分段函数全参数问题题
考点03 分段函数的4种求法(解析版)

专题二 函数考点3 分段函数的4种求法【方法点拨】分段函数的4种求法1. 求函数值或解不等式:由自变量所属区间,选定相应的解析式求解.2. 求函数值域:分别求每一段的值域取并集.3. 求函数最值:分别求每一段的最值,然后比较大小.4.求参数的值(或参数范围):分段处理,分类讨论,综合作答. 三、【高考模拟】1.已知函数()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()()4f f =( )A .-4B .14-C .14D .4【答案】C 【分析】根据分段函数的解析式,先求()4f ,再求()2f -即可求解.【解析】由()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()42f ==-,所以()()()214224ff f -=-==. 故选:C2.已知函数(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,则(1)f =( )A .3B .6C .15D .12【答案】C 【分析】根据分段函数解析式代入计算即可; 【解析】解:因为(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,所以()()()11233215f f =+=⨯+=故选:C3.已知函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则()1f -=( )A .12B .2C .14D .18【答案】C 【分析】根据函数的解析式,代入计算,即可求解. 【解析】由题意,函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,可得()()()211113224f f f ⎛⎫-=-+=== ⎪⎝⎭.故选:C.4.已知20()(1)0x x f x f x x ⎧>=⎨+≤⎩,则()1f -=( )A .0B .1C .2D .4【答案】C 【分析】根据分段函数各段的定义域求解. 【解析】因为20()(1)0x x f x f x x ⎧>=⎨+≤⎩,所以()()()110122f f f -====,故选:C 5.已知5,6()(4),6x x f x f x x -≥⎧=⎨+<⎩,则(1)f -的值为( )A .6-B .2-C .2D .3【答案】C【分析】利用解析式可有()()(1)37f f f -==,利用已有的解析式可得(1)f -的值. 【解析】由题设有()()(1)372f f f -===, 故选:C.6.已知21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()()2f f =( )A .26B .17C .8D .-10【答案】B 【分析】利用分段函数的解析式,将自变量代入即可求解. 【解析】由21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()2224f =-⨯=-, 所以()()()()2244117ff f =-=-+=.故选:B7.已知函数()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,则()()0f f =( )A .4B .16C .32D .64【答案】D 【分析】直接根据分段函数解析式代入计算可得; 【解析】解:因为()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,所以()0022f =+=,()()()2226022264f f f +==== 故选:D8.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是( )A .52 B .32C .92D .12-【答案】B 【分析】 先根据12所在区间计算出12f ⎛⎫ ⎪⎝⎭的结果,然后再根据12f ⎛⎫ ⎪⎝⎭所在区间计算出12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值. 【解析】 因为112≤,所以1131222f ⎛⎫=+= ⎪⎝⎭,又因为312>,所以133332222f f f ⎡⎤⎛⎫⎛⎫==-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:B.9.设函数()()2221log (1)x x f x x x ⎧+≤=⎨>⎩,则()()0f f ( )A .0B .3C .1D .2 【答案】C 【分析】将自变量代入对应的分段函数中,即可求得答案. 【解析】由题意得2(0)022f =+=,所以2((0))(2)log 21f f f ===,故选:C10.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a <C .2a >D .R【答案】A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【解析】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.11.已知函数24,2()25,2x x x f x ax x ⎧-+≤=⎨->⎩,若存在x 1,x 2∈R ,且x 1≠x 2,使得12()()f x f x =,则实数a 的取值范围为( ) A .(),0-∞ B .9,4⎛⎫-∞ ⎪⎝⎭C .9,2⎛⎫-∞ ⎪⎝⎭D .90,2⎛⎫ ⎪⎝⎭【答案】B 【分析】转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,结合二次函数及一次函数的性质分类讨论即可得解. 【解析】当2x ≤时,2()4f x x x =-+,由二次函数的性质可得()f x 单调递增且(](),4f x ∈-∞;若要满足题意,只需使()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集, 当2x >时,若0a >,则()()2545,f x ax a =-=-+∞, 则454a -<,解得94a <,此时904a <<;若0a =,()5f x =-,符合题意;若0a <,则()()25,45f x ax a =-=-∞-,符合题意; 综上,实数a 的取值范围为9,4⎛⎫-∞ ⎪⎝⎭. 故选:B. 【点睛】关键点点睛:解决本题的关键是转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,再结合一次函数、二次函数的性质即可得解.12.已知()()()23200x x x f x x x ⎧-≥⎪=⎨<⎪⎩,方程()()2210f x f x +-=⎡⎤⎣⎦的根x 的个数是 ( ) A .1 B .2 C .3 D .4【答案】C 【分析】画出函数的图象,求出22[()]()10f x f x +-=的根,结合函数的图象,求解即可.【解析】232(0)()(0)x x x f x x x ⎧-=⎨<⎩的图象如图:方程22[()]()10f x f x +-=,可得()1f x =-,或1()2f x =, 由函数的图象可知:()1f x =-,有2个x 的值,1()2f x =,有一个x 的值, 所以方程22[()]()10f x f x +-=的根x 的个数是3.故选:C . 【点睛】关键点点睛:本题考查函数零点与方程根问题,考查分段函数的图象,解决本题的关键点是先由关于()f x 的一元二次方程解出方程根()1f x =-或1()2f x =,再画出分段函数的图象可得与1y =和12y =的交点个数,即为根x 的个数,考查学生数形结合思想和计算能力,属于中档题. 13.已知函数()1,01,0x x f x x +≥⎧=⎨<⎩,若()()2f f a =,则( )A .1a =±B .1a =-C .0a ≤D .0a <【答案】C 【分析】分0a <,0a =,0a >三种情况求解即可 【解析】当0a <时,()1f a =,得()()()12f f a f ==,当0a =时,()01f =,()()()12ff a f ==,成立,当0a >时,()1f a a =+,得()()()1112ff a f a a =+=++=,得0a =,不成立;所以0a ≤. 故选:C14.已知函数()22,1,,12,2,2,x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f a =,则a =( )A .1 BC.D .32【答案】B 【分析】根据分段函数解析式,将各段等于3,解方程即可得出结果. 【解析】当1a ≤-时,由23a +=,得1a =,舍去; 当1a 2-<<时,由23a =得a =a =当2a ≥时,由23a =得32a =舍去,综上,a =故选:B.15.已知函数()232,1,1x x f x x ax x +<⎧=⎨+≥⎩若()()06f f a =,则实数a =( )A .1B .2C .4D .8【答案】A 【分析】由函数解析式,先计算()0f 的值,然后将其代入,由此得到关于a 的方程,求解即可. 【解析】 (0)2f =2((0))(2)226f f f a a ==+=,解得:1a =故选:A 【点睛】方法点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()ff a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16.