双(4-异氰酸酯基苯基)甲烷101-68-8

双(4-异氰酸酯基苯基)甲烷101-68-8
双(4-异氰酸酯基苯基)甲烷101-68-8

生物基纤维造福人类

生物基纤维造福人类:源于自然的馈赠 生物技术是21世纪最重要的科学技术前沿领域之一。随着绿色环保和可持续发展的理念不断深入人心,生物聚合物技术持续高速发展。依据欧洲生物塑料协会的研究报告,当前开发中的生物高分子材料包括纤维素聚合物,生物基聚酯PLA、PHB、PTT、PBT、PET等、生物基聚酰胺PAll、PA6、PA66、PA69、PA610、生物基聚乙烯、生物基聚丙烯、生物基PVC、生物基TPU以及淀粉基聚合物等。 生物基纤维采用农、林、海洋废弃物、副产物加工而成,是来源于可再生生物质的一类纤维,体现了资源的综合利用与现代纤维加工技术完美融合,产品亲和人体,环境友好,并有特有的功能,引领新的消费趋势。 其中,再生生物基纤维以针叶树、木材下脚料、毛竹、麻类、藻类、虾、蟹等水产品和昆虫等节肢动物的外壳为原料,原料广且环保自然。合成生物基纤维采用农林副产物为原材料,经发酵制得生物基原料,制得生物基PTT、PDT聚酯。它们都是极具发展前景的纺织材料。 背景 政策支撑路径清晰 当前,世界各国特别是发达国家在世界金融危机后,均把发展生物产业作为走出困境、争夺高新技术制高点、重新走向繁荣的国家战略。从20世纪90年代起,美国、欧盟、日本等传统化纤生产强国一方面受石油短缺、环境问题影响,逐渐退出常规化纤生产,另一方面重新定义纤维材料不仅是服装、家纺、产业用纺织品的原料,而且是重要的基础材料和工程材料。他们不断进行产业结构调整,逐步把纤维产业转向利润更高、受资源或环境影响更小的高性能化学纤维和生物基化学纤维的研发和生产。 目前在我国,发改委、财政部、工信部、科技部、中科院等部门正在联合推动“生物基化学纤维及原料专项实施方案”。记者了解到,根据《国民经济和社会发展第十一个五年规划纲要》和《生物产业发展“十一五”规划》的要求,2008年国家发展改革委就已经开始组织“生物基材料国家高技术产业化重大专项”申报工作现改为“生物基材料重大工程实施方案”,“生物基化学纤维及原料专项实施方案”是这个项目下的分支项目。 我国生物基化学纤维的生产目前还处于产业化突破的关键阶段,而当前的主要任务就是尽快实现“三个替代”、“三个结合”和“三个重点”。“三个替代”即原料替代、过程替代和产品替代。“三个结合”即与生物化工产业相结合;与节能环保、废物利用相结合;与功能改进及推广应用相结合。“三个重点”即重点攻克生物多元醇生产及应用技术、聚乳酸纤维原料制备及纤维应用技术以及海洋生物基纤维原料多元化及规模化生产技术。 从国际范围来看,发展方向与路径也逐步清晰。2011年世界生物塑料会议纽约展现出了生物PX/PTA与100%生物聚酯技术高速发展的实例,引起了业界的广泛关注。预计生物路线的PX/PTA/PET产业链将于2015~2016年间实现商业化运行。美国Freedonia公司预测,未来几年间100%生物基PET工业化规模生产将成为现实。 拥有生产此产品完整产业链的公司。企业产PTT生物质差别化纤维5万吨,年产PDO2万吨的项目已经于去年正式投入运营。 除了聚酯PTT,海藻酸盐纤维、纯壳聚糖纤维等品种也在紧锣密鼓的布局中。其中,海藻酸盐纤维挖掘了海洋新资源,同时具有天然抗菌、亲肤的功效。目前,广东百合医疗科技有限公司“海藻酸盐纤维及其生物医用敷料产业化建设”项目的研究成果总体技术达到国际先进水平,其中产品质量指标达到国际领先水平。浙江越隆集团绍兴蓝海科技有限公司百吨级海藻酸盐纤维生产装置试车成功,目前产品已推向市场。

