人工关节材料的仿生性能及临床应用

人工关节材料的仿生性能及临床应用
人工关节材料的仿生性能及临床应用

仿生技术及其应用

仿生技术及其应用

一、仿生学的诞生 ?人们用化学、物理学、数学以及技术模型对生物系统开展着深入的研究, 促进了生物学的极大发展,对生物体内功能机理的研究也取得了迅速的进展。此时模拟生物不再是引人入胜的幻想,而成了可以做到的事实。 生物学家和工程师们积极合作,开始将从生物界获得的知识用来改善旧的或创造新的工程技术设备。生物学开始跨入各行各业技术革新和技术革命的行列,而且首先在自动控制、航空、航海等军事部门取得了成功。 于是生物学和工程技术学科结合在一起,互相渗透孕育出一门新生的科学——仿生学。 ?简言之,仿生学就是模仿生物的科学

二、仿生技术发展 现代仿生学已经延伸到很多领域,它的发展需要生物学、物理学、化学、医学、数学、材料学、机械学、动力学、控制论、航空、航天和航海工程等众多学科领域工作者的合作;反过来,仿生学的发展叉可以推动这些学科的进步。自20世纪60年代初仿生学诞生以来,仿生技术已得到迅速发展,在军事、医学、工业、建筑业、信息产业等系统获得了广泛应用,如仿生技术已成功地应用于精密雷达、声纳、导弹制导、机器人等领域中。

三、仿生技术分类及主要研究内容 ?仿生技术归纳为:结构仿生、功能仿生、材料仿生、力学仿生、控制仿生等类别。 ?1、结构仿生 ?结构仿生(Bionic Structure)是通过研究生物肌体的构造,建造 ?类似生物体或其中一部分的机械装置,通过结构相似实现功能相近。 ?1.昆虫仿生:模仿昆虫独特的形体结构和运动方式。 ?2.蛇类仿生:模仿蛇类运动的高冗余自由度。 ?3.变形虫仿生:模仿变形虫形体的几何可变性和自重构。 ?4.人体仿生:模仿人体的高度灵活性和功能复杂性。

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

仿生学应用综述

仿生学应用综述 仿生学是一门既古老又年轻的学科。人们研究生物体结构与功能的工作原理,并根据这些原理发明出新的设备和工具,创造出适用于生产,学习和生活的先进技术。某些生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。 仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。 仿生学在很多方面都有应用,对当今的科学技术发展提供了源源不断的动力。以下就是一些精彩的案例。 我们学校以纺织专业著称,而一种好的纺织材料是大家都追求的。在这方面,科学家也进行过研究。比如, 蜘蛛丝仿生材料概述及应用 采用仿生学原理, 设计、合成并制备新型仿生材料是近年来快速发展的研究领域.天然蜘蛛丝是一种生物蛋白弹性体纤维, 具有高比强度(约为钢铁的5倍)、优异弹性(约为芳纶的10倍)和坚韧性(断裂能为所有纤维中最高), 为自然界产生最好的结构和功能材料之一, 它在航空航天、军事、建筑及医学等领域表 现出广阔应用前景.受自然界蜘蛛丝启发, 天然蜘蛛丝仿生材料 的研究迎来了机遇, 同时也给人们展示了许多新颖的仿生设计

方法。1.材料学院无机非1302班武艳琪1310220226。 生活中一些微不足道的事物也会成为仿生学的应用。比如小小的苍蝇。苍蝇为人类做出了的伟大的贡献。令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。仿生学家由此得到启发,根据苍蝇嗅觉器官的结构和功能,仿制成一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。另外苍蝇的楫翅(又叫平衡棒)是个“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶2. 39

