工业热电偶热电阻与温度采集模块的搭配使用

工业热电偶热电阻与温度采集模块的搭配使用
工业热电偶热电阻与温度采集模块的搭配使用

在工业生产热电偶/热电阻与温度采集模块的搭配使用

在工业农业生产以及日常生活当中,关于温度的控制测量都一直是有着比较重要的作用,它是基础的环境参数,同时也表示着物体冷却程度的物理量,用模拟传感器所得到的温度信息是模拟量,并不适用于单片机的处理,所以转换器的作用完全在这里被发挥出来了。一般情况下典型的温度测量控制系统就是由温度采集模块诚控电子DAM-3088,显示电路还有反馈控制电路来构成的,而温度的采集是温度测量控制的前提,所以简单可行的温度采集系统则是温度测量以及控制系统的发展方向其中一个,也就是说有个简单可行的温度采集模块是很重要的。温度采集模块需要跟热电偶热电阻等传感器配套才可以进行正确的使用,所以在选择传感器的时候也多多留心,因为热电偶/热电阻直接输出的模拟量幅度一般都是比较低的,而且要是为了可以更好地提高系统的抗干扰能力,就需要在传感器的后端进行调理,调理电路通常是选用运算放大器来完成的。诚控电子的DAM-3088/DAM-3063可以直接将热电偶/热电阻输出的信号转换为温度值,通过串口或RS485传输给上位机和PLC

如果传感器的特性不一样就不能使用,需要更换传感器或者是采集模块,对于电阻型温度传感器测量,也可以采用电阻测量模块或者电压测量模块,测量的结果上传到上位机之后再通过软件变换,得到对应的问题,具体方法其实是可以采用查表法或分段标定法结合分段线性化法。温度采集模块量程不够,但测量值是可以修改的话,就可以用方法来试试,像如果传感器输出电压信号,先分压再输入到模块,假如传感器是电阻信号,可并联一个电阻降低阻值再输入到模块。但是通常遇到了温度采集模块量程不够就会因为想要解决问题,而将传感器换掉也是可以的。

工业控制行业中需要对现场模拟信号进行采集和处理,一般用于工业控制中的基本模拟信号采集模块有三类:电压或电流型模拟量信号输入模块如诚控电子DAM-6080、热电阻输入模块如、热电偶输入模块。热量表是计量热交换回路中释放热量的一种仪表,是国内供暖系统按热量收费改革后的主要计量器具,在整个系统中占据重要的作用。热量表计算热量时,需要采集进出水管道两路水的温度值和管道中水的流量值,然后代入热量计算公式计算,由此可见温度采集模块的计算效率,精度和准确率对热量表的整体性能具有重要影响。传统的热量表温度计算方法是由测量电压值得到电阻值,再由电阻值得到温度值,计算繁琐效率低下,而且温度传感器的分度表占用微处理器较大的存储空间。

嵌入式系统课程设计(基于ARM的温度采集系统设计) 精品

基于ARM的温度采集系统 1.1设计目的 1、注重培养综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练。 2、了解所选择的ARM芯片各个引脚功能,工作方式,计数/定时,I/O口,中断等的相关原理,并巩固学习嵌入式的相关内容知识。 3、通过软硬件设计实现利用ARM芯片对周围环境温度信号的采集及显示。 1.2设计意义 嵌入式系统是以应用为中心,以计算机技术为基础,且软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由以下几部分组成:嵌入式微处理器、外围硬件设备、嵌入式操作系统。嵌入式系统是面向用户、面向产品、面向应用的,它必须与具体应用相结合才会具有生命力、才更具有优势。因此嵌入式系统是与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的裁减利用。嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。嵌入式系统必须根据应用需求对软硬件进行裁剪,满足应用系统的功能、可靠性、成本、体积等要求。所以,如果能建立相对通用的软硬件基础,然后在其上开发出适应各种需要的系统,是一个比较好的发展模式。目前的嵌入式系统的核心往往是一个只有几K到几十K微内核,需要根据实际的使用进行功能扩展或者裁减,但是由于微内核的存在,使得这种扩展能够非常顺利的进行。 数据采集(DAQ),是指从传感器和其它待测设备等模拟和数字被测单元中自动采集非电量或者电量信号,送到上位机中进行分析,处理。数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据量测

