离散数学CH04图论路和连通性共48页
合集下载
离散数学图概念路与回路
在有向图中,结点数大于1的一条路亦可由边 序列e1e2…en表示。
第34页,共59页。
定理7-2.1 在一个具有n个结点的图中,如果从结点vj 到结点vk存在一条路,则从结点vj到结点vk必存在一条不多 于n-1条边的路。
证明思路:多于n-1条边的路中必有重复出现的结点,
反复删去夹在两个重复结点之间的边之后,剩余的边数不
在现实世界中,常常要考虑这样的问题:如何 从一个图中的给定结点出发,沿着一些边连续移动 而达到另一指定结点,这种依次由点和边组成的序 列,就形成了路的概念。
第29页,共59页。
学习本节要熟悉如下术语(22个):
路、 路的长度、 回路、
连通、 连通分支、 连通图、
迹、 通路、 圈、
点割集、
割点、
点连通度、 边割集、 割边、 边连通度、 可达、 单侧连通、 强连通、 弱连通、 强分图、 弱分图、
二、点的度数
1、点的度数的定义
定义7-1.2:在图G=<V,E>,vV,与结点v关联的边数称为该点的度 数,记为deg(v)。 孤立结点的度数为0。
2、出度与入度
定义7-1.3:在有向图中,vV,
以v为始点的边数称为该结点的出度,记作deg+(v); 以v为终点的边数称为该结点的入度,记作deg-(v)。
例如,上图(b)的G是图(c)的G’ 相对于图(a)的K5的补图。
第24页,共59页。
7-1 图的基本概念
图的定义 点的度数
特殊的图
图同构
第25页,共59页。
四、同构
定义7-1.9:设图G=<V,E>及图G’=<V’,E’>,
如果存在一一对应的映射g:VV’且e=(vi,vj) (或<vi,vj>)是G的一条边,当且仅当e’=(g(vi), g(vj))(或<g(vi),g(vj)>)是G’的一条边, 则称G与G’同构,记作G ≌ G’。
第34页,共59页。
定理7-2.1 在一个具有n个结点的图中,如果从结点vj 到结点vk存在一条路,则从结点vj到结点vk必存在一条不多 于n-1条边的路。
证明思路:多于n-1条边的路中必有重复出现的结点,
反复删去夹在两个重复结点之间的边之后,剩余的边数不
在现实世界中,常常要考虑这样的问题:如何 从一个图中的给定结点出发,沿着一些边连续移动 而达到另一指定结点,这种依次由点和边组成的序 列,就形成了路的概念。
第29页,共59页。
学习本节要熟悉如下术语(22个):
路、 路的长度、 回路、
连通、 连通分支、 连通图、
迹、 通路、 圈、
点割集、
割点、
点连通度、 边割集、 割边、 边连通度、 可达、 单侧连通、 强连通、 弱连通、 强分图、 弱分图、
二、点的度数
1、点的度数的定义
定义7-1.2:在图G=<V,E>,vV,与结点v关联的边数称为该点的度 数,记为deg(v)。 孤立结点的度数为0。
2、出度与入度
定义7-1.3:在有向图中,vV,
以v为始点的边数称为该结点的出度,记作deg+(v); 以v为终点的边数称为该结点的入度,记作deg-(v)。
例如,上图(b)的G是图(c)的G’ 相对于图(a)的K5的补图。
第24页,共59页。
7-1 图的基本概念
图的定义 点的度数
特殊的图
图同构
第25页,共59页。
四、同构
定义7-1.9:设图G=<V,E>及图G’=<V’,E’>,
如果存在一一对应的映射g:VV’且e=(vi,vj) (或<vi,vj>)是G的一条边,当且仅当e’=(g(vi), g(vj))(或<g(vi),g(vj)>)是G’的一条边, 则称G与G’同构,记作G ≌ G’。
离散数学——图论PPT课件
第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学 图论-通路与回路
§14.4
图的矩阵表示
一、图的矩阵表示 用矩阵表示图之前,必须将图的顶点或边标定成顺序,使其成为标定图 1、无向图的关联矩阵 1)定义14.24 设无向图G=<V,E>,V={v1,v2,…,vn}。 E={e1,e2,e3,…em},令mij为顶点vi与边ej的关联次数,则称(mij)nxm为G的 关联矩阵,记作 M(G). 2)关联矩阵的性质: 关联矩阵是n行(结点数)m列(边数)的矩阵
6、有关强连通图与单向连通图的判定 (1)定理: 设有向图D=<V,E>,V={v1,v2,…,vn}. D是强连通图当且仅当D中存在经过每个顶点至少一次的回路. (2) 定理 设D是n阶有向图 D是单向连通图当且仅当D中存在经过每个顶点至少一次的通路.