生物材料学问答题

第1章绪论 1、什么是生物材料 答:目前认为:生物材料为一种与生物系统相互接触,用以诊治组织/器官疾患,替换病损组织/器官,或者改善其形态或增进其功能的材料,包括生物源性材料和生物医用材料。 种类:蛋白质、核酸、高分子多糖及其复合物。 2、生物材料的类别 答:生物材料的类别如下: (1)按材料属性:医用金属材料、医用无机材料、医用高分子材料、医用复合材料…(2)按材料功能:硬组织材料、软组织材料、血液相容性材料、生物降解材料… (3)按材料来源:组织衍生材料、天然生物材料、人工合成材料 (4)按材料用途:骨科材料、心血管材料、血液透析材料、整形美容材料… 3、生物材料应用现状 答:生物材料应用现状如下: (1)软组织植入材料:医用缝合线(蚕丝、尼龙、羊肠(胶原)、聚酯…)、止血海绵、人工乳房植入体(石蜡、硅酮油、聚丙烯酰胺、聚乙烯海绵体、硅胶袋(内装硅凝胶或生理盐水)…)、经皮植入体、皮肤植入体、颚面植入体、眼耳植入体、血管植入材料、人工心脏瓣膜…(2)硬组织修复与替代材料:接骨板、人工关节、金属丝、螺钉、髓内钉、脊柱固定器件、牙根植入体、齿科材料等… (3)人工器官:人工肾(血液透析仪)、人工心脏、人工肺… (4)组织工程产品:皮肤、骨、软骨、膀胱、神经(壳聚糖、聚乙醇酸) 第2章生物大分子 1、生物大分子概念和种类 答:生物大分子概念:是生物体的重要组成成分,是一类具有生物功能、分子量较大、结构也比较复杂的天然高分子,同时也是一类非常重要的生物材料来源。 种类:蛋白质、核酸、高分子多糖及其复合物 2、胶原蛋白的特点及稳定构象,丝素蛋白的特点及稳定的构象 答:(1)胶原蛋白: 特点:耐湿热,生物相容性良好,生物可降解,经过处理可消除抗原性,能促进组织恢复,无异物反应 稳定构象:三股螺旋和球形 (2)丝素蛋白 特点:来源广泛、生物相容性良好,力学性能优良,血液相容性相对较好,可以缓慢降解,溶解性(浓的中性盐溶液) 稳定构象:反平行折叠链构象 第3章&第12章生物矿化和仿生材料 1、生物矿化的定义及主要分类是什么 答:生物矿化定义:生物矿化是指在一定条件下,在生物体的不同部位,以各种作用方式,在有机基质和细胞的参与下,无机元素从环境中选择性的在特定的有机基质上形核、生长和相变而转变为结构高度有序的生物矿物的过程。 主要分类:无定形矿物;无机晶体;有机晶体;最多的是含钙矿物,其次依次为非晶质氧化硅,铁锰氧化物、硫酸盐,硫化物、钙镁有机酸盐

仿生结构及其功能材料研究发展

仿生结构及其功能材料研究进展 摘要本文结合作者课题组的相关工作, 就多种仿生材料的研究现状进行简要的综述, 并概要展望了其发展趋势. 关键词仿生合成结构材料功能材料智能材料浸润性离子通道 1.光子晶体材料 光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩.模仿蛋白石的微观结构,可以合成人工蛋白石结构的光子晶体. 矿物或生物结构色中光子晶体的分子结构、微/纳米结构、周期性结构及其功能的深入研究将为开发新一代光学材料、存储材料及显示材料提供重要的指导作用. 2.仿生空心结构材料 自然界中的许多生物采用了多通道的超细管状结构, 例如: 许多植物的茎都是中空的多通道微米管, 这使其在保证足够强度的前提下可以有效节约原料及输运水分和养料; 为减轻重量以及保温, 鸟类的羽毛也具有多通道管状结构; 许多极地动物的皮毛具有多通道或多空腔的微/纳米管状结构, 使其具有卓越的隔热性能. 3.仿生离子通道材料 生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式. 被动运输的通路称为离子通道, 主动运输的离子载体称为离子泵. 离子通道实际上是控制离子进出细胞的蛋白质, 广泛存在于各种细胞膜上, 具有选择透过性. 生物纳米通道在生命的分子细胞过程中起着至关重要的作用, 如生物能量转换, 神经细胞膜电位的调控, 细胞间的通信和信号传导等[26]. 纳米通道在几何尺寸上与生物分子相近, 利用纳米通道作为生物传感器或传感器载体, 在分子水平上对组成和调控生命体系结构和运行的离子、生物分子和小分子进行检测和分离, 甚至在人工合成的纳米通道体系内模拟某些生物体系的结构和功能, 已成为化学、生命科学、材料学及物理学等领域的研究热点. 4.仿生超强韧纤维材料 天然蜘蛛丝由于具有轻质、高强度、高韧性等优异的力学性能和生物相容性等特性, 因此在国防、军事、建筑、医学等领域具有广阔的应用前景. 随着蜘蛛丝微观结构与性能关系的进一步揭示, 利用不同的合成技术, 国内外许多课题组已成功制备了多种仿蜘蛛丝超强韧纤维材料. 纳米碳管作为一维纳米材料, 重量轻, 具有良好的力学、电学和化学性能, 这为仿生合成具有类似蜘蛛丝性能的功能材料提供了可能并已经得到了验证. 研究发现, 自然界某些生物体中(如昆虫角质层、下颌骨、螫针、钳螯、产卵器等)含有极为少量的金属元素(如Zn、Mn、Ca、Cu等), 以增强这些部位的刚度、硬度等力学性能. 受此启发, 采用改进的原子层沉积处理技术,提高天然蜘蛛牵引丝的抗断裂或变形能力, 增强蜘蛛丝的韧性. 该研究对制造超强韧纤维材料及高科技医疗材料, 包括人工骨骼、人工肌腱、外科手术线等具有重要的指导意义. 5.仿生特殊浸润性表面 自然材料的多尺度微/纳米多级结构赋予其表面特殊浸润性能, 如植物叶表面的自清洁性、滚动各向异性; 昆虫翅膀的自清洁性、水黾腿的超疏水性等. 通过对生物体表面的结构仿生可以实现结构与性能的统一.