热电偶信号检测

热电偶信号检测 一、系统组成: 信号放大模块的放大倍数为125,当K型热电偶温度达到1000℃时,输出的电压接近40mv,放大125倍后,电压接近5V。调整的方法为:40mv对应5V输出。 二、电压采集校准参数的设定: 对热电偶的采集,首先是对热电偶输出的电压信号采集,由于热电偶输出的电压信号非常微弱,因此需要放大。采集系统采集到放大后的电压值,通过校准换算为热电偶的输出毫伏信号。 根据公式:工程量=A+B*电压 由于采集板和调理模块S104都已经调零,所以A=0 当工程值=40mv时,电压值=5V,所以B=40/5000=0.008 这样就可以直接采集到mv信号。 软件操作方法: 主菜单\系统参数\通道属性配置\模拟量设置界面如下: 设定通道类型为K型热偶即可

三、低温补偿设定 在主菜单\系统参数\通道属性配置设置环境温度为当前环境温度,温度设定完成后,要求先退出程序,该参数只有进入程序才读取有效。 当正确设定环境温度后,当设定的通道类型为K型热偶时,就会自动增加该温度值。当设置通道类型为补偿K型热偶时,该参数不起作用。软件界面如下所示。 四、显示软件设定 在主菜单\显示\组合显示面板右击进行通道设置。

如上图所示,主菜单\显示\组合显示面板,显示组合面板,在组合面板上鼠标右击弹出菜单,选中顶层窗口,显示时自动显示等选项,并通过“定义显示格式及内容”进入设置功能,设置显示的行数与列数,并设置显示方式为块内平均值,设定各个通道的表示文字,就可以显示各个通道的结果了。 五、硬件连接及注意事项 在主菜单\显示\组合显示面板右击进行通道设置。 直流电源的+15伏接S104的+15伏电源;直流电源的-15伏接S104的-15伏电源;直流电源的地线接S104的AGND。 S104的AGND接采集系统的模拟地线。 S104的输出V1至V4分别接采集硬件的通道1至通道4。 热电偶的红端接S104相应通道的+端,热电偶的非红端接S104相应通道的-端。 当用户采用补偿方式时,软件选用的通道类型应该为“补偿K型热偶” 注意事项: 1、外部电源千万不要接错,连接好并确认后才能通电。 2、采集硬件的地线要求与S104共地。

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

K热电偶分度毫伏与温度换算表--实用.doc

K 型镍铬-镍硅(镍铬-镍铝)热电动势(mV)( JJG 351-84 )参考端温度为 0℃ 温度℃ 2 3 4 5 6 7 8 9 0 1 -50-1.889-1.925-1.961-1.996-2.032-2.067-2.102-2.137-2.173-2.208 -40-1.527-1.563-1.600-1.636-1.673-1.709-1.745-1.781-1.817-1.853 -30-1.156-1.193-1.231-1.268-1.305-1.342-1.379-1.416-1.453-1.490 -20-0.777-0.816-0.854-0.892-0.930-0.968-1.005-1.043-1.081-1.118 -10-0.392-0.431-0.469-0.508-0.547-0.585-0.624-0.662-0.701-0.739

-00-0.039-0.0790.118-0.157-0.1970.236-0.275-0.314-0.353 000.0390.0790.1190.1580.1980.2380.2770.3170.357 100.3970.4370.4770.5170.5570.5970.6370.6770.7180.758 200.7980.8380.8790.9190.960 1.000 1.041 1.081 1.122 1.162 30 1.203 1.244 1.285 1.325 1.366 1.407 1.448 1.489 1.529 1.570 40 1.611 1.652 1.693 1.734 1.776 1.817 1.858 1.899 1.940 1.981

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

基于arm的实时温度采集系统

目录 摘要 (2) 一、设计目的 (2) 二、设计要求 (2) 三、题目分析 (3) 四、设计方法及步骤 (4) 1、开发平台介绍 (4) 2、ds18b20的工作原理 (6) 3、ds18b20的驱动程序 (9) 4、QT界面设计 (13) 5、驱动的挂载和运行 (16) 五、设计总结 (17) 六、参考文档 (18)