设f (x )=,012(1),1x x x x ⎧<<⎪⎨-≥⎪⎩,若f (a )=12,则a =( )A .14B .54C .14或54D .2【答案】C 【分析】根据解析式分段讨论可求出. 【解析】解:∵(),012(1),1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,1()2f a =,∴由题意知,0112a a <<⎧⎪⎨=⎪⎩或()11212a a ≥⎧⎪⎨-=⎪⎩,解得14a =或54a =. 故选:C . 17.已知函()f x ={222,0,,0,x mx m x x m x -+≤+>,若()()12ff =,则实数m的值为( ) A .1- B .12C .1D .2【答案】B 【分析】首先求()11f m =+,分1m ≤-和1m >-,两种情况求()()1f f ,再计算实数m 的值.【解析】()11f m =+,当1m ≤-时,()10f ≤,此时()()()()()221112112f f f m m m m m =+=+-++=≠,故不成立;当1m >-时,()10f >,此时()()()()1112f f f m m m =+=++=,解得:12m =,成立. 故选:B【点睛】关键点点睛:本题考查分段函数求自变量,本题的关键是求出()11f m =+后,需分两种情况,求实数m 的值.18.已知函数222,0,()1,0,x x f x x x ⎧->=⎨+⎩,若()2f a =,则a =( )A .2B .1C .2或1-D .1或1-【答案】C 【分析】分类讨论a ,代入解析式可解得结果. 【解析】当0a >时,()222af a =-=,解得2a =;当0a 时,2()12f a a =+=,解得1a =-.综上,2a =或1a =-. 故选:C19.已知()22,1log ,1x x f x x x ⎧≤=⎨>⎩,若()()1f f a =,则实数a 的值是( )A .0或2B .4C .1或4D .1【答案】C 【分析】讨论()1f a ≤与()1f a >先计算()f a 的值;再讨论1a ≤与1a >计算a 值. 【解析】 由()()1ff a =,当()1f a ≤时,有()21f a=,则()0f a = ;当()1f a >时,有()2log 1f a =,则()2f a = ;由()0f a =,当1a ≤时,有20a =,a 无解;当1a >时,有2log 0a =,1a =不符合; 由()2f a =,当1a ≤时,有22a =,1a =;当1a >时,有2log 2a =,4a =; 综上所述:1a =或4a = 故选:C20.已知函数()221,031,0x x f x x x +>⎧=⎨-≤⎩,若()()18f a f +-=,则实数a 的值是( ) A .52B .213±或52 C.21或52D .213-或52 【答案】D 【分析】分0a >和0a ≤两种情况求解 【解析】 解:当0a >时,因为()()18f a f +-=,所以2213(1)18a ++⨯--=,解得52a =, 当0a ≤时,因为()()18f a f +-=,所以22313(1)18a -+⨯--=,解得21a =(舍去),或21a =-, 综上52a =或213a =-, 故选:D21.某数学兴趣小组从商标中抽象出一个函数图象如图,其对应的函数()f x 可能是( )A .()11f x x =- B .()11f x x =- C .()11tan2f x xπ=-D .()211f x x =+ 【答案】A 【分析】根据函数对称性及定义域,直接利用排除法求出结果. 【解析】选项A :函数的图象的渐近线为 1x =或1x =-与原图象相符; 选项B :1x =-时,()111112-==--f 与原图不相符; 选项C :3x =时,函数无意义与原图不相符; 选项D :1x =时,()111112f ==+与原图不相符; 故选:A22.函数图象如图,其对应的函数可能是( )A .1()|||1|f x x =-B .1()|1|f x x =-C .21()1f x x =- D .21()1f x x =+ 【答案】A 【分析】根据定义域可排除BD ,根据()01f =可排除C. 【解析】由图可知()f x 的定义域为{}1x x ≠±,故BD 错误;()01f =,故C 错误.故选:A.23.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()212x f x x -=⋅ B .()212x f x x -=⋅C .()()1)f x x x =⋅- D .()221x f x x =-【答案】A 【分析】利用()10f >可排除CD ,利用奇偶性可排除B ,由此得到结果. 【解析】当1x =时,()10f >,CD 中的函数()10f =,可排除CD ;由图象关于原点对称可知()f x 为奇函数,A 中()()212x f x x f x --=-⋅=-,满足奇函数定义;B中()()221122x x f x x x f x ---=⋅-=⋅=,满足偶函数定义,可排除B.故选:A.24.已知函数2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,则a 的取值范围为___________. 【答案】122675a <≤ 【分析】令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,得到()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,结合函数()g x 和()h x 的图象,根据()f x 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值求解. 【解析】因为函数2()121()f x ax x ax a =+++-∈R ,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩, 解得22()()1g x x ax h x x ⎧=+⎨=-⎩, 所以()()()2,()()()()()()2,()()g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,其中()g x 过点()()0,0,,0a -,()h x 过点()()1,0,1,0-,因为2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,当0a -≤,即0a ≥时,3933916,1525552525g a h ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以3355h g ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在3,05⎛⎫- ⎪⎝⎭上取不到最小值,要在20,3⎛⎫ ⎪⎝⎭上取到最小值,则2233g h ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且2335g h ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭,即425939a +>,且42169325a +≤, 解得122675a <≤, 当0a ->,即0a <时,242245,1393399g a h ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭,所以2233g h ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在20,3⎛⎫ ⎪⎝⎭上取不到最小值,要在3,05⎛⎫- ⎪⎝⎭上取不到最小值, 则3355g h ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,且3253g h ⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭,即931625525a ->,且9352559a -≤, 即715a <-,且44135a ≥-时,无解, 综上:a 的取值范围为122675a <≤.故答案为:122675a <≤ 【点睛】关键点点睛:本题关键是由函数()f x 解析式的结构特征,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,将函数转化为()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,利用二次函数22(),()1g x x ax h x x =+=-的图象和性质求解.25.已知函数22,0(),0x a x f x x ax x ⎧+≥=⎨-<⎩,若()f x 的最小值是a ,则a 的值为__________.【答案】4- 【分析】利用指数函数的单调性,可得0x ≥时,()f x 的最小值为1a +,由题意可得()f x 在(),0-∞时取得最小值a ,求得对称轴,可得224a a f a ⎛⎫=-= ⎪⎝⎭,解得即可; 【解析】解:当0x ≥时,()2xf x a =+在定义域上单调递增,所以()()01f x f a ≥=+即0x =时,()f x 的最小值为1a +;当0x <时,()22224a a f x x ax x ⎛⎫=-=--⎪⎝⎭ 由题意可得()f x 在(),0-∞时取得最小值a ,即有02a<,所以0a <,则224a a f a ⎛⎫=-= ⎪⎝⎭,解得4a =- 故答案为:4-26.