仿生材料学

仿生材料学 自然界中的动植物经过45亿年物竞天择的优化,其结构与功能已达到近乎完美的程度。由于仿生材料的优良特性,在世界各地各个领域得到了广泛的应用。所以,如何以材料的观点研究生物材料的结构和功能特点,并且用以设计和制造先进的复合材料是当前国际上材料研究的一大热点。 仿生材料是指模仿生物的各个特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。而仿生材料的设计不仅要模拟生物对象的结构,更要模拟其功能。将材料科学、生命科学、仿生学相结合,对于推动材料科学的发展有重大意义。 如今仿生材料的应用非常广泛。在医学、能源、建筑、军事等领域都有应用。可以说,仿生学已经融入到我们的生活中了。就拿我们材料成型专业来说,对于汽车外壳的设计就要用到仿生学,通过模仿鸟的流线体型可以达到减小阻力的目的,这样设计出来的车子能够跑得更快,耗能更少。受自然界荷叶效应的启发,通过在漆膜表面喷砂,植入纳米二氧化硅低表面能氟修饰获得了表面均匀程度良好的超疏水表面,这种表面很好的起到了荷叶“出淤泥而不染”的特性,有着很好的防水性能和清洁性能。现在的高强度材料就是运用了仿生学的原理,模仿蜂房的形状,做出的材料结构不仅强度高,塑性也非常好,有些仿生材料的强度甚至比钢铁还强几百倍。蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统。这些都是材料仿生的应用,可以说材料仿生学小到普通人的生活,大到宇宙开发探索都起着重要的推动作用。 大自然向人类展示着精妙绝伦的生命形态和绚丽多姿的悦人色彩,同时,大自然还无声地阐释了自然界的生存哲学——和谐与共生。这种和谐的设计哲学呼吁人类社会与大自然之间的高度和谐统一,共生的设计哲学则呼吁着人与机器、生态自然与人造自然之间合理的建构。因此,要学会师法自然的仿生性设计思维,创造人、自然、机器和谐共生的对话平台。仿生设计的应用有着巨大的潜力和发展前景,随着科学的高速发展和人们对自然界认识的不断提高,将会有更多的仿生发明应用科技领域。 重视并创新仿生学,是提升科学技术原始创新能力的一个重要方向。仿生学将为我国科学技术创新提供新思路、新原理和新理论。为适应我国科学和技术源头创新的需要,进一步推动我国经济和社会实现跨越式发展,我们材料学者应以积极主动的姿态学习世界前沿的科学知识,开发出更有前景、更有科技含量的仿生材料。

生物仿生作业题

生物仿生作业题 1、阐述荷叶清洁性的仿生机理和工程应用与贡献 仿生机理: 荷叶表面多尺度结构和表皮生物腊的存在是引起荷叶表面“自清洁”的原因。荷叶表面由很多密集排列的直径10~20μm左右“乳突”所组成,它们之间存在纳米级空隙,而每一个微米级乳突上还存在很多直径200nm左右的小乳突。形成微纳米双重结构的乳突,使空气填充其间。水在荷叶上,由于表面张力和乳突间空气的阻力的作用,水的表面总是趋向于尽可能缩小成球状,接触角可达170度左右,几乎完全不浸润。荷叶使水和尘埃在其表面的接触面积比一般材料减少了90%多,水滴极易滚动,在水滴滚动的同时,就带走了叶子上的尘埃和细菌,从而实现自清洁的功能。荷叶拥有的这种特性被称为超疏水性能。 应用与贡献: 荷叶效应乳胶漆:显著提高涂料的疏水性能。无机纳米材料经表面改性处理后,分散在水溶液中形成稳定的纳米级分散胶体,加入涂料中能迅速在涂料表面形成一种特殊结构的表面。 仿荷叶针织物:目前已经有很多报道关于成功地利用各种不同的表面处理技术来形成聚合物和无机物超拒水表面。毫无疑问,超拒水和自清洁的“荷叶纤维”能给纺织工业带来经济效益,可以不用在织物后整理中加入降低表面摩擦或是拒水的工具。当水通过这样的表面时,将会有一个自清洁的过程。