二苯基甲烷二异氰酸酯

二苯基甲烷二异氰酸酯(MDI): MDI和TDI都是生产聚氨酯的原料,可互为替代使用。但MDI毒性比TDI低,同时MDI形成的聚氨酯产品的模塑性相对较好。 MDI化学名称:二苯基甲烷二异氰酸酯 产品分类:纯MDI、聚合MDI、液化MDI、改性MDI等。 物理性质: 纯MDI:常温下为白色到微黄色晶体,储藏温度为5度以下,保质期为三个月,包装一般为225或240公斤铁桶充氮包装(槽车充氮为10天保质期)。 聚合MDI:棕褐色透明液体,常温保存,保质期两年,包装一般为250公斤铁桶充氮包装。 现有技术:目前全球流行的MDI生产方法基本是以苯胺为原料,经光气法以后再还原形成粗品的MDI产品,再经分馏装置,分离出纯MDI和聚合MDI。 最新技术:由于光气其巨大的危害性,所以许多工厂都在积极研制新的合成工艺以取代光气法生产,如碳酸二甲酯法,但是目前这些方法还只是在小试车间内有成功的案例,根本无法应用于大规模的生产。 化学性质: 【中文名称】4,4`-二苯基甲烷二异氰酸酯;亚甲基双(4-苯基异氰酸酯);二苯甲烷-4,4`-二异氰酸酯 本品有毒,刺激眼睛、粘膜,空气中允许浓度为0.02E-6。 【性状】白色或浅黄色固体。 【溶解情况】溶于苯、甲苯、氯苯、硝基苯、丙酮、乙醚、乙酸乙酯、二恶烷等。 【用途】本品的初级品广泛用于聚氨酯涂料,此外,还用于防水材料、密封材料、陶器材料等;用本品制成的聚氨酯泡沫塑料,用作保暖(冷)、建材、车辆、船舶的部件;精制品可制成汽车车挡、缓冲器、合成革、非塑料聚氨酯、聚氨酯弹性纤维、无塑性弹性纤维、博膜、粘合剂等。 【制备或来源】以苯胺为原料,与甲醛反应,在酸性溶液中缩合,用碱中和,然后蒸馏,可制得二氨基二苯甲烷,然后与碳酰氯反应可制得,再精馏精制。 【其他】 本品含有异氰酸酯基(-N=C=O),在合成树脂或涂料过程中,与涂料或树脂中的羟基起反应而固化。 MDI是4,4'二苯基甲烷二异氰酸酯(纯MDI),含有一定比例纯MDI与多苯基多亚甲基多异氰酸酯的混合物(聚合MDI)以及纯MDI与聚合MDI的改性物的总称,是生产聚氨酯最重要的原料,少量MDI应用于除聚氨酯外的其它方面。聚氨酯既有橡胶的弹性,又有塑料的强度和优异的加工性能,尤其是在隔热、隔音、耐磨、耐油、弹性等方面有其它合成材料无法比拟的优点,是继聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯和ABS后第六大塑料,已广泛应用于国防、航天、轻工、化工、石油、纺织、交通、汽车、医疗等领域,成为经济发展和人民生活不可缺少的新兴材料。 市场主要供应商: 欧美企业:巴斯夫、拜耳、亨斯迈、陶氏等 日韩企业:NPU、三井、锦湖三井等 国内企业:烟台万华和跨国企业等 应用领域:

甲基异氰酸酯

甲基异氰酸酯化学品安全技 术说明书 第一部分:化学品名称化学品中文名称:甲基异氰酸酯 化学品英文名称:methyl isocyanate 技术说明书编码:319CAS No.: 624-83-9 分子式: C 2H 3NO 分子量:57.05第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述健康危害:吸入低浓度本品蒸气或雾对呼吸道有刺激性;高浓度吸入可因支气管和喉的炎症、痉挛,严重的肺水肿而致死。蒸气对眼有强烈的刺激性,引起流泪、角膜上皮水肿、角膜云翳。液态对皮肤有强烈的刺激性。口服刺激胃肠道。 燃爆危险:本品易燃,高毒,具强刺激性。第四部分:急救措施皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。食入:用水漱口,给饮牛奶或蛋清。就医。第五部分:消防措施危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。化学反应性强,易聚合,易吸湿。遇水、酸类或与有机物、氧化剂接触,都可放出大量热而引起剧烈燃烧,并放出有毒和易燃的二氧化硫。遇水或水蒸气反应放出有毒和易燃的气体。在火场中,受热的容器有爆炸危险。有害燃烧产物:一氧化碳、二氧化碳、氧化氮、氰化氢灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:二氧化碳、干粉、砂土。第六部分:泄漏应急处理 有害物成分 含量 CAS No.: 甲基异氰酸酯 624-83-9

三苯甲烷类试剂的应用和发展

三苯甲烷类试剂的应用和发展 1.三苯甲烷的介绍 三苯甲烷,也称三苯基甲烷,是一种芳香烃,化学式为(C6H5)3CH。这种无色固体易溶于非极性的有机溶剂,不溶于水。三苯甲烷是许多人工合成染料的基础,这些染料被称为三芳基甲烷染料,其中有多种酸碱指示剂,另一些能发出荧光。有机化学中,三苯甲烷失去一个氢原子得到的三苯甲基基团Ph3C能形成多种化合物,比如三苯基氯甲烷,三苯甲基自由基是化学家最早发现的自由基。中心碳原子上的氢pKa约为31,比其他碳氢化合物强得多,因为三个苯环与中心碳原子形成共轭体系分散了电荷,使得平面型的三苯甲基负离子更加稳定。然而由于苯环之间的空间位阻,电子不能同时离域到所有的苯环上(每个苯环都排斥另两个苯环使之脱离同一平面,最终形成三叶螺旋桨形的结构)。该电子离域只有当碳负离子的sp2杂化轨道,与其中一个芳香体系适当排列时才能发生。三苯甲基负离子因在可见光区域强烈吸收而显红色。因此该试剂可与氢化钙配合使用作为无水条件的指示剂:氢化钙与水反应生成氢氧化钙固体,其碱性比氢化钙弱得多,不能形成三苯甲基负离子,因此体系中的氢化物消失(有一定含水量)则溶液会变为无色。三苯甲烷的钠盐也可以用三苯基氯甲烷与金属钠反应制得:在丁基锂和相关的强碱普遍应用于合成化学之前,三苯甲基钠是最常用的非亲核性强碱。 三苯甲烷 IUPAC名 Triphenylmethane 英文名Triphenylmethane 别名1,1',1"-Methylidynetrisbenzene 性质 化学式C19H16 摩尔质量244.33 g·mol?1 密度 1.014 g/cm3 熔点92-94 ℃ 熔点359 ℃ 溶解度 不溶 (水)

