁辐 射对其他区域的影响。
电磁屏蔽技术的应用场景
电子设备
在电子设备中,电磁屏蔽技术可以用于保护敏感元件免受电磁干 扰,提高设备的稳定性和可靠性。
通信系统
在通信系统中,电磁屏蔽技术可以用于防止电磁干扰,提高信号传 输的稳定性和保密性。
新型电磁屏蔽材料的研发
总结词
随着科技的发展,新型电磁屏蔽材料不断涌现,为电磁屏蔽技术提供了更多选择 和可能性。
详细描述
新型电磁屏蔽材料通常具有更高的导电性能、更轻的重量、更好的加工性能等特 点,能够满足现代电子产品对轻薄、高性能、环保等方面的需求。目前,新型电 磁屏蔽材料主要包括金属氧化物、石墨烯、碳纳米管等。
电磁屏蔽技术的环保问题与解决方案
总结词
电磁屏蔽技术在生产和使用过程中可能会对环境产生一定的影响,需要采取相应的措施 解决环保问题。
详细描述
在生产过程中,电磁屏蔽材料可能会产生废料和污染。为了解决这一问题,可以采用环 保型的生产工艺和设备,减少废料和污染的产生。在使用过程中,电磁屏蔽设备可能会 消耗大量的能源。为了降低能耗,可以采用节能型的电磁屏蔽设备和技术,同时加强设
电磁兼容技术-屏蔽-第四讲
7
r f r
1 20 10 6.68 10 5 0.61
3
7
z wm 2f 0 r 2 20 107 4 10 7 0.5 0.08
故多次反射修正因子为:
B 20 lg[1 ( z m z wm ) 2 /( z m z wm ) 2 10 0.1 A (10 s 0.23 A j sin 0.234 )] 20 lg[1 (0.08 6.68 10 5 ) 2 /(0.08 6.68 10 5 ) 2 10 0.17.235 (10 s 0.23 7.235 j sin 0.23 7.235 )] 1.81 dB
第四讲-----电磁屏蔽
4.1电磁屏蔽基本概念
抑制以场的形式造成干扰的有效方法是电磁屏蔽。 所谓电磁屏蔽就是以某种材料〔导电或导磁材料) 制成的屏蔽壳体(实体的或非实体的)将需要屏蔽的 区域封闭起来,形成电磁隔离,即其内的电磁场不 能越出这一区域,而外来的辐射电磁场不能进人这 一区域(或者进出该区域的电磁能量将受到很大的 衰减)。
吸收损耗:电磁波在屏蔽材料中传播时,会有一部分 能量转换成热量,导致电磁能量损失,损失的这部分 能量称为屏蔽材料的吸收损耗。 多次反射修正因子:电磁波在屏蔽体的第二个界面 (穿出屏蔽体的界面)发生反射后,会再次传输到第 一个界面,在第一个界面发射再次反射,而再次到达 第二个界面,在这个截面会有一部分能量穿透界面, 泄漏到空间。这部分是额外泄漏的,应该考虑进屏蔽 效能的计算。这就是多次反射修正因子。
4.3.1电磁屏蔽效能
屏蔽前的场强E1 屏蔽后的场强E2
对电磁波产生衰减的作用就是电磁屏蔽, 电磁屏蔽作用的大小用屏蔽效能度量: SE = 20 lg ( E1/ E2 ) dB
电磁波屏蔽纤维及纺织品PPT课件
13
根据这一方法, 在吸波纺织品的设计中,可以
根据实际要求改变材料中不同组分及其含量以及
材料的厚度,进而调节材料的电磁参数,达到对某些
5
三、抗辐射纺织品的开发
抗电磁辐射纺织产品的开发模拟了常规 电磁屏蔽材料的工作原理,即以金属隔离 的原理来控制电磁干扰由一个区域向另一 个区域感应和辐射传播,而这种隔离是通 过电磁屏蔽材料对入射电磁辐射的反射或 吸收实现的。
6
目前用于电磁屏蔽的纺织品,大多以不锈钢纤 维或碳、石墨纤维等具有较高电导率的材料与纺 织纤维混纺或交织制成,或使用金属化纤维,在纤维 或织物上进行金属电镀或化学镀,提高电导率。电 导率高的材料对电磁波具有较强的反射能力,具备 良好的屏蔽效能,而吸收能力则相对较差 ,容易在 环境中造成再次污染。理论计算和实践说明,电损 耗型材料在较高的电磁波频段存在较强的吸收,而 磁损耗型材料在较低的电磁波频段有较强的吸收 能力,因此制作具有宽频吸波性能的纺织品,应使材 料同时具备一定的介电损耗和磁损耗能力
8
1 碳纤维材料
碳纤维的电阻率随热处理温度的升高而降低, 因此经低温处理的某些碳纤维晶化温度低,结构更 加疏松紊乱,具有一定的吸波性能。另外,经过特殊 工艺处理,如特殊表面处理的某些碳纤维,制作 SiC/C复合纤维,这种特殊工艺可在碳纤维表面沉 积一层石墨颗粒,或者在碳纤维上接枝某些官能团 如酰亚胺等,也可改变纤维的横截面形状和大小,对 碳纤维表面实施金属电镀或化学镀,使其具有适当 的电阻值和适当的ε和μ值,制作出具备一定吸波性 能的碳纤维材料