荷叶效应防水漆:采用荷叶表面技术,加强了防水透气性,确保墙面不受水汽侵蚀漆膜的牢固性不仅扛得住卫生间的潮气,甚至能适用于外墙。 荷叶玻璃:这种玻璃是超拒水和自清洁的,具有相当好的物理化学稳定性。涂层应是透明的,不透光的或是无色的。自组织软涂层具有制造与荷叶类似表面的所有成分,包括功能性涂料,微粒,粘合剂以及运输媒质。可以应用我们早已熟知的技术,比如说用屏幕或罗拉印刷技术,电子釉光技术和喷雾等。 荷叶憎水性膜:这种膜能模拟荷叶,在表面上如有水,这些水就能聚成珠而滚掉,因此即使在下大雨时其表面也能保持干燥。小水滴在滚动时还能将灰尘粒子集合在一起,因此表面有"自清洗"作用。这种膜可用普通气溶胶喷涂到表面上。当喷涂层的憎水作用被抹掉时,很容易进行再次喷涂。 仿生荷叶的研究与产品的开发将会给纺织、化工等诸多行业带来新的发展,为企业产品带来新的竞争力。随着科技的发展,会有越来越多的“荷叶效应”产品出现,从而更好地改善人们的生活。 2、什么是力学仿生?请举例说明常见的(静、动)力学仿生结构和原理 力学仿生是指:研究生物体的力学结构及其原理,寻求将其用于技术设计的方法,以创造新型、高效的机械设备和建筑结构,或改进飞机、舰船和车辆的设计等。 静力学仿生:

仿生功能材料

《功能材料概论》期末小论文 浅谈仿生功能材料 摘要:随着人民生活质量的进一步改善和提高 ,人们的生活对各种科学技术的要求也不断提高,而许多科技产品的发展都需要新型材料的支持,而新型功能材料正好能为科技提供发展基础。什么是功能材料?功能材料具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,有特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。功能材料市场将很快转化为充满勃勃生机的现实市场,从而创造出巨大的社会经济效益,成为国民经济的一个支柱产业。下面我想谈谈功能材料的一个分支-----仿生功能材料 一、什么是仿生功能材料? 仿生功能材料指模仿生物的各种特点或特性而开发的材料。自然界中存在的天然生物材料有着人工材料无可比拟的优越性能。我们通过研究他们的特点特性,制造我们能使用的材料,例如研究萤火虫发明人工冷光、研究电鱼发明伏特电池;研究苍耳属植物发明尼龙搭扣、研究鲨鱼发明特质泳衣…… 二、仿生功能材料的基本原理 现实生活中我们接触过许多动物与植物,例如屹立几百年而不倒的大树;几乎不发热量的冷血昆虫,而地球上所有生物都是由一些简单且廉价的无机和有机材料通过组装而形成,他们仅仅利用极少的几种元素,主要是碳、氢、氧、氮等组合而成,便能发挥出多种多样的功能,这实在令人叹服!在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同,迄今为止,再高明的材料科学家也做不出具有高强度和高韧性的动物牙釉质;海洋中长出的色彩斑斓、坚固又不被海水腐蚀的贝壳。如果我们眼光投向生物体的材料构造与形成过程,在充分的理解生物现象之后,用生物材料的观点来思考人工材料,从生物功能的角度来设计与制作适合人类生活所需的材料。 三、仿生功能材料的运用举例及原理 1、自清洁玻璃

仿生材料

仿 生 材 料 专业无机非金属_______班级 09-01____________学号310906010129_____姓名姚自强___________

仿生材料 一.仿生材料的起源. 在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同。举几个简单的例子:海鳗的发电器瞬间可以发出800 伏的电压,足以电死一头大象,但是它的发电器不是金属等导电器材,而是蛋白质的分子集合体;深海里有一种软体动物,其身体无疑也是由细胞材料所构成,但是却可承受很高的海水压力而自由地生存着。这些例子说明,许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就形成了仿生材料学。因此,仿生材料学的研究内容就是以阐明生物体的材料构造与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。一.定义和研究范围 1.1定义 受生物启发或者模仿生物的各种特性而开发的材料称为仿生材料 1.2研究范围 材料仿生的研究范围广泛,包括微结构、生物组织形成

机制、结构和过程的相互关系,并最终利用所获得的结 果进行材料的设计与合成。 二.仿生材料的分类 2.1从仿生材料的使用的场合来看可分为医用材料、工程材料和功能材料等。从材料学的角度可以把材料仿生分为几大方面:成分和结构、过程和加工制备仿生、功能和性能仿生。 三. 仿生材料的成果. 3.1雌蛾求爱-防治害虫我国科学家破译了雌蛾的化学语言后,研制出“仿生诱芯”,即人工合成雌性飞蛾吸引雄性飞蛾的激素的气味. 然后将其加入一种硅橡皮塞中,置于诱捕器中,使其缓缓释放,引诱大量的雄蛾自投罗网,既杀虫,又可根据诱捕量预测害虫的发生期。迄今为止,我国科学家已研制成功60多种“仿生诱芯”,对我国主要农林害虫的测报和防治起了重要作用。 3.2鲨鱼皮肤-泳衣一件泳衣,在悉尼奥运会上改变了世界泳坛的格局。几乎大半金牌得主都穿上一种特殊的泳衣———连体鲨鱼装。这种鲨鱼装仿造了海中霸王鲨鱼的皮肤结构,泳衣上设计了一些粗糙的齿状凸起,能有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动。 此后,仿生泳衣越仿越精。第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%。此外,还增加了两个附件,附在前臂上由钛硅树脂做成的缓冲器能使