摘要 近年来,随着计算机技术及集成电路技术的发展,嵌入式技术日渐普及,在通讯、网络、工控、医疗、电子等领域发挥着越来越重要的作用。嵌入式系统无疑成为当前最热门最有发展前途的IT应用领域之一。 实时温度采集系统是是将环境温度实时的进行采集并显示的系统,在现在的许多家用电器、工业控制、甚至是高科技领域都有应用,它已经普遍的融入了社会生活和生产之中,并且作为基础的系统,在今后的生活生产中并不会被淘汰,应用范围还会继续扩大,因此,掌握此系统是必要的。 关键词:arm Linux ds18b20 一、设计目的 1、熟悉嵌入式系统的整个开发流程,具备独立进行开发的能力; 2、熟悉Linux C,可以用Linux C编写驱动程序; 3、熟悉C++,具备初步人机界面编程的能力; 4、学习和掌握驱动的下载和烧写。 二、设计要求 在Samsung公司S3C2410处理器的开发板上,嵌入式linux系统环境下,设计温度实时采集系统,并设计显示界面。 1、设计温度实时采集系统,要求基于ARM9开发板,温度传感器可

以用ds18b20; 2、要求温度值精确到个位; 3、要求自己设计QT界面,并在界面上显示温度值。 三、题目分析 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案。 美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持"一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

热电偶测温不准解决方案总结

热电偶测温不准解决方案 总结 Prepared on 22 November 2020

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。

◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级信 号,因此很容易在传到中控时受到干扰,此类故障极容易造成电荷在 信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释: 要了解热电偶的温度补偿问题,就要从热电偶的原理作手,对于已选定的热电偶,当参比端温度恒定时,则总的热电动势就成测量端温度的单值函数。即一定的热电势对应着一定的温度,而热电偶的分度表中,参比端温度均为0度。但在应用现场,参比端温度千差万别,不可能都恒定在0度,这就会产生测量误差,这就是热电偶要进行温度补偿的原因。由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。 热电偶测温使用补偿线时,必须注意以下几点: 1.补偿导线必须与相应型号的热电偶配用;

基于51单片机的温度采集系统

天津工业大学 电子与信息工程学院《计算机控制技术》专题实践报告题目:温度采集系统设计 专业:电子信息工程 班级:电子1601 姓名:江育武 学号:1610910113

目录 1.研究现状 ................................................................................................. 错误!未定义书签。 2.设计目的 ................................................................................................. 错误!未定义书签。 3.功能描述 ................................................................................................. 错误!未定义书签。 4.技术指标 ................................................................................................. 错误!未定义书签。 5.硬件设计 ................................................................................................. 错误!未定义书签。 5.1 结构................................................................................................. 错误!未定义书签。 5.2 最小系统......................................................................................... 错误!未定义书签。 5.2.1 主芯片...................................................................................... 错误!未定义书签。 5.2.2 复位电路 (1) 5.2.3 时钟电路 .................................................................................. 错误!未定义书签。 5.2.4 电源电路 .................................................................................. 错误!未定义书签。 5.2.5 下载电路 .................................................................................. 错误!未定义书签。 5.2.6 LED电路 .................................................................................... 错误!未定义书签。 5.3 相关硬件模块 ................................................................................. 错误!未定义书签。 5.3.1 LED模块 .................................................................................... 错误!未定义书签。 5.3.2 按键模块 .................................................................................. 错误!未定义书签。 5.3.3 蜂鸣器模块 .............................................................................. 错误!未定义书签。 5.3.4 USB串口模块 ........................................................................... 错误!未定义书签。 6.软件设计 ................................................................................................. 错误!未定义书签。 6.1 IAP设计............................................................................................ 错误!未定义书签。 6.1.1 Bootloader程序........................................................................ 错误!未定义书签。 6.2 APP程序........................................................................................... 错误!未定义书签。 6.2.1 跑马灯程序 .............................................................................. 错误!未定义书签。 6.2.2 蜂鸣器程序 .............................................................................. 错误!未定义书签。 6.3 APP实现与配置............................................................................... 错误!未定义书签。 6.3.1 APP程序起始地址设置............................................................ 错误!未定义书签。 6.3.2 中断向量表偏移量设置 .......................................................... 错误!未定义书签。 6.3.3 xxx.bin文件生成....................................................................... 错误!未定义书签。 6.4 uC/OS III ............................................................................................ 错误!未定义书签。 6.5 任务划分......................................................................................... 错误!未定义书签。