10
3.金属微粉材料
如羰基金属微粉吸波材料,包括羰基铁、羰基 镍和羰基钴等,都具备良好的吸波性能,其中羰基铁 微粉是最常用的一种磁性金属微粉吸波材料,如使 用合适的粘胶剂将其涂布在纤维或织物表面,形成 导磁薄层,或者使用浸渍的加工方法,制备吸波织物 或非织造布。这类材料的主要缺点是体积密度较 大,造价昂贵,与纺织品结合性能差。为了克服这一 缺点,有人使用直径几十微米的空心微珠进行表面 改性,如镀覆金属镍等,材料的体积密度大大下降。 这是一种有望用于吸波纺织品的材料,有可能用于 化学纤维的复合纺丝或织物的涂层整理。
屏蔽技术
其它屏蔽材料 1.导电布,导电布是由化学纤维及天然 纤维等构成的织物表面上覆上(金— 银—铜—镍)等金属表层所构成的金 属纤维所编织而成,可赋予导电性且 没有纤维固有性质。厚度0.15±0.02 mm ,频率100MHz衰减90dB,频率 3GHz衰减70dB以上 2.I/O导电泡棉衬垫是由聚酯纤维制 作表面覆上金属构成金属纤维 3.铜箔导电泡棉是由纯软质铜+聚脂纤维 制作 4.铜箔胶粘带 5.全金属丝网屏蔽条 6.导电胶
截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收 损耗部分加上孔洞的屏蔽效能,不能满足屏蔽要求时,就 可以考虑使用截止波导管,利用截止波导管的深度提供的 额外的损耗增加屏蔽效能。 16.截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的 电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态, 并且截止频率要远高于(5倍以上)需要屏蔽的频率。设 计截止波导管的步骤如下所示: A)确定需要屏蔽的最高频率Fmax和屏蔽效能SE B)确定截止波导管的截止频率Fc,使fc≥5Fmax C)根据Fc,利用计算Fc的方程计算波导管的截面尺寸d D)根据d和SE,利用波导管吸收损耗公式计算波导管长度t
屏蔽技术应用
基本概念 屏蔽原理
屏蔽技术应 用 屏蔽是 抑制辐 射干扰 的有效 办法!
屏蔽性能 屏蔽材料 屏蔽箱设计
屏蔽设计 一般规则
一. 屏蔽的基本概念 屏蔽是利用导电或导磁材料制成的壳、板、套、等 各种形状的屏蔽体,将电磁能量限制在一定空间围 内的抑制辐射干扰的一种有效措施。 采用屏蔽的目的有两个: 一是限制设备内部的辐射电磁能越出某一区域; 二是防止外部的辐射电磁能进入某一区域。 屏蔽箱的屏蔽效能:指模拟干扰源置于屏蔽箱外 时,屏蔽箱置放前后的空间某点电场强度、磁场 强度或功率之比再取对数(lgp1/p2),用dB表示。 测试设备有:网络分析仪(信号发生器+频谱分 析仪)、偶极子天线、喇叭天线、屏蔽箱。
电磁屏蔽结构设计实用技术
机箱、机柜的电磁屏蔽
图4-14 截止波导结构
机箱、机柜的电磁屏蔽
▲图4-15 正确和 不正确的屏蔽穿线孔 示例 为了进行机械和 电气连接,需在设备 封壳上开一些孔。
机箱、机柜的电磁屏蔽
图4-16 表头孔和钮子开关的防泄漏安装
机箱、机柜的电磁屏蔽
▲通风口屏蔽:通常用穿孔金属板(板上开阵列孔)。 ——板的孔隙率在30~60%,可满足一般电子设备的需 要;屏蔽性能一般在10~30/1GHz。 ——影响穿孔板屏蔽性能的最主要的以上是开孔最大尺 寸。 ▲局部开孔屏蔽:指数量不多的开孔,如光纤出线孔、 指示灯、拨码开关、调测孔、观察孔等。 ——开孔最大尺寸小于波长的1/20,屏蔽性能为20dB。 ——开孔最大尺寸小于波长的1/50,屏蔽性能为30dB。 ——示例:要求屏蔽性能为20dB/1GHz(波长为300mm), 局部开孔最大尺寸应小于15mm。
机箱、机柜的电磁屏蔽
●塑料件屏蔽 ▲有两种方案:内侧喷涂导电漆或内衬薄金属片。 ▲喷涂导电漆用于屏蔽性能小于15dB/1GHz场合。推荐 选用Ag/Cu颗粒导电漆,其性价比较合适。 ▲塑料盒体与盒盖间接缝的屏蔽: ——方式1:盒体盒盖利用塑料件自身弹性保证缝隙接 触,通过几个螺钉连接。简便,但难于保证缝隙的可靠 接触,屏蔽性能不超过10dB/1GHz。 ——方式2:接缝处增加屏蔽材料,在盒体盒盖压紧后 提供良好的屏蔽效果。其性价比良好。 ——方式3:盒体内侧固定的不锈钢片与盒盖(已喷涂 导电漆)的内侧接触。屏蔽性能可达20dB/1GHz。