生物材料与人体仿生选修结课论文

《生物材料与人体仿生》 结 课 论 文

时光如水,总是无言。眨眼间,生物材料与人体仿生选修课即将接近尾声。我对生物材料以及仿生学的认知也因着这次选修课,从陌生到熟悉,从未曾听闻到逐步的了解,这次选修课程的学习也让我对原来不曾了解过的生物材料及仿生学有了更多的认识。 一、仿生学的概念及基本概况 仿生学,即模仿生物建造技术装置的科学,上世纪中期才出现的一门新的边缘科学。它研究生物系统的结构、特质、功能、能量转换、信息控制等各种优异的特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。从生物学的角度来说,仿生学属于“应用生物学”的一个分支;从工程技术方面来看,仿生学根据对生物系统的研究,为设计和建造新的技术设备提供了新原理、新方法和新途径。仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,为人类造福。从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。 仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力。也正是因为这一学科的兴起,因为人类对自然界种种生物奇异本领的启发,人类仿生学由此产生。参照这些自然生物的本领,模仿它们的外形,我们由此产生灵感设计出来外形奇特又具有独特功能的各种产品。例如人们现在司空见惯的飞机便是早在四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行,设计和制造了世界上第一架人造飞行器——扑翼机。又如现在各种船的前身,便是我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。通过反复的观

[方案]仿生智能材料

[方案]仿生智能材料 第一章绪论 1、基本概念 仿生学概念:人类进化只有500万年的历史,而生命进化已经历了约35亿年。 人类很早就认识到生物具有许多超出人类自身的功能和特性。对生物的结构、形态、功能和行为等进行研究,我们就会从自然中获得解决问题的智慧和灵感。 生物材料:通常有两个定义,一是有生命过程形成的材料,如结构蛋白(蚕丝等)和生物矿物(骨、牙、贝壳等),另一个是指生物医用材料(Biomedical materials), 其定义随医用材料的发展不断发展,指用于取代、修复活组织的天然或人造材料。 仿生材料(Bio-inspired):受生物启发或者模拟生物的各种特性而开发的材 料。 材料的仿生包括模仿天然生物材料的成分和结构特征的成分、结构仿生、模仿 生物体中形成材料的过程和加工制备仿生、模仿生物体系统功能的功能仿生。 智能材料:具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、 判断,并采取一定的措施进行适度响应的类似生物智能特征的材料。 2、智能材料的特征 具体地说,智能材料具备下列智能特性: (1)具有感知功能,可探测并识别外 界(或内部)的刺激强度,如应力、应变、热、光、电、磁、化学、辐射等; 2)具有信息传输功能,以设定的优化方式选择和控制响应; (3)具有对环境变化作出响应及执行的功能; (4)反应灵敏、恰当;

(5)外部刺激条件消除后能迅速回复智能材料必须具备感知、驱动和控制三个基本要素。 3、智能材料的构成 智能材料一般由基体材料、敏感材料、驱动材料和信息处理器四部分构成。它不是传统的单一均质材料,而是一种复杂的智能材料系统。 基体材料首选高分子材料,因为质量轻,耐腐蚀;其次也可选金属材料,以轻质有色合金为主。 敏感材料担负传感的任务,其主要作用是感知环境的变化(温度、湿度、压力、pH值等)。 常用的敏感材料有形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色、液晶材料等。在一定条件下,驱动材料可产生较大的应变和应力,所以它担负响应和控制的任务。常用的驱动材料有形状记忆材料、压电材料、磁致伸缩材料等 可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用 4、智能材料的应用 (1)用于航空、航天飞行器:例:采用光纤传感器阵列和聚偏氟乙烯传感器的智能结构可对机翼、机架以及可重复使用航天运载器进行全寿命期实时监测、损伤评估和寿命预测;空间站等大型在轨系统采用光纤智能结构,可实时探测由于交会对接碰撞、陨石撞击或其他原因引起的损伤,对损伤进行评估,实施自诊断。 (2)用于建筑、工程结构:例:可以利用形状记忆合金材料对应变敏感、电阻率大及加热后可以产生大回复力的特点,将记忆材料埋植在各种结构中,再配上微处理器,使之集传感驱动于一体,便构成自动探测裂纹或损伤和主动控制裂纹扩展的完整控制系统。