例2.设有向图D是单向连通图,但不是强连通图,问在D中至少加几条边所 得图D’就能成为强连通图? 作业:P292 16、17、18、39、40(1、2)、43
(1)M(G)每列元素之和均为2,这正说明每条边关联两个顶点(环所关联的两个端 点重合). ∑mij = 2 (j = 1,2,…,m) (2)M(G)第i行元素之和为结点vi的度数,i=1,2,…n (3) 所有行的和(即矩阵所有元素之和)等于边数的2倍(该例10=边数5的2倍 )。 ∑d(vi)=∑∑mij= ∑2 = 2m,这个结果正是握手定理的内容(即各顶 点的度数之和等于边数的2倍) . (4)第j列与第k列相同,当且仅当边ej与ek是平行边. (5) 某行i的和为0(即 ∑mij = 0),当且仅当vi是孤立点. 2、有向图的关联矩阵 定义:设有向图D=<V,E>中无环,V={v1,v2,…,vn}。 E={el,e2,…,em}, 令 1 vi为边ej的起点 mij = 0 vi为边ej不关联 -1 vi为边ej的终点 则称(mij)nxm,为D的关联矩阵,记作M(D)
离散数学ch04图论根树(课件)
04
根树的性质与算法
根树的性质
根树的定义
根树的性质1
根树的性质2
根树的性质3
根树是一种有向无环图,其中 有一个节点被指定为根节点, 其他节点按层次结构排列,从 根节点出发,每个节点恰好有 一条有向边指向其子节点。
根树的节点数等于其子树的节 点数之和加一。
根树的深度等于其最深叶子节 点的深度加一。
路径与回路
总结词
路径与回路是图论中重要的概念,路径是指一系列连续的边和顶点,回路是指起点和终点相同的路径 。
详细描述
在图论中,路径是指从起始顶点到终止顶点的一系列连续的边和顶点。每个顶点和边在路径中只出现 一次,且顺序必须一致。回路则是指起点和终点相同的路径,即路径中存在一个顶点,通过一系列的 边回到该顶点。回路在图论中具有重要意义,如在欧拉路径。
图论的重要性
图论在计算机科学、电子工程、 交通运输、生物信息学等领域有
广泛应用。
图论为复杂系统提供了统一的数 学框架,使得可以运用数学方法 和计算机技术来分析和优化这些
系统。
图论在解决实际问题中发挥了关 键作用,如路由优化、社交网络 分析、蛋白质相互作用网络等。
算法效率和复杂性的优化
在解决实际问题时,算法的效率和复杂性是关键因素。如 何优化图论和根树的算法,提高其计算效率和降低其计算 复杂性,是一个具有挑战性的问题。
THANKS
感谢观看
低运输成本。
交通控制
03
根树可以用于构建交通信号灯的控制逻辑,提高道路的通行效
率。
06
总结与展望
图论与根树的重要性和发展前景
重要应用领域
图论和根树在计算机科学、电子 工程、交通运输、生物信息学等 领域有广泛的应用,对解决实际 问题具有重要意义。
离散数学CH04_图论_根树
4.6 树
4.6 树
图中的三棵树T1,T2和T3都是带权2,2,3,3,5
的二叉树,它们的权分别是:
W(T1)=2×2+2×2+3×3+5×3+3×2=38 W(T2)=3×4+5×4+3×3+2×2+2×1=47 W(T3)=3×3+3×3+5×2+2×2+2×2=36 以上三棵树都是带权2,2,3,3,5的赋权二叉树,但不 是最优树。
【例】求图所示的二叉树产 生的前缀码。 解:在图(a)中,每一个 分枝点引出的左侧边标记0, 右侧边标记1。由根结点到 树叶的路经上各边的标记组 成的0、1序列作为对应树叶 的标记,如图 (b)所示。产 生的前缀码为: 01,11,000,0010,0011
4.6 树
定理 任意一个前缀码,都对应一个二叉树。 证明:
4.6 树
给定了一个前缀码,设h是其中最长序列的长度。画出一个高为 h的正则二叉树。按定理9.6.7中描述的办法给各边标记0或1。 每一个结点对应一个0、1序列,它是由根结点到该结点的路经 上各边的标记组成的。如果某个0、1序列是前缀码的元素,则 标记该结点。将已标记结点的所有后代和该结点的射出边全部删 除,得到了一个二叉树,再删除未加标记的树叶,就得到要求的 二叉树。