多路高精度热电偶采集板研制

第28卷第1期2011年1月 机电工程 Journal of Mechanical &Electrical Engineering Vol.28No.1Jan.2011 收稿日期:2010-06-09 作者简介:袁建挺(1986-),男,浙江慈溪人,主要从事智能仪表与控制装置,嵌入式系统方面的研究.E-mail :yuanouwen@sina.com 通信联系人:姜周曙,男,教授,硕士生导师.E- mail :jzs@hdu.edu.cn 多路高精度热电偶采集板研制 袁建挺,姜周曙* ,黄国辉 (杭州电子科技大学自动化学院,浙江杭州310018) 摘要:为了满足工业应用现场多点测温的需求,研制了16路热电偶高精度数据采集板。选取ADI 公司的高性能芯片AD μC834作为主芯片,利用其片上24位∑-Δ型A /D 、外部高精度参考电压模块,结合信号调理电路和下位机软件的设计,实现了高精度数据采集。采用多路转换芯片,可实现了16路采集通道间的切换。采用热电阻PT100传感器采集热电偶冷端温度实现冷端补偿。实验结果表明,该采集板具有多通道、精度高、成本低、测温范围宽、操作简单等优点。关键词:AD μC834;热电偶;16路;冷端补偿;高精度中图分类号:TH811;TP274 文献标志码:A 文章编号:1001-4551(2011)01-0087-03 Development of multi-channel high-accuracy thermocouple acquisition-board YUAN Jian-ting ,JIANG Zhou-shu ,HUANG Guo-hui (School of Automation ,Hangzhou Dianzi University ,Hangzhou 310018,China ) Abstract :In order to meet the requirement that industrial field need to measure lots of temperatures ,16-channels high-accuracy thermocou-ple acquisition-board was developed ,the AD μC834chip made by ADI Corporation was chased as main chip.By using the on-chip 24bit ∑-Δtype A /D ,external high-accuracy reference-voltage module ,combined with the rational design of signal conditioning circuit and MCU pro-gram ,the high-accuracy acquisition was realized.Multi-channel conversion chip could switch 16channels.To realize cold junction compen-sation ,thermal resistance PT100was used to acquire the cold-side temperature.The experiments show that the acquisition-board has the merits of multi-channel switch ,high-accuracy ,low cost ,wide metrical range of temperature ,simple operation ,etc..Key words :AD μC834;thermocouple ;16-channels ;cold junction compensation ;high-accuracy 0引言 随着工业的不断发展,测温技术越来越多地应用在化工、冶金、机械、食品等行业,在生产过程中有极其重要的地位。工业测温元件主要有热敏电阻、热电阻和热电偶等。热电偶作为工业上最常用的温度检测元件之一,它主要有测量精度高、测量范围广、构造简单、使用方便等特点。 很多工业现场都需测量多个温度点,为此,笔者研究开发了16路热电偶高精度采集板。该采集板采用了美国ADI 公司AD μC834芯片作主芯片,利用片上24位的∑-Δ型A /D 和外部高精度参考源,用热电阻 PT100传感器实现热电偶的冷端补偿,结合单片机程序的合理设计,可实现16路热电偶高精度采集。 1硬件电路设计 采集板选用的核心芯片是美国ADI 公司生产、内含 24位A /D 转换器的SoC 芯片—AD μC834。AD μC834是全集成的高性能数据采集系统,内部集成了200μA 恒流源和2路独立的高精度(16位和24位)∑-Δ型A /D ,体积小,功耗低,非常适用于各类智能仪表。AD μC834芯片有3个主要的优点:率先集成了精密ADC 、DAC 及快闪存储器于微转换器中,这一特点特别适合于测控系统和仪表;用RS232或一根口线实现