机箱、机柜的电磁屏蔽
▲目前广为应用的各种屏蔽辅助材料,如导电衬 垫、屏蔽网板、屏蔽玻璃、屏蔽电缆、射频接插 件等的屏蔽效能,一般在60~70dB,甚至更低。 ▲低频磁场屏蔽效能难以做得很好,例如,双层 钢板磁屏蔽,在50Hz时大约只能有20dB~30dB。 ●双重屏蔽:可提高设备的性/价比和抗腐蚀性。 ▲如单层机壳达不到屏蔽要求,可在壳内再对高 电平单元或低电平单元,机箱第二重屏蔽。 ▲第二重屏蔽体内电路的工作,可以通过外面的 低频(或直流)信号控制,或通过键盘、轨迹球 等深度实施控制。
电磁场理论中的电磁干扰与屏蔽技术
电磁场理论中的电磁干扰与屏蔽技术电磁干扰是指电磁场中的能量传播过程中,由于各种原因产生的不受控制的能量扩散,从而对电子设备的正常工作产生不良影响。
在现代社会中,电子设备的广泛应用使得电磁干扰问题变得日益突出。
为了解决这一问题,人们不断研究电磁干扰的原理和屏蔽技术,以保证电子设备的可靠性和稳定性。
在电磁场理论中,电磁干扰主要分为辐射干扰和导入干扰两种类型。
辐射干扰是指电子设备本身产生的电磁辐射对周围其他设备产生的干扰,而导入干扰则是指外部电磁场对电子设备的干扰。
为了解决辐射干扰问题,人们通常采用屏蔽技术,即在电子设备周围建立一个屏蔽体,将电磁辐射能量吸收或反射,以减少对周围设备的干扰。
常见的屏蔽材料包括金属、导电涂料和金属纤维等,它们具有良好的导电性和电磁波吸收性能,能够有效地屏蔽电磁辐射。
然而,屏蔽技术并不能完全解决电磁干扰问题。
导入干扰是一种更为复杂的干扰形式,它不仅受到电子设备本身的电磁屏蔽能力的限制,还受到外部电磁场的影响。
为了解决导入干扰问题,人们需要对电磁场进行精确的测量和分析,并采取相应的措施进行干扰抑制。
常见的干扰抑制技术包括滤波技术、隔离技术和接地技术等。
滤波技术是指通过滤波器对电磁信号进行处理,将干扰信号滤除或衰减到可接受的范围内。
滤波器通常由电容、电感和电阻等元件组成,通过选择合适的元件参数和电路拓扑结构,可以实现对特定频率范围内的信号进行滤波。
隔离技术是指通过隔离器将受干扰设备与干扰源之间的电磁耦合降低到最低限度。
隔离器通常由电磁屏蔽材料制成,能够有效地隔离电磁场的传播。
接地技术是指通过良好的接地系统,将设备的地电位与周围环境的地电位保持一致,减少因地电位差引起的干扰。
除了滤波技术、隔离技术和接地技术,还有一些其他的电磁干扰抑制技术,如电磁屏蔽材料的优化设计、电磁兼容性设计和电磁辐射测试等。
电磁屏蔽材料的优化设计是指通过调整材料的物理性质和结构,提高其屏蔽性能。
电磁兼容性设计是指在电子设备的设计过程中,考虑到电磁干扰和抗干扰的问题,采取合适的措施降低干扰水平。
电磁兼容EMC中的屏蔽技术介绍
电场,磁场,电磁场的屏蔽其实是不同的!磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题.根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆.静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础.因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论.(一)封闭导体壳内部电场不受壳外电荷或电场影响.如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电.静电平衡时壳内无电场.这不是说壳外电荷不在壳内产生电场,根发电场.由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零.因而导体壳内部不会受到壳外电荷q或其他电场的影响.壳外壁的感应电荷起了自动调节作用.如果把上述空腔导体外壳接地,则外壳上感应正电荷将沿接地线流入地下.静电平衡后空腔导体与大地等势,空腔内场强仍然为零.如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场.这时因空腔内壁有异号感应电荷,因此空腔内有电场.