生物基化学纤维的研发现状浅探

龙源期刊网 https://www.360docs.net/doc/cf11714087.html, 生物基化学纤维的研发现状浅探 作者:程德宝 来源:《科学导报·学术》2018年第27期 摘要:生物基化学纤维及其原料是我国战略性新兴生物基材料产业的重要组成部分,具有生产过程环境友好、原料可再生以及产品可生物降解等优良特性,有助于解决当前经济社会发展所面临的严重的资源和能源短缺以及环境污染等问题,同时能满足消费者日益提高的物质生活需要,增加供给侧供应,促进消费回流。 关键词:生物基化学纤维;研发现状;发展趋势 尽管生物基合成纤维正在持续高效地发展,仍不能取代现有的石油基材料,生物基高分子材料的实用性研究尚处于初期阶段,生物可降解聚合物的开发也面临着诸多挑战,生物基纤维材料不仅是服装、家纺、产业用纺织品的原料,还是重要的基础材料和工程材料,在很多领域可以有更多更广的应用。 一、生物基化学纤维的研发现状 1.PLA纤维 PLA纤维是一种可生物降解的热塑性脂肪族聚酯,它来源于可再生资源,如玉米淀粉、甘蔗等。它最大的优点在于环保性,可完全生物降解,兼有天然纤维和合成纤维的特点,作为纺织材料,具有吸湿排汗均匀、快干、阻燃性低、烟尘小、热散发小、无毒性、熔点低、回弹性好、折射指数低、色彩鲜艳、不滋长细菌和气味、保留指数低等优点。20世纪90年代,生物发酵制备PLA技术进入快速发展时期。目前,国内PLA的生产规模较大的公司是海正集团。 2.PTT纤维 PTT纤维具有初始模量低、弹性回复性好、伸缩性好、手感柔软、悬垂性好、染色性好、耐氯性好、抗污性好等优点。PTT纤维的玻璃化转变温度低,为45—65℃,故其染色性能优于PET纤维,能够在无载体的条件下,用分散染料常压浮染。PTT纤维广泛应用于非织造布 领域,PTT基的非织造布可以用PTT短纤维做原料,通过针刺法或水刺法制造,也可以采用 纺粘法或熔喷法直接制造。熔喷法制造的PTT薄型非织造布与相同类型的聚丙烯(PP)非织造布相比,柔软性好、抗紫外线能力强,更适合于医用纺织品的要求。此外,PTT纤维在卫生巾、一次性尿布、棉胎、外衣、装饰布、汽车坐垫和建筑安全网等方面发展潜力巨大。 3.壳聚糖纤维

异氰酸酯

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。 2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH2) 6-NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼.

6、二环己基甲烷二异氰酸酯(H12MDI) 是一种常用的脂肪族二异氰酸酯。 上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄: 还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜. 另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式C3H3O ,分子量61.0 ,结构式(CH3)2-CHOH ,它是正丙醇CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重 0.7851 、熔点- 88 ℃、沸点 8 2.5 ℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限 3.8 ~10.2%( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下

二苯基甲烷二异氰酸酯中文警示说明

二苯基甲烷二异氰酸酯 分子式:C 15H 10N 2O 2 分子量:250.24 理化特性 白色到淡黄色固体,或浅黄色液体。熔点≧38℃,相对于空气的蒸气密度为 3.24,相对于水的密度为 1.19,引燃温度≧220℃,闪点177-227℃,易溶于苯、甲苯、氯苯等有机溶剂,微溶于水,并缓慢发生反应。是聚氨酯材料、PU 泡沫原料之一。 可能产生的危害后果 急性中毒 吸入MDI 蒸气可造成呼吸道刺激,引发头痛、流鼻涕、喉痛、气喘、胸闷、呼吸困难以及肺功能衰退。高浓度接触可导致支气管炎、支气管痉挛和肺水肿。眼睛接触可造成眼结膜刺激和中度眼角膜混浊。皮肤接触可造成皮肤刺激、过敏和皮炎。食入,导致腹部痉挛,呕吐。 慢性中毒 长期接触可造成永久性的肺功能衰退、皮疹、过敏性反应。 职业病危害 防护措施 1.使用二苯基甲烷二异氰酸酯设备应密闭,不能密闭的应加强 通风排毒。 2.注意个人防护,穿戴防护用品。 3.严格遵守安全操作规程。 应急救治 措施 皮肤接触:立即脱去污染的衣着,用肥皂水冲洗。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道畅通。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮温水,禁止催吐。如果患者神志不清或痉挛,禁止饮入任何液态物质。立即就医。 泄漏应急 处理 隔离泄漏污染区,限制出入。消除所有点火源。建议应急处理人员戴防毒面具、橡皮手套,穿防化服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切断泄漏源。若少量液体泄漏,用蛭石、干砂、泥土吸附泄漏液体。若固体泄漏,小心扫起,逐次以少量加入大量水中,静置,稀释液放入废水处理系统。若大量泄漏,收容并回收。污染地面用含3-8%氨和2-7%的清洁剂冲洗。