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【解析】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a ∴<≤,21112[2,3)f a a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3). 【点睛】本题考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.27.已知函数21(),0()22,04x a x f x x x x ⎧-≤<⎪=⎨⎪-+≤≤⎩的值域是[]8,1-,则实数a 的取值范围是________. 【答案】[3,0)- 【分析】由二次函数的性质可得当04x 时,函数的值域刚好为[8-,1],故只需1()2xy =-,0a x <的值域为[8-,1]的子集,可得a 的不等式,结合指数函数的单调性可得. 【解析】解:当04x 时,22()2(1)1f x x x x =-+=--+,图象为开口向下的抛物线,对称轴为1x =,故函数在[0,1]单调递增,[1,4]单调递减,011()8,()122a ---当1x =时,函数取最大值1,当4x =时,函数取最小值8-,又函数()f x 的值域为[8-,1],1()2xy ∴=-,0a x <的值域为[8-,1]的子集,1()2x y =-,0a x <单调递增,∴只需0182112a⎧⎛⎫--⎪ ⎪⎪⎝⎭⎨⎛⎫⎪- ⎪⎪⎝⎭⎩, 解得30a -<故答案为:[3,0)-.28.设函数()()222,0,21,0.x a a x f x x x a x ⎧--+≤⎪=⎨-++->⎪⎩若()0f 是()f x 的最大值,则a 的取值范围为__________.【答案】[)2+∞,【分析】由题可得要使()0f 是()f x 的最大值,只需满足020a a ≥⎧⎨-≤⎩即可.【解析】()0=0f ,当0x ≤时,()22y x a a =--+,对称轴为x a =,开口向下,当0x >时,221y x x a =-++-对称轴为1x =,开口向下,则此时在1x =取得最大值为2a -,要使()0f 是()f x 的最大值,则020a a ≥⎧⎨-≤⎩,解得2a ≥,则a 的取值范围为[)2+∞,. 故答案为:[)2+∞,. 【点睛】本题主要考查分段函数的最值问题及其应用,其中解答题中涉及到二次函数的图象与性质的应用,以及分段函数的最值问题的求解方法,此类问题解答的关键在于正确理解分段的性质,合理列出相应的不等关系式.29.函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,则实数a 的取值范围是_____________.【答案】54a ≤ 【分析】根据分段函数的解析式,先求出1≥x 时,函数的值域;再求出1x <时,函数的值域;根据题中条件,即可得出结果. 【解析】由题意,当1≥x 时,()2f x x =-显然单调递减,则()(]2,1f x x =-∈-∞;当1x <时,()2f x x x a =++是开口向,对称轴为12x =-的二次函数,则()1124f x f a ⎛⎫≥-=- ⎪⎝⎭,又函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,所以只需114a -≤,解得54a ≤. 故答案为:54a ≤.30.设函数31,0,()1,0x x f x x x ⎧+≤=⎨->⎩,则()()1f f 的值为______.【答案】1 【分析】先计算(1)f ,再计算()()1f f 可得.【解析】由题意(1)110f =-=,所以((1))(0)1==f f f . 故答案为:1.。
分段函数

分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 1.求分段函数的定义域和值域1、求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 2、设()⎩⎨⎧<≥=1,1,2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0, 则()x g 的值域是( )A.(][)+∞-∞-,11,B.(][)+∞-∞-,01,C.[)+∞,0 D. [)+∞,1 3、函数21,(1)()1,1)x x x f x x x ⎧-+≤⎪=⎨ (>⎪⎩ 值域是______________4、函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.5、已知函数)(x f 的解析式为⎪⎩⎪⎨⎧>+-≤<+≤+=)1(82)10(5)0(53)(x x x x x x x f(1)画出这个函数的图象; (2)求函数)(x f 的最大值。
2.求分段函数的函数值1、设f(x)=⎪⎩⎪⎨⎧>+≤--1||111||,2|1|2x ,x x x ,则f[f(21)]=( )A.21B.134 C. -59 D.4125 2、设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,则(5)f = 。
3、已知函数3l o g ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B.14C.-4 D-144、定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 25、若()()()3,20,185,20x x fx f f fx x -≥⎧⎪==⎨+<⎡⎤⎪⎣⎦⎩则6、若数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪- ≤<⎪⎩ ,且167a =,20a=________7、设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为3、解分段函数的不等式 1、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A ),3()1,3(+∞⋃-B ),2()1,3(+∞⋃-C ),3()1,1(+∞⋃-D )3,1()3,(⋃--∞ 2、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__。
如何求解含参分段函数问题

思路探寻分段函数是中学数学中的重要内容之一.含参分段函数问题经常出现在高考试题中.含参分段函数问题侧重于考查分段函数的值域、定义域、单调性等.含参分段函数问题中不仅含有参数,还含有分段函数,因而这类问题通常较为复杂,往往要灵活运用分类讨论思想、方程思想、数形结合思想来辅助解题.下面结合实例探讨一下不同含参分段函数问题的解法.一、含有一个参数的分段函数问题当分段函数含有一个参数时,问题就具有不确定性,参数通常会出现在函数解析式中或区间分界点处,那么参数就会对函数的性质、图象有所影响,此时需运用分类讨论思想,对参数的取值进行分类,讨论每种情形下函数的解析式以及图象的变化情况,进而求得问题的答案.例1.已知函数f (x )={-x 2+ax ,x ≤1,ax -1,x >1,若存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围为.解:当a =0时,f (x )={-x 2,x ≤1,-1,x >1,f (x )的图象如图1所示,显然满足题意;当a ≠0时,设g (x )=-x 2+ax ,h (x )=ax -1,则g (x )是一个开口朝下的二次函数,其对称轴方程为x =a 2,h (x )是一次函数.当a2≥1,即a ≥2时,f (x )的大致图象如图2所示,显然不存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,故不满足题意;图1图2当0<a 2<1,即0<a <2时,f (x )的大致图象如图3所示,显然存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,故满足题意;当a 2<0,即a <0时,f (x )的大致图象如图4所示,显然存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,故满足题意.综上可知,实数a的取值范围为(-∞,2).图3该分段函数解析式中含参数a ,且函数f (x )在R 上不是单调函数,所以影响本题的两个关键要素是二次函数的对称轴x =a2以及a 的正负,所以我们从这两个要素入手,对参数进行分类讨论,即分a =0、a ≥2、0<a <2、a <0几种情况讨论函数f (x )的图象,并利用数形结合思想讨论f (x 1)=f (x 2)是否成立.例2.已知x ∈R ,函数f (x )={x -4,x ≥λ,x 2-4x +3,x <λ,若函数f (x )恰有两个零点,则实数λ的取值范围为.5xy6o图5图6解:设g (x )=x -4,h (x )=x 2-4x +3,则g (x )的零点为x =4,h (x )的零点为x =1和x =3.