此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响.由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响. (二)接地封闭导体壳外部电场不受壳内电荷的影响.如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在,此电场可以说是由壳内电荷q间接产生.也可以说是由壳外感应电荷直接产生的.但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零.可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地.这与第一种情况不同.这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电.假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷.②实际应用中金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果,虽然这种屏蔽并不是完全、彻底的.③在静电平衡时,接地线中是无电荷流动的,但是如果被屏蔽的壳内的电荷随时间变化,或者是壳外附近带电体的电荷随时间而变化,就会使接地线中有电流.屏蔽罩也可能出现剩余电荷,这时屏蔽作用又将是不完全和不彻底的.总之,封闭导体壳不论接地与否,内部电场不受壳外电荷与电场影响;接地封闭导体壳外电场不受壳内电荷的影响.这种现象,叫静电屏蔽.静电屏蔽有两方面的意义:其一是实际意义:屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响.有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳.又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用.在高压带电作业中,工人穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用.在静电实验中,因地球附近存在着大约100V/m的竖直电场.要排除这个电场对电子的作用,研究电子只在重力作用下的运动,则必须有eE<meg,可算出e<="" span=""style="overflow-wrap: break-word; margin: 0px; padding: 0px; box-sizing: border-box;"></meg,可算出e其二是理论意义:间接验证库仑定律.高斯定理可以从库仑定律推导出来的,如果库仑定律中的平方反比指数不等于2就得不出高斯定理.反之,如果证明了高斯定理,就证明库仑定律的正确性.根据高斯定理,绝缘金属球壳内部的场强应为零,这也是静电屏蔽的结论.若用仪器对屏蔽壳内带电与否进行检测,根据测量结果进行分析就可判定高斯定理的正确性,也就验证了库仑定律的正确性.最近的实验结果是威廉斯等人于1971年完成的,指出在式F=q1q2/r2±δ中,δ<(2.7±3.1)×10-16,可见在现阶段所能达到的实验精度内,库仑定律的平方反比关系是严格成立的.从实际应用的观点看,我们可以认为它是正确的.静磁屏蔽静磁场是稳恒电流或永久磁体产生的磁场.静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场.它与静电屏蔽作用类似而又有不同.静磁屏蔽的原理可以用磁路的概念来说明.如将铁磁材料做成截面如图7的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中.这可以把铁磁材料与空腔中的空气作为并联磁路来分析.因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少.这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的.材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著.因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽.静磁屏蔽在电子器件中有着广泛的应用.例如变压器或其他线圈产生的漏磁通会对电子的运动产生作用,影响示波管或显像管中电子束的聚焦.为了提高仪器或产品的质量,必须将产生漏磁通的部件实行静磁屏蔽.在手表中,在机芯外罩以软铁薄壳就可以起防磁作用.前面指出,静电屏蔽的效果是非常好的.这是因为金属导体的电导率要比空气的电导率大十几个数量级,而铁磁物质与空气的磁导率的差别只有几个数量级,通常约大几千倍.所以静磁屏蔽总有些漏磁.为了达到更好的屏蔽效果,可采用多层屏蔽,把漏进空腔里的残余磁通量一次次地屏蔽掉.所以效果良好的磁屏蔽一般都比较笨重.但是,如果要制造绝对的“静磁真空”,则可以利用超导体的迈斯纳效应.即将一块超导体放在外磁场中,其体内的磁感应强度B永远为零.超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但目前还不能普遍应用.电磁屏蔽电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有电磁屏蔽,电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有其中μ和σ分别为屏蔽材料的磁导率和电导率.若电视频率f=100 MHz,对铜导体(σ=5.8×107/ ?m,μ≈μo=4π×10-7H/m)可求出d=0.00667mm.可见良导体的电磁屏蔽效果显著.如果是铁(σ=107/ ?m)则d=0.016mm.如果是铝(σ=3.54×107/ ?m)则d=0.0085mm.为了得到有效的屏蔽作用,屏蔽层的厚度必须接近于屏蔽物质内部的电磁波波长(λ=2πd).如在收音机中,若f=500kHz,则在铜中d=0.094mm(λ=0.59mm).在铝中d=0.12mm(λ=0.75mm ).所以在收音机中用较薄的铜或铝材料已能得到良好的屏蔽效果.因为电视频率更高,透入深度更小些,所需屏蔽层厚度可更薄些,如果考虑机械强度,要有必要的厚度.在高频时,由于铁磁材料的磁滞损耗和涡流损失较大,从而造成谐振电路品质因素Q值的下降,故一般不采用高磁导率的磁屏蔽,而采用高电导率的材料做电磁屏蔽.在电磁材料中,因趋肤电流是涡电流,故电磁屏蔽又叫涡流屏蔽.在工频(50Hz)时,铜中的d=9.45mm,铝中的d=11.67mm.显然,采用铜、铝已很不适宜了,如用铁,则d=0.172mm,这时应采用铁磁材料.因为在铁磁材料中电磁场衰减比铜、铝中大得多.又因是低频,无需考虑Q值问题.可见,在低频情况下,电磁屏蔽就转化为静磁屏蔽.电磁屏蔽和静电屏蔽有相同点也有不同点.相同点是都应用高电导率的金属材料来制作;不同点是静电屏蔽只能消除电容耦合,防止静电感应,屏蔽必须接地.而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地.但因用作电磁屏蔽的导体增加了静电耦合,因此即使只进行电磁屏蔽,也还是接地为好,这样电磁屏蔽也同时起静电屏蔽作用.。
电磁屏蔽PPT课件
3
电磁屏蔽原理
通过金属网和导电涂料将电磁波反射、吸收和传 播控制,减少电磁波对计算机房内设备和数据的 影响。
高压设备电磁屏蔽
高压设备电磁屏蔽
01
保护高压设备免受电磁干扰,确保设备安全运行。
电磁屏蔽材料
02
金属网、导电涂料等。
电磁屏蔽原理
03
利用金属网和导电涂料将电磁波反射、吸收和传播控制,减少
04 电磁屏蔽的应用
电子设备电磁屏蔽
电子设备电磁屏蔽
保护电子设备免受电磁干扰,确保设备正常工作。
电磁屏蔽材料
金属、导电塑料等。
电磁屏蔽原理
利用导电材料将电磁波反射、吸收和传播控制, 减少电磁波对电子设备的干扰。
计算机房电磁屏蔽
1 2
计算机房电磁屏蔽
保护计算机房内的设备和数据免受电磁干扰。
电磁屏蔽材料效果。导电塑料通过添加导电填料使塑料具有 导电性能,成本较低且易于加
工。
导电布料
金属纤维混纺布料
以金属纤维和棉、麻等纤维混 纺而成,具有较好的导电性能
和舒适性。
镀金属布料
在布料表面镀上一层金属膜, 使其具有电磁屏蔽效果。
导电织物
通过将导电纤维编织成织物, 具有良好的电磁屏蔽效果和舒 适性。
导电无纺布
电场屏蔽技术
电场屏蔽
通过采用导电性能良好的 材料(如金属、铜等)来 阻挡或减小电场的影响。