生物基化学纤维产业发展现状与展望

生物基化学纤维产业发展现状与展望 中国化学纤维工业协会 李增俊 2016.10.27

目录 一、“十二五”生物基化学纤维发展情况 二、“十三五”发展面临的形势 三、行业发展目标 四、重点任务 五、重点工程 六、政策建议和保障措施

(一)关键技术取得重大突破 基聚酰胺等一批生物基纤维领域的纺丝、后整理产业化关键原创性技术取得重大突破。 Lyocell纤维产业化成套技术的研究和开 发,填补了连续薄膜推进式真空蒸发溶 解干喷湿纺先进技术路线的国内空白, 万吨级国产化项目正在建设中。 量产化、绿色化生产技术取得突破

(二)初步形成产业规模 化“十二五”期间,我国生物基化学纤维产业化取得长足发展,除粘胶 纤维外,“十二五”末,总产能达到35万吨/年,比2010年增长3倍,其中生物基合成纤维和海洋生物基纤维产能分别达到15万吨/年和0.35万吨/年,同比2010年分别增长3.3倍和6倍。

(二)初步形成产业规模 Lyocell纤维 主要企业现有产能(吨)新建项目情况恒天天鹅新型纤维制造有限公司15000 2015年10月,6万吨/年签约、保定顺平,搬迁项目 山东英利实业有限公司15000 2016年8月,6万吨/年投资意向,宁夏,前期设计已完成中纺院绿色纤维股份公司1000 在建15000吨、河南新乡,预计2016年底开车投产 上海里奥纤维企业发展有限公司1000 以竹浆粕为原料 聚对苯二甲酸丙二醇酯(PTT)纤维 张家港美景荣化学工业公司10000 3万吨/年PTT聚合,2万吨/年PDO生产(全产业链,自主技术)

(二)初步形成产业规模 PLA纤维 主要企业现有产能(吨)新建项目情况河南省龙都生物科技有限公司10000 6000吨长丝,4000吨短纤,5万吨聚合(一期工程5000吨)恒天长江生物材料有限公司2000 在建10000吨(熔体直纺) 上海同杰良生物材料有限公司1000 万吨级乳酸一步法聚合,马鞍山 海宁新能纺织有限公司2000 切片纺 嘉兴昌新差别化纤维科技有限公司2000 切片纺 中国纺织科学研究院科技部重点基础材料重点专项2017年度项目,PLA产业链项目中石化仪征化纤股份有限公司10万吨级? 南大、南工大、河南金丹战略合作;南工大、无锡市顺昌丙交酯项目;抚研院、中纺院等。“十三五”期间将规模化、产业化。PURAC计划在宁波投资建设丙交酯工厂。

分子生物学讲稿

硕士研究生公共选修课分子生物学讲稿 浙江大学生物技术研究所 胡东维 二零零三年八月修改

概论 一、分子生物学的基本含义 分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 二、分子生物学的主要研究内容 1. 核酸的分子生物学 核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(molecular genetics)是其主要组成部分。由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(central dogma)是其理论体系的核心。 2. 蛋白质的分子生物学 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及 1

二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)项目建设规范条件

附件 二苯基甲烷二异氰酸酯(MDI)、 甲苯二异氰酸酯(TDI)项目建设规范条件 为促进二苯基甲烷二异氰酸酯(MDI)和甲苯二异氰酸酯(TDI)行业结构调整和产业升级,严格新建项目建设标准,防止低水平重复建设,根据国家有关法律法规,按照“科学选址、技术先进、资源节约、安全环保”的可持续发展原则,制定本规范条件。 一、产业布局 (一)新建、扩建MDI、TDI项目应符合国家相关产业政策及发展规划,符合相关法律法规、城乡规划、生态环境规划和土地利用规划要求。 (二)新建、扩建MDI、TDI项目原则上应布局在依法合规设立、污染治理和安全环境风险防范设施齐全的化工园区内,并符合园区总体规划、产业发展规划和规划环评。 (三)新建、扩建MDI、TDI项目外部防护距离应符合相关国家标准或规范要求。严禁在依法设立的自然保护区、风景名胜区、饮用水水源保护区、重点水源涵养区、文化保护地、国家公园、生态保护红线和其他需要特别保护的区域内,以及土地利用总体规划确定的耕地和基本农田保护范围内新建、扩建MDI、TDI 项目。

(四)严禁在气体不宜扩散的地区和城市全年主导风向的上风向建设MDI、TDI项目。 (五)新建MDI项目优先选择在沿海地区布局,应对高含盐废水采取有效处置措施,确保达标排放。 二、装置规模和技术装备 (六)新建、扩建MDI、TDI项目应有自备或就近外协配套的一氧化碳、氢气和液氯制备装置;副产氯化氢应有效综合利用。 (七)新建、扩建MDI、TDI项目应采用先进可靠的硝化、氢化、光气合成、光气化、溶剂回收、分离精馏等系列工艺技术。 (八)MDI、TDI装置主要设备应满足安全、节能、环保和资源综合利用的相关标准或要求。对光气及光气化设备应采用防止泄漏和能够及时处置泄漏的双重安全措施,严格控制在线光气量。 (九)MDI、TDI装置生产过程应采用集散控制系统(DCS)、电气控制系统(ECS)、安全仪表系统(SIS)或过程控制系统(PCS)优化控制生产过程,在光气合成单元应设置在线分析仪,以及必要的安全监测监控、防护设施。鼓励企业建设智能工厂,利用信息化、智能化技术提升安全环保水平。 三、原料、能源消耗和产品质量 (十)新建、扩建MDI装置(含缩合、光气合成、光气化和分离等工序,不含氯化氢回收氯气)单位产品原料消耗应达到表1