当λ<1时,f (x )的大致图象如图5所示,此时f (x )在R 上有1个零点,故不满足题意;易验证当λ=1时,也不满足题意;李喜春47思路探寻当1<λ<3时,f(x)的大致图象如图6所示,此时f(x)在R上有2个零点,故满足题意;易验证当λ=3时,满足题意;当3<λ<4时,f(x)的大致图象如图7所示,此时f(x)在R上有3个零点,故不满足题意;易验证当λ=4时,也不满足题意;当λ>4时,f(x)的大致图象如图8所示,此时f(x)在R上有2个零点,故满足题意.综上可知,实数λ的取值范围为(1,3]⋃(4,+∞).7oo图78由题意可知,两个函数的零点是确定的,即x=1、3、4,三个零点将x轴分成四段,将四种情形下的λ的值分别代入函数式中进行检验,结合两个函数的图象,将数形结合起来,便可顺利解题.在解答含有一个参数的分段函数问题时,要注意关注参数所在的位置,明确参数对函数的影响,进而确定分类标准;然后运用分类讨论思想对每种情形逐一进行讨论;最后综合所得的结果即可.二、含有两个参数的分段函数问题在解答含有两个参数的分段函数问题时,首先不要只画出函数在定义域内的图象,而是要在同一坐标系中画出每一个区间段上的完整的函数图象;再结合图象,对参数进行分析,明确分类的标准,这样一个清晰的解题方案就形成了.例3.已知函数f(x)={(2a-1)x+3a-4,x≤t,x3-x,x>t,若无论t为何值,函数f(x)在R上总不单调,则实数a的取值范围为.解:设g(x)=(2a-1)x+3a-4,h(x)=x3-x,则h′(x)=3x2当x∈(-∞,+∞)时,h′(x)>0;当x时,h′(x)<0,所以函数h(x)在(-∞,和+∞)上单调递增,在上单调递减.当2a-1>0,即a>12时,在同一平面直角坐标系中画出函数g(x)和h(x)的大致图象,如图9所示.观察图象可知始终存在实数t,使得函数f(x)在R上是单调递增函数,故不满足题意;当2a-1=0,即a=12时,在同一平面直角坐标系中画出函数g(x)和h(x)的大致图象,如图10所示.观察图象可知,无论实数t为何值,函数f(x)在R上总不单调,故满足题意;当2a-1<0,即a<12时,在同一平面直角坐标系中画出函数g(x)和h(x)的大致图象,如图11所示.99观察图象可知,无论实数t为何值,函数在R上总不单调,故满足题意.综上可知,实数a的取值范围为(-∞,12].本题中的分段函数解析式中含有参数a,分界点中也含有参数t,两个参数对函数的图象都有影响,对此,需从函数的单调性入手,分别讨论不同情形下,即当2a-1>0、2a-1=0、2a-1<0时,同一个坐标系中两个函数g(x)和h(x)的图象的变化趋势以及单调性.三、含有三个参数的分段函数问题当遇到含有三个参数的分段函数问题时,需对题目条件和参数进行认真的分析,并将抽象的解析式用图象呈现出来,明确参数对函数图象、性质、大小的影响,以确定分类讨论的标准,最终在不断的尝试和分析中确定一个好的方案对问题加以解答.例4.已知函数f(x)={e x+m-1,x≥0,ax+b,x<0,其中m<-1,x1∈R,且对于任意x1≠0,均存在唯一实数x2,使得48思路探寻数列是数学高考的必考内容之一.近几年的高考数学全国卷试题中的数列问题侧重于考查等差和等比数列的通项公式、性质、前n项和公式的应用.求数列和的方法很多,其中错位相减法比较常用.等比数列前n项和的公式Sn=a1(1-q n)1-q(q≠1)就是用错位相减法求得的.如果一个数列的通项公式可以变形为一个等差数列与一个等比的通项公式的乘积,我们就可以用错位相减法求数列的和.错位相减法的运用步骤为:第一步,根据数列的通项公式列出数列的前n项和式,并将其记为①式;第二步,在①式的左右两边同乘以等比数列的公比q,得到②式;第三步,将②式右边的式子与①式右边的错开一位,使q的指数相同的项对齐;第四步,将两式相减,合并同类项,并提取公因式;第五步,构造出等比数列,利用等比数列的前n 项和公式进行求和,并化简.例1.若数列{}a n是以a1为首项,d为公差的等差数列,数列{}b n是以b1为首项,q(q≠1)为公比的等比数列,令c n=a n b n,求数列{}c n的前项和T n.解:T n=a1b1+a2b2+a3b3+⋯+a n−1b n−1+a n,①qTn=a1b1q+a2b2q+a3b3q+⋯+a n−1b n−1q+a n b n q=a1b2+a2b3+a3b4+⋯+a n−1b n+a n b n q,②由①-②得:(1-q)T n=a1b1+d(b2+b3+⋯+b n−1+b n) -a n b n q,当q≠1时,Tn=a1b1+d()b2+b3+⋯+b n−1+b n-a n b n q1-q=a1b1+déëêêùûúúb2()1-q n−11-q-a n b n q1-q周永松。
经典分段函数专题

经典分段函数专题高考真题类型一:与期有关类型二:与单调性有关 类型三:奇偶性有关类型四:与零点和交点问题有关 类型五;与求导和函数性质有关 类型六:数形结合高考真题201011、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的围是_____。
【解析】考查分段函数的单调性。
2212(1)10x x x x ⎧->⎪⇒∈-⎨->⎪⎩201111、(分类程求解)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=-2012 10.(程组求解)设()f x 是定义在R 上且期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 【解析】因为2T =,所以(1)(1)f f -=,求得20a b +=. 由13()()22f f =,2T =得11()()22f f =-,解得322a b +=-.联立20322a b a b +=⎧⎨+=-⎩,解得24a b =⎧⎨=-⎩所以310a b +=-. 201311.(分区间二次不等式求解)已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .【答案】(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。
由于)(x f 是定义在R 上的奇函数,利用奇函数图像关于原点对称做出x <0的图像。
高一数学分段函数抽象函数与复合函数试题答案及解析

高一数学分段函数抽象函数与复合函数试题答案及解析1.已知函数,则的值是()A.4B.48C.240D.1440【答案】C【解析】因为,所以,故选C.【考点】分段函数求函数值的问题.2.设函数则的值为A.B.C.D.【答案】D【解析】由已知函数可得,,故D为正确答案.【考点】分段函数求值.3.已知函数则______.【答案】【解析】由题可得.【考点】分段函数的求值.4.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数5.已知函数,则的值是.【答案】【解析】因为,而,所以.【考点】本题考查的知识点是分段函数求函数值的方法,属基础题.6.已知函数,则( )A.0B.1C.-2D.-1【答案】B【解析】分段函数求函数时,要注意自变量的取值范围.。
【考点】分段函数.7.若函数,则=()A.0B.1C.2D.3【答案】B【解析】复合函数求值由内向外的求解是关键,代入计算时注意不同的自变量对应的表达式,先计算,再计算,最后计算故选B【考点】分段函数的值.8.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.9.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.10.如图(1)四边形ABCD为直角梯形,动点P从B点出发,由B→C→D→A沿边运动,设点P运动的路程为x,ΔABP面积为f(x).若函数y=f(x)的图象如图(2),则ΔABC的面积为A.10B.16C.18D.32【答案】B【解析】观察图(2),可知,,,由平面几何的知识易求得,∴,选B.【考点】分段函数.11.已知则的值等于().A.-2B.4C.2D.-4【答案】B【解析】本题是分段函数,求值时,要注意考察自变量的范围,,,.【考点】分段函数.12.函数满足: ,且,则【答案】【解析】本题给出的函数是一个递归式,可以按照原来函数的样子递归到1,再回推出4。
2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。
谈已知分段函数零点个数求参数范围问题的转化