电场屏蔽原理
利用导电材料将电场吸收、 反射和引导到安全区域, 从而保护电子设备和人员 免受电场干扰。
电场屏蔽材料选择
需选用高导电性能的材料, 如金属网、金属板等。
磁场屏蔽技术
磁场屏蔽
磁场屏蔽材料选择
电磁屏蔽原理PPT课件
s
Z
g
)
U
g
Ug的影响可通过减小电容(如:可使骚扰源与接收器尽量远)来减 弱。
第7页/共18页
• 有屏蔽
Ug对Zs的影响会变得复杂起来(分 析中可以略去C3)
Ug在屏蔽体上感应的电压:
U1
1
jC1Z s jC1(Z1
Zg )Ug
U1对Zs的作用电压:
Us
1
jC2 Z s jC2 (Z1损耗小,产生的涡流强。 • 厚度:由于高频集肤效应,高频一般无需从屏蔽的角度考虑厚度,实
际一般去0.2 ~ 0.8mm。 • 缝隙:在垂直涡流方向一般不用有缝隙或开口。一般不应大于波长的
1/50 ~ 1/100。 • 接地:一般无影响,但考虑到同时要电屏蔽时,则应对屏蔽体接地。
<15>
• 导体内电场为零。 • 表面电场与导体表面垂直。 • 整个导体等位。 • 电荷分布于导体表面。
<4>
第4页/共18页
基于前面静电性质,可用空腔结构来进行屏蔽。
•对于外部电场影响:当屏蔽体 完全封闭时,无论空腔屏蔽体 是否接地,屏蔽体内部的外电 场均为零。
•对于内部电场影响:将空腔屏 蔽体接地,使空腔屏蔽体外电 荷通过导线进入接地面,消除 屏蔽体外部电场。
<12>
第12页/共18页
对于外 部磁场 影响
对于内 部磁场 影响
高频磁场屏蔽
对于高频磁场屏蔽需要采用低电阻率 的良导体(如:铜、铝等)。
当高频磁场穿过良导体时,会在金属板中形成感应电动势,进而产 生涡流。由涡流产生的反向磁场将抵消穿过金属的原磁场,涡流产 生的反向磁场会增加金属侧向的磁场,从而表现为磁力线绕过金属。
电磁兼容第六章屏蔽PPT课件
fr ZS
将导体的波阻抗公式带入,可得:
σr Re = 322 + 10 lg μrf 3r 2
dB dB
对于实际的电场源,除了产生电场之外,还会产生一小部 分磁场分量,所以屏蔽体对这种场源的反射损耗就介于电场 损耗曲线和平面波损耗曲线之间。
六、磁场的反射损耗
点电场源的波阻抗在r</λ2π的条件下,可以表示为:
七、反射损耗通用计算公式
通过上面分析,我们可以归纳出一个通用的反射损耗计算公 式:
ZW m = 2πrfμ
式中:r为屏蔽体到源的距离,单位:m;μ为导磁率。
将它带入反射损耗公式,可得:
2πrfμ
Rm = 20 lg
dB
4 ZS
自由空间中:
1.97 ×10 6 rf
Rm = 20 lg
dB
ZS
将导体的波阻抗公式带入,可得:
fr 2σr
Rm = 14.6 + 10 lg
dB
μr
如果使用这个公式计算反射损耗R,如果得出负值,应当使 用0来代替。产生错误的原因是我们在推导这个公式时,假设 Z1>>Z2,但是实际上这个条件已经不成立了。当R=0时,上面 公式的误差为3.8dB。
0.1kHz
1MHz 100MHz
五、电场的反射损耗
点电场源的波阻抗在r</λ2π的条件下,可以表示为:
1 ZW e =
2πrfε
式中:r为屏蔽体到源的距离,单位:m;ε为介电常数。
将它带入前面的反射损耗公式,可得:
1
Re = 20 lg
dB
8πrfε ZS
自由空间中:
4.5 ×109
Re = 20 lg
电磁屏蔽技术大全
电磁屏蔽的作用原理是屏蔽体对电磁能量的反射、 吸收和引导作用,而这些作用与屏蔽结构表面和屏蔽体 内所感应的电荷、电流及极化现象密切相关。 屏蔽效能 屏蔽效能定义为在电磁场中同一地点无屏蔽存在 时电磁场强度与加屏蔽体后的电磁场强度之比,用 SE表示
SE
E E
0 S
或SE
H H
0 S
式中, 0 、 分别为无屏蔽使某点的电场强度和磁场 E H 强度; s 、 分别表示屏蔽后同一点的电场强度和磁 E H 场强度。
波阻抗的变化 在近场区内,特定电场波的波阻抗随距离而变 化。如果是电场波,随着距离的增加,波阻抗降低, 如果是磁场波,随着距离的增加,波阻抗升高。在 远场区,波阻抗保持不变。
注意:近场区和远场区的分界面随频率的不同而不 同,不是一个定数,这在分析问题时要注意。例如, 在考虑机箱的屏蔽时,机箱相对与线路板上的高速 时钟信号而言,可能处于远场区,而对于开关电源 较低的工作频率而言,可能出于近场区。后面会看 到,在近场区设计屏蔽时,要分别考虑电场屏蔽和 磁场屏蔽。