仿生材料研究的设想及其应用

仿生材料 仿生材料指模仿生物的各种特点或特性而开发的材料。仿生材料学是仿生学的一个重要分支,是化学、材料学、生物学、物理学等学科的交叉。受生物启发或者模仿生物的各种特性而开发的材料称仿生材料,仿生材料在21世纪将为人类做出更大的贡献。 我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成,例如能够跳动80 年都不停止的人类心脏;几乎不发热量的冷血昆虫。从材料化学的观点来看,仅仅利用极少的几种高分子材料所制造的从细胞到纤维直至各种器官能够发挥如此多种多样的功能,简直不可思议。动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同。举几个简单的例子:海鳗的发电器瞬间可以发出800 伏的电压,足以电死一头大象,但是它的发电器不是金属等导电器材,而是蛋白质的分子集合体;深海里有一种软体动物,其身体无疑也是由细胞材料所构成,但是却可承受很高的海水压力而自由地生存着。这些例子说明,许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就形成了仿生材料学。因此,仿生材料学的研究内容就是以阐明生物体的材料构造与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。但是迄今为止该学科未开拓的领域和未解决的问题非常之多,可以认为仿生材料学的学科体系还没有完全形成。进行仿生材料的开发与研究必须要学习和了解许多相关的专门知识,例如,高分子化学、蛋白质工程科学、遗传学、生物学以及与其关联的技术等等。 例1.人造纤维 最早开始研究并取得成功的仿生材料之一就是模仿天然纤维和人的皮肤的接触感而制造的人造纤维。对蚕或者蜘蛛吐出的丝,人类自古就有很大的兴趣,这些丝纯粹是由蛋白质构成,特别是蚕丝,具有温暖的触感和美丽的光泽。二十世纪以来,人们模仿蚕吐丝的过程研制了各种化学纤维的纺丝方法,此后又模仿生物纤维的吸湿性、透气性等服用性能研制了许多新型纤维,例如,牛奶蛋白质与丙烯晴共聚纤维(东洋纺) ,商品名为稀苤的高吸湿性纤维(旭化成) 等等。这些产品的出现显示了人类仿造生物纤维表面细微形态与内部构造取得了成功。另外人们还对蚕的产丝体进行了卓有成效的研究(日本农业生物资源研究所) ,并且对蜘蛛丝也进行了研究(日本岛根大学) ,研究者们期待着有朝一日能够制造出与蚕丝完全一样的人造丝。 例2.人鱼传说 在陆地上生活的动物有肺,能够分离空气中的氧气,水里的鱼有鳃,能够分离溶解

MS88 生物材料与仿生(负责人:戴振东)

MS88 生物材料与仿生(负责人:戴振东) 8月27日下午 地点:3层大宴会厅B 时间 编号 报告题目 报告人 单位 主持人 13:30 MS88-1305-I 动物运动行为、运动反力及神经调控基础的研究现状及展望 戴振东 南京航空航天大学 陈锦祥 马国军 13:50 MS88-0463-O 微结构对飞蝗弹跳储能特性影响的定量分析 万 超 北京理工大学 14:00 MS88-1576-O 在有夹角的几何结构上的毛细浸润过程 周嘉嘉 北京航空航天大学 14:10 MS88-1854-O 三叶草的弹射机理植物界中的多米诺骨牌效应 李善鹏 中国石油大学(华东) 14:20 MS88-1908-O 羽枝-羽小枝节点旋转对增强羽毛平面内的韧性机理研究 陈 强 东南大学 14:30 MS88-0073-O 两种软体动物的力学行为 刘建林 中国石油大学(华东) 14:40 MS88-2235-O 一种仿生柔性尾巴的力学模型及控制策略 吴炜强 中国电子科技集团公司第二十八研究所 14:50 MS88-3745-O 二级非接触卫星姿态与无拖曳控制方法研究 廖鹤 南京航空航天大学 15:00 MS88-2836-O 活性手性杆系统的群体振荡特性研究 刘岩 清华大学 15:10 MS88-2987-O 基于棕榈叶颤振的仿生俘能柔性结构设计和实验 夏巍 西安交通大学 15:20 15:30 MS88-3321-O 壁虎在竖直墙面主动调整脚趾黏附来平衡重力 宋 逸 南京航空航天大学 8月28日下午 地点:3层大宴会厅B 时间 编号 报告题目 报告人 单位 主持人 13:30 MS88-2754-I 不同健康状态下骨小梁高分辨率动态力学性能的研究 张作启 武汉大学 徐光魁 李博 13:50 MS88-2548-O 生物材料的聚焦超声热效应相关计算及其机理研究 杜智博 清华大学 14:00 MS88-0421-O 耦合血管再生机制的肿瘤生长计算模型 许江平 江苏大学 14:10 MS88-3253-O 拉伸分子动力学模拟配体-乙酰胆碱酯酶相互作用 金侃 上海大学 14:20 MS88-2178-O 利用原子力显微镜方法研究天然油脂体的力学性能 杨楠 湖北工业大学 14:30 MS88-3104-O 仿洋葱结构水凝胶的力学性能及药物释放特性 金 鑫 大连理工大学 14:40 MS88-2473-O 聚焦超声位置识别的改进萤火虫算法研究 陈豪龙 清华大学 14:50 MS88-2694-O 大壁虎低预压黏附和快速脱附的力学分析 王周义 南京航空航天大学 15:00 MS88-1010-O 基于极小曲面(TPMS)的仿生骨支架设计域及增材制备误差分析 吕永涛 大连理工大学 15:10 15:20 MS88-1878-O 基于构型损伤模型的可降解镁合金椎体支架的降解研究 王 荣 西安交通大学