20 1 9年第7期中学数学月刊・47・=>?@AB+CD 个+EF+GHIJ-K 化祝 峰 (安徽省滩溪二中235 1 00)=# + # + a •,# ( 0, .. g\#)# + # + a , # > 0 ,分段函数是指定义域的不同子区间上对应的函数.贝其零 问题时,需分段,若分段函数 是断 有参数'与之的问题 程则更是 •在这类问题中,在已知分段函数零数时求参数取值范围,是一*种常见题型,多见于高考和 命题中.已有作 题、问题类型、与其他知识的整合作了总结•文[叮用“赋值法”这一特殊技此类问题;文以参数位置不同为标准'于问题的分类;文、,-均着眼于用图象 问题;文认为其是知识 问题,总结了问题的数学思想.本文拟从化归的,谈这类问题的常用转化 ,以供参考.1 回归本源,直接利用零点存在理零定理是判断函数 零点的有效工具.结合函数单调性、值域+ 、周期 性质,能对函数零点的个数作岀 的判断.例1 (20 1 #全国卷I 理科第9题)已知函数=# , # ( 0,f (#)=. g(#) =f(# )+#+a .右g(#)存在2个零点,则a 的取值范围是()•(A)[— 1,0)(4)[0,+ X )(C)[— 1,+X )+ X )解析 由条件知g(#) =f(#) + # + a ==# +1 彳 # ( 0,+ 1 # > 0.#可见,函数y =g(#)在(一X,0-和(0,十X )上均是单调递增函数.在区间(0, +x )上'当# 9 0 时,g(#) 9-—(X ;# 9十 X , g (# ) 9+ X .因此,函数y =g(#)在区间(0, +X )上存在唯一零点,零点必在区间(—X , 0-上而在区间(—X ,-上,当# 9一 X 时,g(#) 9— X,故 g (0) = 1 +a )0,即 a )— 1 时,函数y= g(#"在(一 x ,0-上存在唯一零点.' g (# ) 2 零 ' a )—点评 零点存在性定理能判断零点的有无,对于零 数的问题 常 数 具 判断岀函数区间上的单调性,结合函数极限,能定函数零数的问题2巧设函数,转化为两个函数图象交点的个数函数零点即为其程的根,若函数对应方程能转化为9(#) =( (#)的形式,而y =' (# ), y =((#)的图象简单易作,这时函数零点个数的 问题' 转化为 函数图象 数的问题的种转化:解析 g(#)=f(#) +#+a 零点,即方程f (#) +# +a =0有两根,化为f (#) = —# —a .如图1所示,在同一坐标系内分别作岀函数y =f ( #)和y = —#— a 的图象,让它们有两个交点即符合条件.结合图象可见,直线y =—# — a 在y 轴上的截距— a(1,故 a ' ,一 1,+ X ).评,函数的零点就是两个函数交点的横坐标.贝种转化意,等号两边的函数均需简单明了,图象特征需清晰,只有这种转 化才能使问题顺3驱生,化归 次方程特征根的讨论程特征根的有 的 和备的工具.综合考虑判、韦达定理、对、区间端点对应的函数值,结合函数图象,能顺畅地解问题例2 (20 1 #天津卷理科第1 4题)已知a >0,函数f ( #)=*#2 + 2a# + a # ( 0,+一#2 + 2a# 一 2a # > 0,于#的方程f (#)=a#恰有2个互异的实数解,则a的取值范围是_____•解析y = g # ) = f # ) — a# =.2 程f (#) = a#有两[一 # + a# 一 2a # > 0,个互异的实数解'即函数y =gC.z)^有两个零点.由a > 0可知,二次函数(1 =z * 2 *45 $ az $ a (z ( 0),图象开口向上,对称轴为z = —2 < 0'(1 l z =0 =a >0,可见若(1 =z 2 $az $a 存在零点,贝U 零点必小于零.而二次函数(2 =—z 2 $az—2a (z > 0),图象开口向下,对称轴为z =2 >0,y 2 z =0 = —2a <0,可见若 y 2 = —z 2 $az —2a有零点,则零点大于零.函数(=a 图象有两个交点.而一 (z +1)2 —2(z +1)+1 =z $ 1!z —%) +4!z —%) +4 4= (z —2) + +4.z 一 2z 一 2( 1—Cz $ 1) — 2, z ( 0,z +1故((z )=.4(z 一 2) +------ $4, z > 0.、 z 一 2利用对勾函数图象,经过图象平移,可得(z )的图象,如图5,由几何直观,可见a ' (4,8).评分段函数有参数,具有 定性•若把参数分离岀去贝定函数为确定函数贝定的因素转化为图5一条水平直线的变化贝问题简单直观,便于操作.5动,赋特 化为确定问题视动为静,以静驭动,通过若干特殊参数值' 可窥见不确定因素中的一般情形.例3 (2018浙江卷第15题)已知A ')函*z 一 4 — ) A ,数f (z )=. 2i A =2时,不等式f(z )<0的解集是_____,若函数fz )恰有零点,则A 的取值范围是_____.(下转第58页)g(z ) =0.①当(1有 零点(n无零 ,如图2所示,有[a 2 — 4a > 0 贝.a 2 — 8a < 0,解得 4 < a < & a >0 ,②当(1无零点y n 有两个零点时,如图3所③当(1与(2各有一个零点时,如图4所示, (a 2 — 4a =0 ,有.a 2 — 8a = 0 ,此时无解.a >0 ,综上所述贝a ' (4,8).评,这个问题似乎无从下手.而一旦着眼于程根的 ,把其视为函数y =g(z )零点的问题,则会别有一番洞天,即可 而4 参变分离,转化为一条水平直线与函数图象点的个数参数和变量分离到等式或不等式的两边'称作参变分离.这种定的因素分化贝 定函数归为确定函数•其+及方程根的个数讨论问题中,参变分离是一种有效的手段•分段函 数零 数已知的求参数范围的问题个角度思考.2的另一种转化方式:当z (0时,方程/X z ) =az 即为z 2 $2az $a = az ,整理得 z 2 =_a(z +1).z %显然z =—1不是方程的解,故a =—z +1当z >0时,方程f(z ) =az 即为一z 2 +2az 一 2a =az ,整理得 z 2 =a (z — 2),易知 z =2z %不是方程的解'故a = —.令(p(z)=JC uz +1.2 则原问题等价于函数((z )与z%不明显,但它们都是变数”的函数•而变数”既沟通了z与(的,又刻画了动点的运动规律,功没!难,当变数”数集合中取值时,点(z'y)的是直线z—2y$3 =0的;当”数值时,点(z,y)的是直线.也就是说,直线2:z—2y +3=0上任意的坐标都是数方的函数'并且对于每数5,程组*z=2t一1.「'所确定的点M(z,y)都在直线[y=5$12上.*z=2t一1结论:方程组.「,5是变量)表示直[y=5$1线•我们把它叫做直线的参数方程'叫做参变数,简称为参数.T:—般地,在给定的坐标系中,如果曲线上任意一点的坐标z,y都是数5的函数z=4()'(是变量)①.并且对于5的每一个允[y=g(^)值,由方程组①所确定的点M(z,y)都在这条曲线上,那么方程组①条曲线的参数程,联系z,y之间的变数5参变数,简称为参数•参数的作用:沟通动点坐标的联系,刻画动点运动的规律.参数方程是学生的新概念,如何学生原有的认知结构岀情景,让学生参的产生和程,从中领悟参数的作用及建立参数方程的可能性和,就显得十分•本节课引入的设计贴近学生实际,从学生的知识岀发,引导学生积极思维「索知问题的规律、认识的,留下了刻的印象,取得了 的效本节课的特点是深入浅岀,让学生感受到数学来源于生活、数学离近,将学生对数学的求建其对生活的感受的基础左也启,在教学过程生活,考虑学生的近区,用学生更的语言来表达基本的数学知识和思想,最终再提炼成严谨的表上学生学、学5结大道至简,只要我们广大教师不断反思教学过程,不断追寻教学,就不会再将学生所的学习困难简单归因为“健忘%回归、不牵强附会即为“有根%以生为本、科学即为“有根%(上接第48页)解析当入=2时,f(z)= (z一4z)2,.c此时函数图象如图6所示,[z2—4z$3z<2,可见1V z<4.图6图7若函数恰有两个零点,由图7作如下讨论:A(1时,只有一个零点为4;1<"(3时,有两个零点,分别是1和4;3<A(4时,有三个零点,分别是134;A〉4时,有两个零点,分别是1和3.综上,'(13-U(4,+x).点评此问题的困难在于"的不确定性,命题者在题目的有明确的解题信号,先给了A=2的情形,进而才情形•通特殊节点的参数值,认识情形,这种思路题的会更有效参考文献罗志强.含参变量的分段函数的零点问题的特值分析法[J-.中学数学教学,2017(2).,-柳艳秋.分段函数零点问题探究[J-.中学数学,2015(12).,-温伟明.用图像法完美解决“分段函数”零点问题[J-.中学数学研究,2015(8).,-牟庆生.一类“显隐混搭型”分段函数的图像及应用[J-.中学数学,2015(10).,-徐正印,李妙珊.高考中分段函数与零点交汇问题的解题策略[J-.中学数学研究(华南师范大学版),201810).。
【高中数学考点精讲】考点三-分段函数

考点三分段函数(一)分段函数求值(1)已知自变量的值求函数值36.(2022·全国·高一单元测试)已知函数则()A.B.3 C.1 D.19【解析】故选:B37.(2022·全国·高一课时练习)已知函数,则___________. 【解析】根据题意,故答案为:938.(2022·四川·仁寿一中高一开学考试)设函数,则()A.B.C.D.【解析】因为,则.故选:C.39.(2022·全国·高一课时练习)已知函数(1)求,,的值;(2)若,求实数a的值;(3)若,求实数m的取值范围.【解析】(1)由题可得,,因为,所以;(2)①当时,,解得,不合题意,舍去;②当时,,即,解得或,因为,,所以符合题意;③当时,,解得,符合题意;综合①②③知,当时,或;(3)由,得或或,解得或,故所求m的取值范围是.(2)已知函数值求自变量或参数的值40.(2022·江西抚州·高一期末)设函数,若,则______. 【解析】因为函数,由,所以或解得:或2.故答案为:或241.(2022·浙江台州·高一期末)设函数,若,则实数a的值为___________.【解析】,,解得:.故答案为:542.(2022·辽宁·渤海大学附属高级中学高一期末)函数,若,则实数a的值为()A.±1 B.-2或±1 C.-1 D.-2或-1【解析】当时,令,与矛盾,不合题意;当时,令,取,符合题意,故选:C43.(2022·山东·新泰市第一中学高一期末)已知实数,函数,若,则a的值为________【解析】当时,,所以,解得,不满足,舍去;当时,,所以解得,满足.故答案为:.44.(2022·山东·薛城区教育局教学研究室高一期末)已知函数,若,,则的取值范围是________.【解析】先作函数图象如下:由图可知,若,,设,则,,由知,;由知,;故,,故时,最小值为,时,最大值为,故的取值范围是.