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

嵌入式温度采集系统

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式温度采集系统设计 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 本设计是基于嵌入式技术作为主处理器的温度采集系统,辅以单独的数据采集模块采集数据,实现了智能化的温度数据采集、传输、处理与显示等功能,并讨论了如何提高系统的速度、可靠性和可扩展性。 温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。在整个宇宙当中,温度无处不存在。湿度表示气体中的水蒸汽含量,有绝对湿度和相对湿度两种表示方法。总之,环境温湿度的检测与调节仪器的设计和开发具有非常大的市场前景和实用价值。 嵌入式系统是一般由嵌入式微处理器,外围硬件设备,嵌入式操作系统,用户应用程序四个部分组成。用于实现对其他设备的控制,监视或管理等功能。嵌入式系统已经广泛已经广泛应用于科学研究,工业控制,军事技术,交通通信,医疗卫生,消费娱乐等领域,人们常用的手机,PDA,汽车,智能家电,GPS等均是嵌入式系统的典型代表。本设计将其中对温湿度的读取是利用CC2530的I/O (P1.0和P1.1)模拟一个类IIC的过程。对光照的采集使用内部的AIN0通道。 关键词: 温度,湿度,嵌入式,CC2530,SHT10

目录 一、前言 (1) 二、基本原理 (2) 2.1 CC2530 结构及实现原理 (2) 2.2 SHT10结构及实现原理 (4) 三、系统分析 (7) 3.1程序流程图 (7) 3.2 软件子系统设计 (8) 四、实验结果及分析 (11) 4.1 湿度采集 (11) 4.1.1 湿度采集试验结果 (11) 4.1.2 结果分析 (11) 4.2 温度采集 (12) 4.2.1 湿度采集实验结果 (12) 4.2.2 结果分析 (12) 五、结论 (13) 六、参考文献 (14) 致谢 (15)

热电偶

热电偶非线性讨论及分度表的解读 摘要:热电偶的传感特性是非线性的,这种非线性直接影响到温度的测量精度,所以必须对其非线性传感特性进行建模和辨识。目前对热电偶非线性辨识的方法主要有:硬件补偿、多项式拟合法、神经网络法、支持向量机法等。采用硬件补偿需要增加模拟电路,从而产生温漂、增益和误差,同时也提高了测试系统的成本;采用多项式拟合需要较长的计算时间;查表法虽然较快,但是并不是很准确。上述方法不能满足高精度的温度测量和控制要求。本文主要介绍几种非线性补偿方法,如:查表法,曲线拟合法,多项式拟合法等。 为了在电势和需要的温度值之间搭建一座桥梁,从而完成温度值和电势值之间的转换。国家标准规定了部分仪器热电势与温度的关系和允许误差,并统一的绘制成表格的形式,即分度表,得到了分度表以后,需要进一步了解其原理及表达信息,因此通过解读分度表得到需要的温度和热电势相关信息。 关键词:非线性,热电势,查表发,曲线拟合法,分度表解读,工作温度,温度电压转换。

引言:在大量的热工仪器中,热电偶作为温度传感器,得到了广泛使用。它是利用热电效应来进行工作的,其热电势率一般为几十到几μV/0℃。它直接和被测对象接触,不受中间介质的影响,因而测量精度高,并且可以在-200~+1600℃范围内进行连续测量,甚至有些特殊热电偶,如钨—铼,可测量高达+2800℃的高温,且构造简单,使用方便。基于如上优点,热电偶在温度测量领域得到了广泛的应用。 随着科学技术的发展,传感器的作用越来越显著,它是实现自动检测和控制的首要环节]。热电偶是目前应用广泛技术完善的温度传感器,它在很多方面都具备了一种理想温度传感器的条件。它的测温是基于热电效应,即在两种不同的导体(或半导体)组成的闭合回路中,如果它们两个结点的温度不同,则回路中产生一个电动势。得到的都是电势值,而作为测温系统要得到的显然是温度值。由此产生了分度表一种包含温度和电势关系的表格)。