仿生材料研究与进展 王一安 刘志刚

齐齐哈尔大学 综合实践课程论文 题目仿生材料研究进展 学院材料科学与工程学院 专业班级无机非金属材料工程无机112班 学生姓名王一安刘志刚 指导教师李晓生 成绩 2014年 5月9 日

仿生材料学研究进展 摘要:仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 Abstract:The“biomimeticmaterialsscience”formedbytheintersectionofmaterialscien ceandlifesciencehasgreattheoreticalandpracticalsignificance.Biomimeticmaterialsscie ncetakesmaterialstructureandformationastarget,considersartificialmaterialattheviewof bio2material,exploresthedesignandmanufactureofmaterialfromtheangleofbiologicalfu nction.Atpresent,thehotresearchesonbiomimeticmaterialsscienceincludeshellbiomime ticmaterial,spidersilkbiomimeticmaterial,bonebiomimeticmaterial,andnano2biomimet icmaterial,etc.whichhavetheirownspecialmicro2structuralcharacteristics,formationstyl e,andbio2mechanicalproperties.Biomimeticmaterialsaredevelopingtowardscompound ,intellectual,active,andenvironmentaltendency,willbringrevolutionaryimprovementfor manufactureandapplicationofmaterial,andwillchangegreatlythestatusofhumansociety. Keywords:Bionics,Materialsscience,Review 1.前言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。

仿生学的发展及应用

仿生学的发展及应用 摘要:仿生学科的出现发展已经有将近60年的历史,在这期间仿生学得到了快速的发展,并对人类生活产生了各方面的影响。本文介绍了从古到今仿生学的发展历程及今后仿真学的发展趋势。并对不同领域内仿真学的应用做了简要的介绍和举例,从而更好的了解认识仿真学。 关键词:仿真学;发展;应用 引言 地球上的生物在经历了漫漫的进化之后,到现在人类已知的已经有170多万个物种,科学家推测世界上的物种大约在500-1000万种之间甚至更多。生物为了求得生存和发展,在进化中逐渐形成了各自适合自身的形态结构及生命系统等。不同的物种都各自有着自身的特点,人类在进化发展的过程中,对这些特点的应用就是仿生学最初的起源。自古以来,自然界就是人类各种科学技术原理、重大发明的源泉。在500万年的进化中,人类不断模仿自然,提升生产能力,才有现在人类社会的发展程度。而这种行为,在现代社会催生出了一门科学——仿生学。 仿生学是一门综合性的,由生命科学和工程技术相互结合而产生的新技术,在现代社会广泛应用于军事、医疗、工业和日常生活等多个领域。了解仿生学的发展过程,清楚仿生学在各个领域的具体应用,对于研究仿生技术,进一步促进仿生学的发展有着重要的意义。 仿生学诞生前的发展及应用 仿生学的发展可以追溯到人类文明的早期,人类文明的形成过程中不自觉的对仿生学的应用,这些应用仍旧停留在比较原始的阶段,由于环境的恶劣,人类不得不从自然界的其它生物及自然现象中学习从而保证自己的生存。因此,从远古时代起,人们实际上已经就已在从事仿生学的工作[1]。例如,人类现在仍在使用的工具:锯子,相传是中国古代的春秋战国时代,鲁班上山伐木途中,手指为锯齿草划破,从而受到启发,经反复实践,终于制成了人类史上第一架带有锯齿的木工锯[2]。古代人类就有着想要利用工具飞翔的期望,自古以来就有很多人模仿鸟类制作出许多“飞行器”,但是由于科学发展的程度不够,都没有成功。直到1903年12月17日,美国人莱特兄弟发明并成功试飞了人类历史上的第一台飞机。以上两个例子都是人类发展中仿生学的应用,然而这些发明等都只是科学史上各自独立的发展成