异氰酸酯化学结构

异氰酸酯化学结构 Prepared on 24 November 2020

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH 2) 6 -NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼. 6、二环己基甲烷二异氰酸酯(H 12 MDI) 是一种常用的脂肪族二异氰酸酯。

上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄:还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜.另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式 C3H3O ,分子量,结构式(CH3)2-CHOH ,它是正丙醇 CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重、熔点- 88 ℃、沸点℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限~ %( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下可代替乙醇使用。也可用作涂料,松香水,混合脂等方面;无色透明;纯天然产品。 PS 聚苯乙烯化学和物理特性大多数商业用的PS都是透明的、非晶体材料。PS具有非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶剂中膨胀变形。典型的收缩率在~%之间。

wittig反应介绍

Wittig反应介绍 李曼琳 中国药科大学

目录 1 前言 (2) 2 Wittig试剂的制备 (3) 3 Wittig反应机理[5] (4) 4 Wittig反应的立体选择性 (6) 5 Wittig反应在有机合成中的应用[4] (8) 6 Wittig反应的改进 (11) 7 总结 (14) 参考文献 (16)

Wittig反应介绍 李曼琳 摘要:Wittig反应是合成烯烃最为普遍的反应,该反应产率较高,条件温和,具有高度的位置选择性。本文就Wittig反应的机理、Wittig试剂的制备,反应立体选择性、反应的应用及改进作了介绍。 关键词:Wittig反应,Wittig-Horner反应,氮杂Wittig反应,机理,立体选择,应用 1 前言 1953年德国科学家Wittig发现二苯甲酮和亚甲基三苯基膦作用得到接近定量产率的1,1-二苯基乙烯和三苯氧磷[1],这个发现引起了有机合成化学工作者的高度重视,并把它称之为Wittig反应。 本反应是很重要的制备烯烃方法,Wittig也因此在1979年获得诺贝尔化学奖。在Wittig 等人不断地实践中,人们认识到多种亚甲基化三苯膦都可以同多种醛、酮发生反应得到烯。近年来发现许多具有d空轨道的杂原子亦能与它相连的碳负离子发生p-n共扼而趋于稳定[1],这类具有新型结构的化合物被称为叶立德(Ylid)。典型的反应是有Wittig反应是有亚甲基化 三苯基膦与醛或酮的反应[2]: 根据R的不同,可将磷叶立德分为三类:当R为强吸电子基时(如一COOCH3, -CN等),为稳定的叶立德;当R为烷基时,为活泼的叶立德;当R为烯基或芳基时,为中等活度的 叶立德。制备不同活度的叶立德所用碱的强度不同,活泼的叶立德必须用强碱(如苯基锂,丁基锂),而稳定的叶立德,由于季磷盐α-H酸性较大,故用C2H5OH甚至NaOH即可。 叶立德本身就是稳定的碳负离子化合物,这些碳负离子与羰基化合物的亲核加成反应,都是合成C-C键的重要方法。此外亚甲基化膦还可以同C=N-、-N=O等双键进行反应[1]。如:PhCH=PPh3 + PhCH = N-Ph PhCH=CHPh + Ph3P=NPh 与一般烯类化合物的合成方法比较,Wittig反应具有下列特点[3]:1.合成的双键,能处 在能量不利位置(如在环外);2.反应条件一般温和,得率较好;3.能控制反应条件,合成立 体专一性产物(如顺或反式);4.改变Wittig试剂的类型,可以制备通常很难合成的烯类化合物;5.利用对α,β-不饱和酮或酸一般不及生1,4-加成的特性,来合成共轭多烯化合物(如叶

二苯基甲烷二异氰酸酯

二苯基甲烷二异氰酸酯 二苯基甲烷二异氰酸酯是继TDI 以以后发展起来、极其重要的有机异 氰酸酯。由于它含有两个苯环,分子量比TDI 大,产品挥发性小,蒸气压较低,对人体毒性相对较小,有利于工业安全防护,故很受聚氨酯工业的欢迎聚氨酯泡沫体主要使用的异氰酸酯目前已由TTDI 和TDI-MDI 混用向全MDI 体系转移,MDI 已因其各种优点,迅速渗人聚氨酯各个产品领域。MDI 与其他异氰酸酯相比,主要有下列优点。 (1) MDI 体系熟化速度快,几乎不用或完全不用后熟化工序。制品 模塑周期短,而且泡沫体性能好。例如,TDI 基泡沫体一般需要12一24h 后熟化过程才能达到最佳性能,而MDI 体系制品仅需要1h,即可达到95%熟化程度。 (2)使用MDI 较TDI 安全。MIDI 蒸气压比TDI 低得多,在普通良好 通风的情况下对人体损害性小,而TDI 则很难达到公众安全健康管理局(OSHA)规定的在8h 工作环境中,蒸气压低于0.02mg/L 的标准。 (3) MDI 的模塑温度较低(30-52),环境污染小,能源消耗低。 (4) MDI 易开发多样化泡沫产品.相对密度较高,通过改变组分 比例,可生产硬度范围很宽的产品。 由于上述优点,MDI 虽然较TDI 起步慢,在1960年工业化生产时一年 产量仅900T,但展却十分迅猛。70代后期。全球MIDI 的产量已超过TDI,而且市场占有在大幅度增加。 纯MDI 商品是白色至浅黄色固体。其主要化学结构为4 .4'-MDI ,此外 它还有另外两种异构体:2 , 4'-MDI 和2 , 2'-MDI。 根据原料配比、工艺合成路线的不同,蒸馏出来的MDI 中3种异构体 的含量也有差别作为工业商品,通常蒸馏生产出的MDI 产品中3种异构体的比例控制在如下比例;4,4'-MDI 60%-99.5%,2,4'-MDI 0.5%-40%,2,2'-MDI 0.0%-2%。 在聚氨酯工业中所用的MDI,主要是指4 ,4'-MDI(以下MDI 末经特别 说明,均为:4,4'-MDI。 新典化学材料------您值的信赖的合作伙伴! 二苯基甲烷二异氰酸酯https://www.360docs.net/doc/cf11714087.html, 新典化学材料------您值的信赖的合作伙伴! 二苯基甲烷二异氰酸酯https://www.360docs.net/doc/cf11714087.html,