温度测量方法

温度测量方法 温度是度量物体热平衡条件下冷热程度的物理量,它反映了物体内部微粒无规则运动的平均动能,是国际单位制中的7个基本物理量之一。由于在很多情况下,不能直接测量,故是种特殊量。自然界中,很多物质的物理属性以及众多的物理效应均与温度有关,因此人们利用他们随温度的变化规律来间接测量温度。 根据感温元件与被测介质接触与否,温度测量方法可分为:接触式和非接触式。接触式测温方法是通过传导、对流和辐射等传热方式感受被测介质的温度。此方法虽然简单、方便,但其间的热阻及感温元件的热惯性都会影响测温的迅速、准确。非接触式测温法的感温元件不与被测物体相接处,目前最常用的是辐射法,它直接利用被测对象的辐射能与温度的对应关系来测量其温度。与接触式测温方法相比,非接触式测温法具有如下优点:1、动态响应快。2、适合特殊场合。3、测温范围理论上无上限,其下线也随技术发展在向中低温扩展。由于非接触式测温法必须获得被测量对象的热辐射强度,因此存在以下缺点:1、受中间介质影响大。2、接收到的辐射能常常不能直接得出被测对象的实际温度,需要进行修正。 对应于两种测温方法,测温仪器亦分为接触式和非接触式两大类: 接触式仪器又可分为:膨胀式温度计(包括液体和固体膨胀式温度计、压力式温度计)、电阻式温度计(包括金属热电阻温度计和半导体热敏电阻温度计)、热电式温度计(包括热电偶和P-N结温度计)以及其它原理的温度计。 非接触式温度计又可分为辐射温度计、亮度温度计和比色温度计,由于它们都是以光辐射为基础,故也按统称为辐射温度计。 热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1、热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2、热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。

嵌入式 电压采集系统

摘要 针对传统的有线方式检测、采集、传输中节点分散需要大量布线等问题,本文介绍了一种基于CC2530和数字压力传感器的电压数据采集系统。 首先介绍了CC2530 结构及实现原理以及所使用电压传感器模块结构和原理,然后在了解它们的基础上找出相应的采集数据以及传输数据的所需的软件,串口通信及AD转换的原理和其实现方法,最后通过给出总的电压采集的程序流程图以及软件子系统设计系统框图和以上实验设备完成基于CC2530和数字压力传感器的电压数据采集系统。 关键词: 电压采集,嵌入式,CC2530,AD转换,串口通信

目录 一、前言 (1) 二、基本原理 (2) 2.1 CC2530 结构及实现原理 (2) 2.2 电压传感器结构及实现原理 (4) 2.3 软件方面 (5) (1)串口通信 (5) (2)AD转换 (6) 三、系统分析 (9) 3.1 程序流程图 (9) 3.2 软件子系统设计 (9) 四、代码清单 (10) 4.1 核心代码 (10) 4.2 AD转换代码 (11) 总结............................................... 错误!未定义书签。参考文献.. (14)

一、前言 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可定制,适用于不同应用场合,对功能,可靠性,成本,体积,功耗有严格要求的专用计算机系统[1]。随着生活水平的提高和科学技术发展的需求,人类对环境信息的感知上有了更高的要求,在某些特殊工业生产领域和室内存储场合对环境要求显得特别苛刻;随着嵌入式技术的发展,为环境检测提供了更进一步的保障。 基于嵌入式的环境信息采集系统包含感知层、传输层、应用层三个层面;传输层常见的有温湿度、烟感、电压、压力等嵌入式传感器模块,传输层包括有线通信和无线通信两部分,应用层包括各种终端。 电压是推动电荷定向移动形成电流的原因。电流之所以能够在导线中流动,也是因为在电流中有着高电势和低电势之间的差别。这种差别叫电势差,也叫电压。换句话说,在电路中,任意两点之间的电位差称为这两点的电压。在很多应用场合,电压是一个很重要的一个参数。电压的自动监测已经成为各行业进行安全生产和减少损失的重要措施之一。本课程设计就对嵌入式电压数据采集系统进行详细分析和设计。

相关文档
最新文档