故答案为:.(二)分段函数与不等式的综合45.(2022·全国·高一课时练习)已知函数,则不等式的解集是()A.B.C.D.【解析】函数,则不等式等价于或者,解得:,解得:或,于是得或,所以不等式的解集是.故选:A46.(2022·全国·高一课时练习)已知,则使成立的x的取值范围是_____.【解析】∵,∴或,∴或,即,∴使成立的x的取值范围是.故答案为:47.(2022·浙江省乐清中学高一开学考试)设函数则关于的不等式的解集为______.【解析】因为当时,,则,;同理当时,,,又,综上所述为奇函数,则,即,当时,,解得;当时,,解得,因为,所以.故的解集为故答案为:48.(2022·全国·高一)设函数试解不等式.【解析】由题意可知,,所以所以或,解得或,所以不等式的解集为∪.49.(2022·全国·高一课时练习)已知函数,则的解集为()A.B.C.D.【解析】当时,,则可化为,解得,又,所以.当时,,则可化为,解得,又,所以.综上,.故选:B.(三)分段函数的图象问题50.(2022·全国·高一课时练习)已知函数.(1)画出函数的图像并写出它的值域;(2)若,求x的取值范围;【解析】(1)由图可知,函数的值域为(2)或,解得或故x的取值范围为51.(2022·全国·高一)已知函数(1)求的值;(2)若,求的值;(3)请在给定的坐标系中画出此函数的图象,并根据图象说出函数的值域. 【解析】(1)因为,所以(2)当时,,不合题意,应舍去当时,解得或(舍)当时,,则综上,或(3)值域为52.(2022·全国·高一单元测试)已知.(1)用分段函数的形式表示;(2)画出的图象,并写出函数的单调区间和值域.【解析】(1)当时,当时,,当时,,所以.(2)的图象如图:由图易得,的单调递增区间为,单调递减区间为,的值域为.53.(2022·江苏·高一)设函数, ,,其中,记函数的最大值减去最小值的差为.(1)求函数的解析式;(2)画出函数的图象并指出的最小值.【解析】(1),当时,在上为单调递减函数,,当时,,,当时,在上单调递减,在上单调递增,,,,若,即时,,,若,即时,,,当时,,,当时,在上为单调递增函数,,综上所述:.(2)图象如图:由图可知,当时,取得最小值为.(四)求分段函数的值域或最值54.(2022·全国·高一)函数的值域是______________(用区间表示)【解析】当时,,为开口向上,对称轴为的抛物线,所以,当时,,为单调递减函数,所以,综上:,即的值域为.故答案为:55.(2022·全国·高一专题练习)求函数在-的最值. 【解析】在上递增,对称轴是,在上递减,在上递增,,,,,所以当时,函数最大值是;当时,函数最小值是.56.(2022·江西省铜鼓中学高一期末)设函数,用表示中最大的一个,则的最小值为_______【解析】因为的交点坐标为,的交点坐标为,的交点坐标为,的图象如下图:由图象可看出的最小值为:1.故答案为:1.57.(2022·安徽·歙县教研室高一期末)已知函数,,则函数的最大值为______.【解析】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:58.(2022·内蒙古赤峰·高一期末)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?【解析】(1)由题意,总成本,因为销售收入满足,所以利润函数;(2)当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13 (万元) .所以当工厂生产4万件产品时,可使盈利最多为13万元.(五)根据分段函数的值域(最值)求参数59.(2022·福建·福州四中高一期末)设函数若存在最小值,a 的取值范围___________.【解析】若时,,∴;若时,当时,单调递增,当时,,故没有最小值,不符合题目要求;若时,当时,单调递减,,当时,∴或,解得,综上可得;故答案为:60.(2022·上海闵行·高一期末)已知,函数有最大值,则实数的取值范围是___________.【解析】由在上递减,当时值域为,当时值域为,由在上递增,当时值域为,当时值域为,∴要使函数存在最大值,则且,即,∴.故答案为:.61.【多选】(2022·全国·高一课时练习)已知函数,若的最小值为,则实数的值可以是()A.B.1 C.0 D.2【解析】当时,,则在上单调递减,所以,当时,,在上单调递增,所以,得,故选:AC62.(2022·江苏省响水中学高一开学考试)已知函数,若存在实数,使得对于任意的实数都有成立,则实数的取值范围是()A.B.C.D.【解析】函数,若存在实数,使得对于任意的实数都有成立,即函数有最大值,又因为当时,,单调递减,且,故当时,,且,故,故选:.(六)分段函数的综合应用63.(2022·江西·高一期末)已知函数,若方程恰有两个不等的实根,则实数的取值范围是()A.B.C.D.【解析】方程恰有两个不等的实根,等价于与的图象有两个交点,的图象如图所示,平移水平直线可得,故选:B.64.【多选】(2022·贵州黔东南·高一期末)已知函数,关于函数,f(x)的结论正确的是()A.f(x)的最大值为3 B.f(0)=2C.若f(x)=-1,则x=2 D.f(x)在定义域上是减函数【解析】当时,是增函数,则此时(1),当,为减函数,则此时,综上的最大值为3,故A正确;,故B正确;当时,由时,得,此时≤1,成立,故C错误;当时,是增函数,故D错误,故选:AB.65.【多选】(2022·全国·高一单元测试)已知函数关于函数的结论正确的是()A.的定义域为R B.的值域为C.若,则x的值是D.的解集为【解析】函数的定义域是,故A错误;当时,,值域为,当时,,值域为,故的值域为,故B正确;当时,令,无解,当时,令,得到,故C正确;当时,令,解得,当时,令,解得,故的解集为,故D错误.故选:BC.。
函数专题:分段函数的6种常见考法-【题型分类归纳】

函数专题:分段函数的6种常见考法一、分段函数的概念若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.【注意】分段函数是一个函数而不是几个函数二、分段函数问题解题思路1、分段求解时解决分段函数问题的基本原则;当求()0f x 的值时,要先判断0x 属于定义域中的“哪段”,然后再代入相应的解析式求解。
2、有关分段函数的不等式问题,要先按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解。
3、已知分段函数,求参数值,往往要对含参数的自变量属于“哪段”进行分类讨论,然后再代入相应的解析式,列出方程求解,当出现()()f f a 的形式时,应从内往外依次求值。
4、求解分段函数参数的取值范围问题时,一般将参数当成已知,画出分段函数图象,根据函数图象列出满足要求的不等式(组)。
题型一 求分段函数值【例1】已知函数()2,222,2xx x f x x ⎧>⎪=⎨+≤⎪⎩,则()1f =( ) A .1 B .2 C .4 D .8 【答案】C【解析】当2x ≤时,()22x f x =+,()11224f ∴=+=,故选:C.【变式1-1】若()()231log (1)x x f x x x ⎧≤=⎨>⎩,则()()016f f +=_________.【答案】5【解析】因函数()()231log (1)x x f x x x ⎧≤=⎨>⎩,所以()()020163log 16145f f +=+=+=.【变式1-2】若函数()2321,3,log ,3,x x f x x x ⎧+<=⎨⎩则()()2f f =( )A .4B .3C .2D .1 【答案】C【解析】因为()222219f =⨯+=,所以()()()329log 92f f f ===,故选:C.【变式1-3】已知函数()()21log 21,02,0,x x x f x x +⎧+>=⎨≤⎩,则()()2f f -=______.【答案】1【解析】由题意可得()11222f --==,所以()()21log 2122f f f ⎛⎫= ⎪⎝⎭==-.题型二 根据分段函数值求参数【例2】已知函数()2,0,2,0.x x a x f x x ⎧+≤=⎨>⎩若()14f f ⎡⎤-=⎣⎦,且1a >-,则=a ( ) A .12- B .0 C .1 D .2 【答案】C【解析】由题意知,2(1)(1)1f a a -=-+=+,又1a >-,所以10a +>,所以1[(1)](1)24af f f a +-=+==,解得1a =,故选:C【变式2-1】设函数21,1()2,1x a x x f x x -⎧+<=⎨≥⎩,若1124f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则=a _____________. 【答案】134【解析】因为21,1()2,1x a x x f x x -⎧+<=⎨≥⎩,所以21151224f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1124f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得5144f ⎛⎫= ⎪⎝⎭, 所以54124a -=,52422a --=, 所以524a -=-,得134a =,【变式2-2】设函数2,1(),1x a x f x x x ⎧+≥=⎨-<⎩,若()()29f f -=,则实数a 的值为___________. 【答案】5【解析】()22f -=,()()()2249f f f a -==+=,解得:5a =.