异氰酸酯的性质及危害

异氰酸酯的性质及危害 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(Methylenediphenyl Diisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI 常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的HDI 理化性质 品名:HMDI; (1,6-Hexamethylene Diisocyanate); 六亚甲基-1,6-二异氰酸酯

CAS NO.: 822-06-0 品名:MIC Methyl isocyanate; Isocyanatomethane; 异氰酸甲酯; 甲基异氰酸酯; CAS:624-83-9 分子式:C2-H3-N-O 分子量:57.06 相对密度:0.9599(20/20℃) 沸点:39.1℃ 闪点:<-15℃(闭杯)。自燃点:534℃ 蒸气密度:1.42 蒸气压:46.39kPa(348mmHg20℃) 15℃时水中溶解度:1%;20℃时6.7% 无色清亮液体, 有强刺激性。 除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。 尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 容易与包含有活泼氢原子的化合物: 胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳; 在过量水存在时, 甲胺再与MIC 反应生成1,3-二甲基脲, 在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下, 发生自聚反应并放出热能。

工作场所空气有毒物质测定第 132 部分:甲苯二异氰酸酯、二苯基甲烷二异氰酸酯和异佛尔酮二异氰酸酯

ICS13.100 C 52 中华人民共和国国家职业卫生标准 GBZ/T 300.132—2017 代替 GBZ/T 160.67—2004 工作场所空气有毒物质测定 第132部分:甲苯二异氰酸酯、二苯基甲烷二异氰酸酯和异佛尔酮二异氰酸酯 Determination of toxic substances in workplace air—Part 132: Toluene diisocyanate, diphenylmethane diisocyanate and isophorone diisocyanate 2017-11-09发布2018-05-01实施

前言 本部分为GBZ/T 300的第132部分。 本部分按照GB/T 1.1—2009给出的规则起草。 本部分由GBZ/T 160.67—2004《工作场所空气有毒物质测定异氰酸酯类化合物》中分出,单独成为本部分,并做了如下主要修改: ——修改了标准名称; ——删除了二苯基甲烷二异氰酸酯的分光光度法; ——增加了待测物的基本信息; ——改进了空气采样和标准系列浓度的表达; ——补充了样品空白要求和方法性能指标。 本部分中的主要起草单位和主要起草人: ——甲苯二异氰酸酯和二苯基甲烷二异氰酸酯的溶液吸收-气相色谱法 主要起草单位:北京市疾病预防控制中心。 主要起草人:杜欢永、宋景平、季永平。 ——异佛尔酮二异氰酸酯的溶剂洗脱-高效液相色谱法 主要起草单位:华中科技大学同济医学院公共卫生学院。 主要起草人:蒋芸、张招弟、秦春华。 本部分所代替标准的历次版本发布情况为: ——GB 16234—1996 附录A; ——GBZ/T 160.67—2004。