交变屏蔽的机理: 1)感应涡流理论,高频干扰电磁场在中屏蔽体 内会产生 涡流,涡流产生的磁场对高频干扰电磁场有抵 消/削弱的作用。 2)电磁场理论,分析电磁屏蔽原理和效能的经典理论。 3)传输线理论,它是根据这样一个事实:电磁波在金 属 屏蔽体中传播的过程与行波在传输线中传播的过程 很相似。因此,可用传输线方程来对电磁屏蔽机理做等 效分析计算。
电场为主 E 1 / r ,H 1 / r
3 2
平面波E 1 / r,H 1 / r
377
磁场为主 H 1 / r ,E 1 / r
3 2
0
/ 2
图2-9 波阻抗
电磁屏蔽原理PPT课件
l Rm S
<11>
通常,由于铁磁材料的磁导率比空气的磁导率大得多,所以铁磁材料 的磁阻很小。将铁磁材料置于磁场中时,磁通将主要通过铁磁材料, 通过外部的磁通相对较小,从而起到磁场屏蔽的作用。
低频磁场的屏蔽原理:利用铁磁材料的高磁导率对骚扰磁场进行分路。
<12>
对于低频磁场屏蔽主要考虑如下几个问题: • 所用铁磁材料的磁导率越高、受磁面积越
5.1 电磁屏蔽原理
<1>
屏蔽(Shielding)就是用由导电或导磁材料制成的金属屏蔽体将 电磁骚扰源限制在一定的范围内,使骚扰源从屏蔽体的一面耦合 或辐射到另一面时受到抑制或衰减。
屏蔽的目的是采用屏蔽体包围电磁骚扰源,以抑制电磁骚扰源对 其周围空间存在的接收器的干扰,或采用屏蔽体包围接收器,以 保护、避免骚扰源对其进行干扰。
• 导体内电场为零。 • 表面电场与导体表面垂直。 • 整个导体等位。 • 电荷分布于导体表面。
<5>
基于前面静电性质,可用空腔结构来进行屏蔽。
•对于外部电场影响:当屏蔽体 完全封闭时,无论空腔屏蔽体 是否接地,屏蔽体内部的外电 场均为零。
•对于内部电场影响:将空腔屏 蔽体接地,使空腔屏蔽体外电 荷通过导线进入接地面,消除 屏蔽体外部电场。
大,则磁阻越小,磁屏蔽效果越好。
• 缝隙切割磁力线会增大磁阻,则用铁磁材 料作的屏蔽罩,在垂直磁力线方向不应开 口或有缝隙。
• 高频时铁磁材料的磁损耗(包括:磁滞和 涡流损耗)较大,导磁率降低,则不能用 于相应屏蔽。
对于外 部磁场 影响
对于内 部磁场 影响
<13>
高频磁场屏蔽
对于高频磁场屏蔽需要采用低电阻率 的良导体(如:铜、铝等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 原理: • 二次场理论(一次场作用下,产生极化、磁化形成二次场); • 反射衰减理论
电磁屏蔽技术
4. 屏蔽的分类(按工作原理)
• 电场屏蔽:静电屏蔽、低频交变电场屏蔽(利用良好接地 的金属导体制作)
• 磁场屏蔽:静磁屏蔽、低频交变磁场屏蔽(利用高导磁率 材料构成低磁阻通路)
• 电磁屏蔽:用于高频电磁场的屏蔽(利用反射和衰减来隔 离电磁场的耦合)
电磁屏蔽技术
磁场屏蔽 1.原理 • 低频磁场屏蔽(f < 100kHz)
利用高导磁率的铁磁材料(如 铁、硅钢片、坡莫合金),对干扰 磁场进行分路。
• 高频磁场屏蔽
利用低电阻的良导体中形 成的涡电流产生反向磁通抑 制入射磁场。
反磁场 高频磁场
涡流 金属板
电磁屏蔽技术
2.屏蔽效能计算 • 解析方法:圆柱腔、球壳的屏蔽效能计算 • 近似方法:应用磁路的方法。
外磁场 H 0 的磁标位 Um0H0rcos
r<a
Um1A1rcos
arb Um2 (A2rBr2)cos
rb
Um3(H0rBr3)cos
b
a
H0
电磁屏蔽技术
边界条件:
r a时,Um1 Um2
0
Um1 r
Um2
r
r b 时,Um2 Um3
解得:A1b2(r 41)2rb2aH 20(r 1)2
Um2
H 1 U m 1exb 2(r 4 1 )2 rb 2 a H 20 (r 1 )2exH 1
电磁屏蔽技术
屏蔽效能
S E 2 0 lgH 0 2 0 lg(r 2 1 )(p 1 ) 2r(p 1 )
H 1
4rp p b2 / a2
若 r , 1则
S E 2 0 lgr (p 1 ) 2 (p 1 ) 2 0 lgr ( 1 1 /p ) 2 ( 1 1 /p )
如:长为l 、横截面为 S 的一段屏蔽材料,则其磁阻为
磁压降: U m Hl