【变式2-3】(多选)已知()12,0,ln ,0,x x f x x x -≤⎧=⎨>⎩,若()()1f f a =,则实数a 的值可以为( )A .1e 2- B .12 C .1 D .e e 【答案】ACD【解析】因为()12,0,ln ,0,x x f x x x -≤⎧=⎨>⎩,()()1f f a =,所以当0a ≤时,()12>0f a a =-,所以()()()()12ln 121f f a f a a =-=-=, 所以12e a -=,解得1e 02a -=<,所以1e2a -=满足; 当01a <≤时,()ln 0f a a =≤,所以()()()ln 12ln 1f f a f a a ==-=, 所以ln 0a =,解得1a =,满足题意;当>1a 时,()ln >0f a a =,所以()()()()ln ln ln 1f f a f a a ===, 所以ln e a =,解得e e a =,满足题意; 故选:ACD.题型三 根据分段函数的单调性求参数【例3】若函数()()22212311x ax x f x a x x ⎧--+>⎪=⎨-+≤⎪⎩,,是R 上的减函数,则实数a 的取值范围是( )A .213⎛⎤⎥⎝⎦,B .215⎡⎫-⎪⎢⎣⎭, C .23⎛⎫+∞ ⎪⎝⎭, D .223⎛⎤ ⎥⎝⎦, 【答案】D【解析】由题意得,1a -≤ 解得1a ≥-;230-<a ,解得23a >;当1x =时122231--+≤-+a a ,解得2a ≤. 综上得实数a 的取值范围为223a <≤.故选:D.【变式3-1】已知函数()()2,0112,0x x f x x x a x a x ⎧≤⎪=-⎨⎪--++>⎩在R 上单调递减,则实数a 的取值范围是( )A .()1,0-B .[]1,0-C .()1,-+∞D .[)1,-+∞ 【答案】B【解析】当0x ≤时,()1111x f x x x ==+--单调递减, ()f x 在R 上递减, 102a +∴-≤且()20010201a a ≥--+⨯+-, 解得10a -≤≤,故选:B .【变式3-2】已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的()1212,x x x x ≠都有()()12120f x f x x x -<-成立,则a 的取值范围为( )A .(),2-∞-B .13,8⎛⎤-∞ ⎥⎝⎦ C .(],2-∞ D .13,28⎡⎫⎪⎢⎣⎭【答案】B【解析】对任意的()1212,x x x x ≠都有()()12120f x f x x x -<-成立,()f x ∴在R 上单调递减,()22011222a a -<⎧⎪∴⎨⎛⎫-≥- ⎪⎪⎝⎭⎩,解得:138a ≤,即实数a 的取值范围为13,8⎛⎤-∞ ⎥⎝⎦.故选:B.【变式3-3】已知(6)4,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩在区间-∞+∞(,)上是单调递增函数,则实数a 的取值范围是( )A .(1,6)B .6[,6)5C .6[1,]5D .(1,)+∞ 【答案】B【解析】()f x 在-∞+∞(,)上为单调递增函数;601(6)14log 1a a a a a ->⎧⎪∴>⎨⎪-⨯-≤⎩,解得665a ≤<;∴实数a 的取值范围为6[,6)5.故选:B .【变式3-4】若2210()(1)(1)20axax x f x a a x ⎧+≥=≠⎨-⋅<⎩,在定义域(,)-∞+∞上是单调函数,则a 的取值范围_______. 【答案】((,21,2⎤-∞⎦.【解析】()f x 在定义域(,)-∞+∞上是单调函数,①函数的单调性是增函数时,可得当0x =时,()20121a -⋅≤即,211a -≤解之得22a -≤0x ≥时,21y ax =+是增函数,0a ∴>0x <时 2(1)2ax a -⋅是增函数,210a ∴->,得1a <-或1a >,综上实数a 的取值范围是12a <≤②函数的单调性是减函数时,可得当0x =时, ()20121a -⋅≥即211a -≥,解之得2a ≤2a ≥0x ≥时,21y ax =+是减函数,0a ∴<又0x <时, 2(1)2axa -⋅减函数,210a ∴->,得1a <-或1a >综上:实数a 的取值范围是2a ≤- 综上所述:a 的取值范围为((,21,2⎤-∞-⎦。
高三数学分段函数抽象函数与复合函数试题

高三数学分段函数抽象函数与复合函数试题1.设函数,若对任意给定的,都存在唯一的,满足,则正实数的最小值是 .【答案】【解析】当时,当时,当时,,因此当时,对应唯一的所以对恒成立,即,正实数的最小值是【考点】分段函数值域2.设函数,若对任意给定的,都存在唯一的,满足,则正实数的最小值是 .【答案】【解析】当时,当时,当时,,因此当时,对应唯一的所以对恒成立,即,正实数的最小值是【考点】分段函数值域3.设函数f(x)=若f(a)+f(-1)=2,则a等于().A.-3B.±3C.-1D.±1【答案】D【解析】依题意,得f(a)=2-f(-1)=2-=1.当a≥0时,有=1,则a=1;当a<0时,有=1,a=-1.综上所述,a=±1.4.已知是定义在上的奇函数,当时,。
当时,且图象关于点对称,则( )A.B.C.D.【答案】A【解析】在中令得:.因为图象关于点对称,所以且.在中令得:.在中令得:,.因为当时,,所以当时,恒有.所以在中令得:.【考点】1、函数的性质;2、抽象函数.5.函数的零点个数是()A.2个B. 1 个C.4个D.3个【答案】D【解析】由,解得,由,解得或,故有三个零点.【考点】分段函数零点问题.6.已知函数 ,则_____.【答案】【解析】【考点】分段函数.7.如果函数图像上任意一点的坐标都满足方程,那么正确的选项是()A.是区间上的减函数,且B.是区间上的增函数,且C.是区间上的减函数,且D.是区间上的增函数,且【答案】A【解析】由题意知,,由基本不等式知,解得;由得,因,所以是区间上的减函数,且.【考点】1.函数的单调性;2.基本不等式求最值;3.对数运算.8.设函数,则方程的解集为。
【答案】【解析】当时,解得;当时,解得或.所以方程的解集为.【考点】函数与方程.9.已知为实数,定义运算若关于的方程恰有两个实根,则实数的取值范围是;【答案】0<k<1【解析】由知,,关于的方程恰有两个实根,即函数与y=k恰有两个交点,结合函数的图象知,实数的取值范围是0<k<1。
分段函数常见题型的解法

分段函数常见题型的解法作者:文/凌苏建来源:《新课程·中旬》2014年第05期分段函数对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数。
它是一个函数,而不是几个函数,分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。
由于课本没有明确给出分段函数的定义,只以例题的形式出现,不少学生对它的认识肤浅模糊,以致解题常常出错。
本文归类介绍分段函数的若干种题型及其解法,以供大家参考.题型一:求函数值例1.(2012年山东高考卷8)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x。
则f(1)+f(2)+f(3)+…+f(2012)=(A)335 (B)338 (C)1678 (D)2012分析:本题为已知分段函数求值问题,此函数有两段表达式,利用函数的周期性将自变量化到已知段上来求值.解析:(-3)=-1,f(-2)=0,f(-1)=-1,f(0)=0,f(1)=1,f(2)=2,而函数周期为6,f(1)+f(2)+···+f(2012)=335(-1+0-1+0+1+2)+f(1)+f(2)=335+3=338.答案应选B.例2.已知函数f(x)=■,若f(a)=8,求a.分析:本题为已知函数值求自变量,应分段求a值,将符合要求的a值并起来即可,a=±2。
题型二:求函数值域或最值例3.已知函数■的值域为分析:分段函数的值域为各段函数值域的并集,分别求出各段的值域即可,值域为[-8,1]例4.设a>0,函数f(x)=x2+alnx-1,求函数f(x)在[1,+∞)的最小值.分析:去绝对值后可化为分段函数,然后分段求最小值,再比较各段的最小值确定函数的最小值。
解析:f(x)=■(1)当x≥e时,通过求导知f(x)在[e,+∞)上是增函数,所以ymin=f(e)=e2。
考点04 分段函数(解析版)

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。
高考热点:分段函数题型总结

【例
2】已知函数
f
(x)=
2x 3x ,
x
1,
x 1,
1,
则满足
f(f(m)
)=3f
(m)的实数
m
的取值范围是
()
( A)(-∞, 0]
( B)[0,1]
(C)[0,+∞)∪{- 1 } 2
解析:由
f(f(m))=3f(m),可得
f 2
m 1, f m 1
3
f
m
得
( D)[1,+∞)
f(m)=0
2
2
2
2
只需要计算 g(x)=-f(x)- x 在 R 上的最大值和 h(x)=f(x)- x 在 R 上的最小值即可.
2
2
当 x≤1 时,g(x)=-x2+ x -3=-(x- 1 )2- 47 ≤- 47 (当 x= 1 时取等号),h(x)=x2- 3 x+3=(x- 3 )2+
2
4 16 16
3
2x
2x
述得- 47 ≤a≤2.故选 A. 16
方法点睛
首先将不等式化为最简,分清是存在,还是恒成立(任意),构造函数,转化为分 段函数的最值问题,在求值时要分类求解.