二苯基甲烷二异氰酸酯(纯MDI)产品介绍

二苯基甲烷二异氰酸酯(纯MDI)产品说明 二苯基甲烷二异氰酸酯 简称:MDI,国外也有简称MBI、MMDI(单体MDI)。 二苯基甲烷二异氰酸酯(MDI)一般有4,4’-、2,4’-和2,2’-MDI三种异构体,而以4,4’-MDI 为主,没有单独的2,4’-MDI和2,2’-MDI工业化产品。 分子式C15H10N2O2,相对分子质量250.25。 4,4’-MDI的CAS编号101-68-8;2,4’-MDI的CAS编号为5873-54-1;2,2’-MDI的CAS编号为2536-05-2。MDI异构体混合物的CAS编号为26447-40-5。 物化性能 一般的纯MDI主要是指4,4’-MDI,即含4,4’-二苯基甲烷二异氰酸酯99%以上的MDI,又称MDI-100,MDI以4,4’-MDI为主要成分,此外它还有少量2,4’-MDI和2,2’-MDI两种异构体,2,2’-的结构的MDI含量很小。 常温下它是白色至浅黄色固体,熔化后为无色至微黄色液体。加热时有刺激性臭味,可溶于苯、甲苯、氯苯、硝基苯、丙酮、乙醚、乙酸乙酯、二恶烷等。MDI在230℃以上蒸馏易分解、变质。贮存过程缓慢形成不熔化的二聚体,但低水平的二聚体(0.6%~0.8%)不影 2,4’-MDI的熔点范围19~21℃,沸点(0.67Kpa)106~107℃,蒸汽压3Pa. 高2,4’-MDI含量的MDI产品与4,4’-MDI相比,具有较低的反应活性和熔点。一般,当MDI中2,4’-异构体含量大于25%(质量分数)时,在常温下是液态,稍低温度仍会结晶。高2,4’-MDI含量的MDI产品最佳贮存温度是25~35℃。由高2,4’-MDI含量纯MDI产品制备的预聚体,因为无定型性质(低结晶性),其黏度比由4,4’-MDI制备的相同NCO含量预聚体的低。 特性及用途 二苯基甲烷二异氰酸酯(MDI)是用于聚氨酯树脂合成的一种重要的异氰酸酯。其分子结构中含有两个苯环,具有对称的分子结构,制得的聚氨酯弹性体具有良好的力学性能;MDI的反应活性比TDI大;MDI相对分子质量比TDI大,蒸汽压很低,挥发性较小,对人体的毒害相对较小。纯MDI主要应用于各类聚氨酯弹性体的制造,多用于生产热塑性聚氨酯弹性体、氨纶、PU革浆料、鞋用胶黏剂,也用于微孔弹性体材料(鞋底、实心轮胎、自结皮泡沫、汽车保险杠、内饰件等)、浇注型聚氨酯弹性体等的制造。 与纯4,4’-MDI相比,高2,4’-MDI含量的MDI产品具有较低的反应活性和熔点。由于2,4’-MDI与4,4’-MDI反应活性的差异,MDI-50为模塑制品的生产提供了更好的流动性能,该产品可广泛应用于各类聚氨酯弹性体制品、胶黏剂、涂料、汽车部件、内饰件的生产,并可作为TDI的替代品应用于软质聚氨酯泡沫的生产,可减轻环境污染,改善操作条件。

9种氨基酸UPLC分析方法(异硫氰酸苯酯柱前衍生法)

9种氨基酸UPLC分析方法(异硫氰酸苯酯柱前衍生 法) 2013-09-05 方法: HPLC 基质: 标准溶液 应用编号: 103087 化合物: Asp(天冬氨酸) Glu(谷氨酸) Ser(丝氨酸) Gly(甘 氨酸) His(组氨酸) Arg(精氨酸) Thr(苏氨酸) Ala(丙 氨酸) Pro(脯氨酸) Tyr(酪氨酸) Val(缬氨酸) Met(蛋 氨酸) Cys(胱氨酸) IIe(异亮氨酸) Leu(亮氨酸) Nle(正亮氨酸) Phe(苯丙氨酸) Trp(色氨酸) Lys(赖 氨酸) 固定相: Endeavorsil C18 色谱柱/前处理小柱: Endeavorsil C18 1.8μm 100 x 2.1mm 样品前处理: 1 溶液配制:氨基酸储备液:称取一定量氨基酸标准 品,用0.1 mol/l HCl水溶液溶解,配成氨基酸单标 浓度为0.05 mol/l 氨基酸使用液:将储备液用0.1 mol/l HCl水溶液稀释,得到浓度为0.002 mol/l的氨 基酸单标和混标,待衍生 0.1 mol/l HCl水溶液:量 取8.3 ml浓盐酸,然后用纯水定容至1000 ml 异硫氰 酸苯酯(PITC)溶液:将250 μl异硫氰酸苯酯用乙 腈定容至10 ml,得到0.2 mol/L异硫氰酸苯酯溶液三 乙胺溶液:将1.4 ml三乙胺用乙腈定容至10 ml,得 到1.0 mol/L三乙胺溶液 0.1 mol/l HCl水溶液:量 取8.3 ml浓盐酸,然后用纯水定容至1000 ml 2 标准 溶液衍生化:量取200 μl氨基酸混合使用液,置于 1.5 ml塑料离心管中,准确加100 μl 1 mol/l三乙 胺乙腈溶液和100 μl 0.2 mol/l异硫氰酸苯酯乙腈 溶液,混匀,室温反应1小时,然后加入正己烷400 μ l,旋紧盖子后剧烈振荡5~10 s,静置分层,取200 μ

异氰酸酯的特征

异氰酸酯的特征 一 异氰酸酯的结构特征 异氰酸酯:分子中含有异氰酸酯基(-NCO ,即-N==C==O )的化合物,其化学活性适中。其化学活性主要表现在其特征基团-NCO 上,该基团具有重叠双健排列的高度不饱和健结构(-N=C=O),它能和各种含活泼氢的化合物进行反应,化学性质极其活泼。 共振理论:Baker 提出异氰酸酯基团的共振理论,由于异氰酸酯基的共振作用,使其电荷分布不均匀,产生亲核中心及亲电中心,共振结构电荷分布如下 在该特征基团中:根据异氰酸酯基团中N 、C 、O 元素的电负性排序:O(3.5)>N(3.0)>C(2.5),三者获得电子的能力是:O >N >C 。另外:—C=O 键键能为733kJ/mol,-C=N-键键能为553kJ/mol,所以碳氧键比碳氮键稳定。N ,C ,O 原子的电负性顺序为O>N>C 。 因此,由于诱导效应在-N=C=O 基团中氧原子电子云密度最高,氮原子次之,碳原子最低。 氧原子(O )电负性最大,是亲核中心,可吸引含活性氢化合物分子上的氢原子而生成羟基,但不饱和碳原子上的羟基不稳定,重排成为氨基甲酸酯(若反应物为醇)成脲(若反应物为胺)。 碳原子(C )电子云密度最低,呈较强的正电性,为亲电中心,易受到亲核试剂的进攻。 当异氰酸酯与醇、酚、胺等含活性氢的亲核试剂反应时,-N=C=O 基团中的氧原子接受氢原子形成羟基,但不饱和碳原子上的羟基不稳定,经过分子内重排生成氨基甲酸酯基。 异氰酸酯与活泼氢化合物的反应,就是由于活泼氢化合物分子中的亲核中心。进攻NCO 基的碳原子而引起的。反应机理如下: R N R C 1[R R 1 H O H R 1 d d d