仿生智能材料

第一章绪论 1、基本概念 仿生学概念:人类进化只有500万年的历史,而生命进化已经历了约35亿年。人类很早就认识到生物具有许多超出人类自身的功能和特性。对生物的结构、形态、功能和行为等进行研究,我们就会从自然中获得解决问题的智慧和灵感。生物材料:通常有两个定义,一是有生命过程形成的材料,如结构蛋白(蚕丝等)和生物矿物(骨、牙、贝壳等),另一个是指生物医用材料(Biomedical materials),其定义随医用材料的发展不断发展,指用于取代、修复活组织的天然或人造材料。仿生材料(Bio-inspired):受生物启发或者模拟生物的各种特性而开发的材料。 材料的仿生包括模仿天然生物材料的成分和结构特征的成分、结构仿生、模仿生物体中形成材料的过程和加工制备仿生、模仿生物体系统功能的功能仿生。智能材料:具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的类似生物智能特征的材料。 2、智能材料的特征 具体地说,智能材料具备下列智能特性: (1)具有感知功能,可探测并识别外界(或内部)的刺激强度,如应力、应变、热、光、电、磁、化学、辐射等; 2)具有信息传输功能,以设定的优化方式选择和控制响应; (3)具有对环境变化作出响应及执行的功能; (4)反应灵敏、恰当; (5)外部刺激条件消除后能迅速回复 智能材料必须具备感知、驱动和控制三个基本要素。 3、智能材料的构成 智能材料一般由基体材料、敏感材料、驱动材料和信息处理器四部分构成。它不是传统的单一均质材料,而是一种复杂的智能材料系统。 基体材料首选高分子材料,因为质量轻,耐腐蚀;其次也可选金属材料,以轻质有色合金为主。 敏感材料担负传感的任务,其主要作用是感知环境的变化(温度、湿度、压力、pH值等)。 常用的敏感材料有形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色、液晶材料等。 在一定条件下,驱动材料可产生较大的应变和应力,所以它担负响应和控制的任务。常用的驱动材料有形状记忆材料、压电材料、磁致伸缩材料等可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用 4、智能材料的应用 (1)用于航空、航天飞行器:例:采用光纤传感器阵列和聚偏氟乙烯传感器的智能结构可对机翼、机架以及可重复使用航天运载器进行全寿命期实时监测、损伤评估和寿命预测;空间站等大型在轨系统采用光纤智能结构,可实时探测由于交会对接碰撞、陨石撞击或其他原因引起的损伤,对损伤进行评估,实施自诊断。(2)用于建筑、工程结构:例:可以利用形状记忆合金材料对应变敏感、电阻率大及加热后可以产生大回复力的特点,将记忆材料埋植在各种结构中,再配上微处理器,使之集传感驱动于一体,便构成自动探测裂纹或损伤和主动控制裂纹

仿生材料的研究现状及应用

仿生材料的研究现状及应用 1.研究背景 人类探索自然的历程经历了数千年, 然而至今仍然不能对生命的运作施加任何控制。人体内的细胞按照遗传既定的程序运做着。这种自发性从6 亿年前的单细胞组合开始, 造就了海藻、水母、昆虫、鸟兽, 直至人类这样的多细胞生物体,生物化石等等。因而就激发了今天的人类仿造天然的灵感。材料科学技术与生物技术、信息技术和能源技术一起成为现代社会文明发展的四大支柱。从材料的角度来研究生物体的规律,进行仿生设计,为新材料的设计和制备开辟了新的途径。仿生材料的发展日新月异,它已成为生物科学、材料科学、医学、矿物学、化学等众多学科的研究热点,并在各领域取得了一定的进展。这一切充分说明仿生材料这门年轻学科正在成熟,其广阔的研究和应用前景不可估量。 2.国内外研究现状 国际上对天然生物材料及仿生材料研究的重视始于20 世纪80 年代。目前, 国际上一流大学都已把生物材料放在优先发展的地位。中国生物与仿生材料研究者在这一领域已取得国际瞩目的研究成果。自1988 年中国生物无机化学家王夔院士和材料学家李恒德院士将生物矿化的概念介绍到国内后, 中国的生物矿化研究开始逐渐形成规模。其中很重要的一个方面就是在学习矿化材料合成方法的基础上, 研究并实施新的材料制备策略。而深入进行这些工作的一个重要前提就是表征天然生物矿物的分级结构及探索生物矿化的基本机理。 3。仿生材料相关介绍 3。1仿生材料学定义 仿生材料是指模仿生物的各种特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。仿生学在材料科学中的分支称为仿生材料学(biomimetic materials science) , 它是指从分子水平上研究生物材料的结构特点、构效关系, 进而研发出类似或优于原生物材料的一门新兴学科, 是化学、材料学、生物学、物理学等学科的交叉。地球上所有生物体都是由无机和有机材料组合而成。由糖、蛋白质、矿物质、水等基本元素有机组合在一起, 形成了具有特定功能的生物复合材料。仿生设计不仅要模拟生物对象的结构, 更要模拟其功能。将材料科学、生命科学、仿生学相结合, 对于推动材料科学的发展具有重大意义。自然进化使得生物材料具有最合理、最优化的宏观、细观、微观结构, 并且具有自适应性和自愈合能力。在比强度、比刚度与韧性等综合性能上都是最佳的。 3。 2仿生材料化学 著名的生物矿化和仿生纳米材料学家, 英国Bristol 大学S。Mann 教授在2002 年美国Gordon 会议上有一个题为“基质诱导成核: 一个矿化过程的介观现象?”的精彩报告。报告指出, 生物矿物通常在有机的模板如大分子框架、脂膜或细胞壁表面合成。因此, 第一需要理解生物源的矿物生长和形态发生,例如, 磷酸钙、碳酸钙和氧化硅如何在有机分子和有机表面存在时发生沉积过程。第二, 利用生物结构和系统, 在实验室内模拟矿化过程, 从而在有机组分如病毒和细

相关文档
最新文档