磁通:BSHS
磁阻:
Rm
Um
l
S
Um
H
电磁屏蔽技术
(1) 圆柱形腔的磁屏蔽效能
内半径为a 、外半径为b,磁导率为 ,外加均匀磁场 H 0
方法:磁标位U m
U m 的方程
2U m1 r r(r U rm)r1 2 2 U 2 m0
电磁屏蔽技术
电场屏蔽 • 电场屏蔽的作用:防止两个设备(元件、部件)间的电容性
耦合干扰 • 分类:静电屏蔽、低频交变电场屏蔽 1. 静电屏蔽 • 原理:静电平衡 • 要求:完整的屏蔽导体和良好接地
电磁屏蔽技术
2. 低频交变电场屏蔽 目的:抑制低频电容性耦合干扰 分析方法:应用电路理论分析
(1)未加屏蔽 UN0C C SR S0 R0 U C SR1C U RS /CSR0
S US ~
CSR0 R
CR
UN0
未加屏蔽的耦合
CSR1
C1 S
C2 R
US ~ Up
CR C3
加屏蔽的耦合
(2) 加屏蔽(忽略CSR1的影响)
UN1
UpC1C3C C 21C URS/(C2CR)
UN1C C 22 UC PR
UP 1CR/C2
电磁屏蔽技术
讨论:(1)屏蔽体不接地,若 C3 C1、 C 2C R/(C 2C R)C 1
3R
• 非球形腔体的屏蔽效能
SE20lg(12rt)
3Rc
等效半径:
Rc
3
3V
4
0.623 V
(V——屏蔽体的体积)
电磁屏蔽技术
例:长方体屏蔽盒尺寸为:150200200m m 3 、壁厚 t 2mm。
UpC1C3C C 21C URS/(C2CR)
Up US
UN1C C 22 UC PR
UP 1CR/C2
UN1C C 22 U C SR1C1R/C2US
(2)屏蔽体接地
C3
U N1 0
C1 S US ~
CSR1
C2 R
CR
UN1
屏蔽体接地
电磁屏蔽技术
(3)屏蔽体接地时,CSR1的影响
CSR
r
0
Um3 r
A2b2(r2 (1r)21)ab22(H 0 r 1)2
B2b2(2r(r1)21)aa22b(2H r01)2
B3b(2(r2r11))(2a 2 a2 b(2)br2H 1)02
故
U m 1 b 2 (r 4 1 ) 2 r b 2 a H 2 0 (r 1 ) 2 r c o s b 2 (r 4 1 ) 2 r b 2 U a 2 m ( 0r 1 ) 2
UN1C2 C C SR R 1U SCSR1C C 2SR 1U C SR
US ~
C2 CR 等效电路
UNP
• 屏蔽效能: SE(dB) 20lg UN0 UN1
电磁屏蔽技术
电场屏蔽的设计要点 • 屏蔽体的材料以良导体为好,对厚度无什么要求 • 屏蔽体的形状对屏蔽效能有明显的影响 • 屏蔽体要靠近受保护的设备 • 屏蔽体要有良好的接地
电磁屏蔽技术
电磁干扰抑制的屏蔽技术
概述 电屏蔽 磁屏蔽 电磁屏蔽 孔缝对屏蔽效能的影响 电磁密封处理 屏蔽设计要点
电磁屏蔽技术
概述 1. 屏蔽的含义:
• 用导电或导磁材料制成的屏蔽体将 电磁干扰能量限制在一定范围内。
电子设备
2. 目的: • 限制内部能量泄漏出内部区域 (主动屏蔽) • 防止外来的干扰能量进入某一区域(被动屏蔽)
4 p
4
令 t b、a R(ab)/2 ,若t~0,即 a2 b2 R2
则 S E 2 0 lg 4 r ( 2 4 R t/a 2 ) 2 0 lg ( 1 2 r a R 2 t) 2 0 lg ( 1 2 R r t)
电磁屏蔽技术
• 球形腔体的屏蔽效能 SE20lg(12rt)
电磁屏蔽技术
5. 屏蔽效能( SE ) 屏蔽效能:屏蔽体的性质的定量评价。
定义:电屏蔽效能源自SE E0 或磁屏蔽效能
E1
SE(dB) 20logE0 E1
S E H 0 或 SE(dB)20logH0
H1
H1
E0、H0 —— 未加屏蔽时空间中某点的电(磁)场;
E1、H1—— 加屏蔽后空间中该点的电(磁)场;
电磁屏蔽技术
衰减量与屏蔽效能的关系
无屏蔽场强 10 100
1000 10000 100000 1000000
有屏蔽场强 1 1 1 1 1 1
屏蔽效能 SE(dB) 20 40 60 80 100 120
电磁屏蔽技术
屏蔽效能的要求
机箱类型 民用产品 军用设备 TEMPEST设备 屏蔽室、屏蔽舱
屏蔽效能 SE(dB) 40以下 60 80 100以上