4
2
4
39 ≥ 39 (当 x= 3 时取等号),所以- 47 ≤a≤ 39 ;当 x>1 时,g(x)=- 3 x- 2 =-( 3 x+ 2 )≤-2 3
16 16
取等号),h(x)= x + 2 ≥2 x 2 =2(当 x=2 时取等号),所以-2 3 ≤a≤2.综上所
函数
f (x)=
x2
分段函数的几种常见题型及解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)x x x B f x x --≤≤⎧=⎨-<≤⎩222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩yx5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )v1.0 可编辑可修改A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .y x5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.x10.解分段函数的不等式 例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >,则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞.(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】xyv1.0 可编辑可修改以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c2=30(2),联立(1)(2)解得c =60,A =16.答案:D6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ①由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10. 答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.答案:-34。
分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。
3.分段函数

3.分段函数I .题源探究·黄金母题【例1】已知函数()()()4,0;4,0.x x x f x x x x +≥⎧⎪=⎨-<⎪⎩求()1f ,()3f -,()1f a +的值.【解析】因为()()()4,0;4,0.x x x f x x x x +≥⎧⎪=⎨-<⎪⎩,所以(1)1(14)5f =⨯+=,(3)3(34)21f -=-⨯--=,()(1)(5),1,1(1)(3), 1.a a a f a a a a ++≥-⎧+=⎨+-<-⎩ II .考场精彩·真题回放【例2】【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩.其中.a ∈R ,若59()()22f f -=,则(5)f a 的值是_____.【答案】25-【解析】∵5191()()()()2222f f f f -=-==,∴112225a -+=-,即35a =,因此32(5)(3)(1)(1)155f a f f f ===-=-+=-. 【例3】【2016高考北京理】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________. 【答案】2,(,1)-∞-.3()3g x x x =-与直线2y x=-【解析】如图作出函数的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此①当a =时,()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,得()f x 无最大值,∴所求a 的范围是(,1)-∞-【例4】【2016年山东高考理数】已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是________________.【答案】(3,)+∞【解析】由题意画出函数()y f x =与y b =的图像如下图时才符合题意,要满足存在实数b ,使得关于x 的方程()f x b =有三个不同的根应满足240m m m m ⎧-<⎨>⎩解得3m >,即m的取值范围是(3,)+∞.理论基础·解题原理考点一 分段函数的概念(1)定义:在函数的定义域内,对于自变量x 不同取值区间,有着不同的对应法则,这样的函数叫分段函数.函数的解析式中的绝对值含有未知数x ,此函数实质上也是分段函数.(2)定义域:分段函数的定义域是各段函数解析式中自变量取值集合的并集. (3)值域;分段函数的值域是各段函数值集合的并集. 考点二 分段函数图象(1)图象的构成:分类函数不同区间上的表达式不同,但每一段的函数解析式基本上都是常见的基本初等函数关系,因此分段函数的图象基本上是两个或两个以上的基本初等函数的部分图象共同所构成的.(2)图象的作法:通常是逐段作出其函数图象,而作每一段函数的图象时,通常是作出所涉及到基本函数的图象,然后根据每一段的定义域进行截取,但必须注意各个分段的“端点”是空心还是实心.考点三 分段函数的性质 1.分段函数的单调性:判断分段函数的单调性首先应该判断各分段分区间函数的单调性:(1)如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起;(2)如果单调性不相同,则直接可分开说明单调性.2.分段函数的奇偶性:判断分段函数的奇偶性主要有两种方法:(1)如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性;(2)与初等函数奇偶性的判断一样,也可根据定义,一般分两步进行:①判断定义域是否是对称区间;②对定义域中任意一个实数x ,判断()f x -与()f x 的关系.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中等或中等偏下,往往与函数的定义域、值域、奇偶性、单调性、图象,以及不等式、方程有联系.【技能方法】已知分段函数的最值求参数的取值范围的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式,注意取值范围的大前提,利用函数的单调性寻找关于参数的不等式(组).若能利用数形结合可加快求解的速度.【易错指导】(1)当自变量以字母参数的形式出现时,易忽视对字母的分类讨论,造成少解; (2)判断函数的奇偶性时,忽视函数定义域的对称性的判断,或函数在0x =有定义时,忽视对(0)f 的验证;(3)判断函数单调性时,不考虑函数在分界点是否连续,或忽视函数在分界点处的函数值及此点左右两端的函数值的大小比较,造成逻辑思维不严谨;(4)将含有绝对值符号的函数化为分段表示时,在找分界点易出现错误,或判断符号时出现错误;V .举一反三·触类旁通考向1 求解分段函数的函数值【例1】【2015全国新课标Ⅱ卷理】设函数211l o g (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C ..9D .12【例2】【2012高考江苏10】设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为___________. 【例3】【2015高考山东理10】设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( )(A )2,13⎡⎤⎢⎥⎣⎦ (B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞ 考向2 求分段函数的最值(或值域)【例4】【2015高考浙江理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是___________.【例5】【2015高考福建理14】若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是___________.考向3 分段函数的奇偶性【例6】【2016届北京市海淀区高三第二学期期中练习理】已知函数sin(),0,()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( ) A .,44a b ππ==-B .2,36a b ππ== C .,36a b ππ== D .52,63a b ππ==考向4 分段函数的单调性【例7】【2016届浙江宁波效实中学高三上期中考试理科】函数21(2)()1(2)ax x x f x ax x ⎧+->=⎨-≤⎩是R 上的单调递减函数,则实数a 的取值范围是( )A .104a -≤< B .14a ≤- C .114a -≤≤- D .1a ≤- 考向5分段函数的图象交点【例8】【2016届西安中学高三第四次仿真理】已知定义在R 上的函数()f x 满足:(1)()(2)0f x f x +-=,(2)(2)()f x f x -=-;(3)在[1,1-上表达式为[1,0]()cos(),(0,1]2x f x x x π∈-=⎨∈⎪⎩,则函数()f x 与函数2,0()1,0x x g x x x ⎧≤=⎨->⎩的图象在区间[3,3]-上的交点个数为( )A .5B .6C .7D .8 考向6分段函数的零点【例9】【2016届陕西省西工大附中第九次适应性训练数理】函数21,0()2ln ,0x x f x x x x ⎧-≤=⎨-+>⎩的零点个数为_________. 【例10】【2015年天津高考理科】已知函数22||2()(2)2x x f x x x -≤⎧=⎨->⎩,函数()(2)g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有4个零点,则的取值范围是( )A .B .C .D .考向6 分段函数与不等式【例11】【2016届合肥市高三第三次教学质量检测理】已知函数2log (1),1()(2),1x x f x f x x +≥⎧=⎨-<⎩,则不等式()2f x >的解集是___________.b 7,4⎛⎫+∞⎪⎝⎭7,4⎛⎫-∞ ⎪⎝⎭70,4⎛⎫ ⎪⎝⎭7,24⎛⎫ ⎪⎝⎭。
高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析1.设函数,若,则 .【答案】【解析】若,则,所以,无解;若,则,所以,解得.故.【考点】分段函数,复合函数,容易题.2.若函数则____________.【答案】.【解析】由已知得.【考点】求分段函数的值.3.设,则满足的的值为()A.2B.3C.2或3D.【答案】C.【解析】由题意或.【考点】分段函数.4.已知函数,则的值是 .【答案】【解析】,.【考点】分段函数求值.5.已知函数则函数的零点个数()A.2B.3C.4D.5【答案】C【解析】由得:.由得:.所以;此时,每一段都是单调递增的,且,,.由此可作出其简图如下图所示(实线部分):由图可知,该函数有4个零点.【考点】1、分段函数;2、函数的零点.6.已知函数若存在,当时,,则的取值范围是 .【答案】【解析】作出函数的图象如图所示,由图可知:.选.【考点】1、分段函数;2、不等关系.7.设,则等于()A.B.C.D.【答案】B【解析】∵,∴.【考点】1、分段函数;2、指数、对数运算.8.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有四个不同的根,则这四根之和为()A.±4B.±8C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有四个不同的根,由上图可知,要么是,要么是,所以四个根之和要么为-8,要么为8.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.9.若函数,则()A.B.1C.D.3【答案】A【解析】,,选A.【考点】分段函数的求值.10.已知函数的定义域为,则函数的定义域是()A.[1,2]B.[0,4]C.(0,4]D.[,4]【答案】D【解析】依题意,得,即,故 .【考点】1.抽象函数的定义域;2.不等式的解法.11.已知函数有三个不同的零点,则实数的取值范围是_____.【答案】【解析】分段函数零点的判定,常借助于函数图像与轴的位置来确定.函数是由函数的图像上下平移得到,当,时,函数有一个零点;函数的图像是一条开口向上的抛物线,当,,即时,有两个零点;因此,满足题设的实数的取值范围是.【考点】分段函数指数函数二次函数的图像与性质函数零点的判定12.已知实数,函数,若,则的值为 .【答案】【解析】时,,解之得(舍);时,,解之得.本题易忽略分类讨论,直接由得,从而造成错误.【考点】考查分段函数,方程的解法及分类讨论思想.13.已知实数,函数,若,则的值为 .【答案】【解析】时,,解之得(舍);时,,解之得.本题易忽略分类讨论,直接由得,从而造成错误.【考点】考查分段函数,方程的解法及分类讨论思想.14.函数的图象与函数的图象的公共点个数是个【答案】2【解析】做出函数和的图象如图,显然有2个公共点.【考点】1.分段函数的图象;2.对数函数图象的变换.15.已知则的值等于.【答案】【解析】由题意知.【考点】分段函数16.设函数,则满足的的取值范围是__________.【答案】【解析】当时,由得,解得,所以不等式在区间上的解集为;当时,由得,解得,所以不等式在区间上的解集为,综上所述,满足的的取值范围是.【考点】分段函数、对数函数17.已知函数若,则等于.【答案】或【解析】令,满足,当,满足所以等于或【考点】分段函数点评:分段函数由函数值求自变量时需在各段内分别求x的值,求出后注意验证各段的x的范围是否满足18.已知函数,(,且),若数列满足,且是递增数列,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,函数,(,且),且数列满足,且是递增数列,所以,=在(1,+∞),是增函数.由复合函数的单调性,在(,+∞)是增函数,所以,a>1,且,解得,,故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。