生物基聚酰胺及其单体研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第46卷,第7期2018年7月 V ol.46,No.7Jul. 2018 138 doi:10.3969/j.issn.1001-3539.2018.07.027 生物基聚酰胺及其单体研究进展 李秀峥,李澜鹏,曹长海,王宜迪 (中国石油化工股份有限公司大连石油化工研究院,辽宁大连 116045) 摘要:基于生物基聚酰胺(PA)单体来源于可再生的生物质资源,对石油依赖性低,具有低碳、环保、可持续性强等优点,对比了商业化生物基PA 的品种及其单体、原料、生物基组分比例和生产厂家及商标。根据合成PA 的方法不同,将生物基PA 单体主分为二酸、二胺、内酰胺、芳香族单体等,概述了生物基PA 单体的制备方法、研究进展,最后展望了生物基PA 的应用和发展方向。 关键词:生物基聚酰胺;单体;合成 中图分类号:TQ323.6 文献标识码:A 文章编号:1001-3539(2018)07-0138-04 Research Progress of Bio-based Polyamide and Its Monomer Li Xiuzheng , Li Lanpeng , Cao Changhai , Wang Yidi (Dalian Research Institute of Petroleum and Petrochemicals , SINOPEC , Dalian 116045, China) Abstract :Bio-based polyamide monomer is derived from renewable biomass resources ,with low dependence on petroleum ,low carbon ,environmental protection ,sustainability and other advantages. The varieties and monomers of bio-based polyamide monomer ,raw materials ,bio-based component ratios ,and manufacturers and trademarks of the commercial bio-based polyamides were compared. According to different methods for synthesizing polyamides ,bio-based polyamides were divided into diacids ,diamines ,lactams ,and aromatic monomers. The preparation methods and research progress of bio-based polyamides were summarized. Finally, the application and development direction of bio-based polyamide were prospected. Keywords :bio-based polyamide ;monomer ;synthesis 根据主链的化学组成,聚酰胺(PA)可分为脂肪族PA 胺、半芳族PA 和芳族PA 三种类型[1]。脂肪族PA 俗称尼龙,广泛用于合成纤维、建筑材料、食品包装材料、工程树脂等领域。目前,商业化生产的脂肪族PA 主要有PA6,PA10,PA11,PA12,PA46,PA66,PA610,PA612等。PA66是最早得到的脂肪族PA 产品,1930年由Carothers 和Hill 在杜邦的实验室中合成,1935年实现全面生产。PA66耐腐蚀性、抗冲击能力强,耐热性佳,成本低,在工业、服装、工程塑料等领域应用广泛[2]。PA56结构与性能和PA66接近,且染色性能更优,凯赛公司开发出了名为泰纶(Terryl)的可商业化生产的PA56[3]。半芳族PA 的聚合物主链中有脂族基团和芳族基团,如聚对苯二甲酰胺(PPAs)。与脂肪族PA 相比,半芳族PA 具有更高的力学强度和更好的耐热性。半芳族PA 可用作热工程材料和高性能材料,已在海洋、汽车工业、 石油工业、电子、机械、家用电器、医疗器械、个人护理等领域得到应用。商品化生产的半芳族PA 主要有杜邦的Zytel HTN PA6T ,Solvay 的Amodel PA6T ,EMS–GRIVORY 的Grilamid HT PA6T ,Mitsui 的ARLEN PA6T /66,Evonik 的VESTAMID HT+PA6T /X ,PA10T /X ,Kuraray 的Genesta PA9T [4–5]。芳族PA 中至少85%的酰胺键直接连接两个芳族基团[6–7],具有优异的耐热性和力学强度,化学稳定性强,但溶解性和加工性差。芳族PA 是高性能材料,可用作金属或陶瓷的替代品、高性能合成纤维、电绝缘材料、密封材料、复合材料等。芳族PA 的商业化产品有杜邦的Kevlar PPPTA 和Nomex PMPI 。此外,还有芳族PA 具有液晶性质如杜邦的固态Kevlar PPPT [8]。PA 还可以与无机纳米粒子进行杂化,得到高性能的PA 纳米粒子杂化材料[9]。笔者现就生物基PA 及其基体的研究进展做一介绍。 通讯作者:李澜鹏,博士,高级工程师,主要从事生物质资源转化研究 E-mail: lilanpeng.fshy@https://www.360docs.net/doc/cf11714087.html, 收稿日期:2018-04-18 引用格式:李秀峥,李澜鹏,曹长海,等.生物基聚酰胺及其单体研究进展[J].工程塑料应用,2018,46(7):138–141,145. Li Xiuzheng ,Li Lanpeng ,Cao Changhai ,et al. Research progress of bio-based polyamide and its monomer[J]. Engineering Plastics Application ,2018,46(7):138–141,145.

相关文档
最新文档