在通信中常用0、1字符串表示英文字母,即用二进制 数表示英文字母。最少用多少位二进制数就能表示26
个英文字母呢?1位二进数可以表示2=21个英文字母
,两位二进制数可以表示4=22个英文字母,……,n 位二进制数可以表示2n个英文字母。如果规定,可以 用1位二进制数表示英文字母,也可以用两位二进制数 表示英文字母。
4.6 树
定理 在完全m叉树中,其树叶数为t,分枝点数为i,则 (m1)*i=t-1。 证明:
离散数学课件14.2-3通路与回路-连通性
connected graph
边割集
若存在边集子集E' E, 使G删除E'(将E'中的边从G中全删除)后, 所得子图的连通分支数与G的连通分支数 满足p(G-E')>p(G), 而删除E'的任何真子集E''后,p(G-E'')=p(G), 则称E'是G的一个边割集. 若边割集中只有一条边e,则称e为割边或桥. 注:完全图没有割边和割点.
当v0=vl时,此通路称为回路.
connected graph
简单通路或迹
若Γ中的所有边e1,e2,···,el互不相同, 则称Γ为简单通路或一条迹. 若回路中的所有边互不相同,称此回 路为简单回路或一条闭迹.
connected graph
初级通路
若通路的所有顶点v0,v1···,vl互不相 同(从而所有边互不相同),则称此通 路为初级通路或一条路径. 若回路中,除v0=vl外,其余顶点各不 相同,所有边也各不相同,则称此回 路为初级回路或圈. 长度为奇(偶)数的圈称为奇(偶)圈
通路
connected graph
给定图G=<V,E>.
设G中顶点和边的交替序列为
Γ=v0e1v1e2…elvl,若Γ满足如下条件: vi-1和vi是ei的端点(在G是有向图时,要求vi-1是ei 的始点,vi是ei的终点),i=1,2,…,l,则称Γ为顶点v0 到vl的通路. v0和vl分别称为此通路的起点和终点,Γ中边的数 目l称为Γ的长度.
connected graph
有向图的连通性
易见:强连通性 单向连通性 弱连通性; 但反之 不真.反例如下:
a
c
a
强连通
d
图的连通性_离散数学─图论初步
• 相关点
– 长度为0的通路由单个顶点组成。 – 不必区分多重边时,可以用相应顶点的序列表示通路。 – 回路:起点与终点相同,长度大于0。 – 简单通路: 边不重复,即, i, j, i j ei ej
通路(举例)
a
b
c
d
e
f
• 简单通路:a, d, c, f, e。 长度为4。 • 通路:a, b, e, d, a, b。 长度为5。 • 回路:b, c, f, e, b。长度为4。 • 不是通路:d, e, c, b。
路)
• u,v VD,均存在 (u,v)-有向通路和(v,u)-有向通路,则D
称为强连通有u向图。 (见下左u 图)
u
v
v
v
强连通的充分必要条件
• 有向图D是强连通的当且仅当D中的所有顶点在同
一个有向回路上。
– 证明: 显然 设VD={v1,v2,…,vn},令 i是vi到vi+1的有向通路 (i=1,…,n-1),令 n是vn到v1的有向通路,则 1,
假设这样的公共点中距离v最近的
是x(不妨假设它在P上),则Q+wv 边以及P上的ux-段+P’上的xv-段是u
u,v之间两条中间点不相交的通路。
P
x
v
w Q
连通性的一般性质
• Menger定理(Whitney定理的推广)
– 图G是k-连通图 当且仅当 G中任意两点被至少k条除端
点外顶点不相交的路径所连接。
则称v是割
割点
(注意:只需考虑割点所在的连通分支,以下讨论不妨只 考虑连通图)
关于割点的三个等价命题
• 对于连通图,以下三个命题等价:
(1) v是割点。 (2) 存在V-{v}的划分{V1, V2}, 使 u∈V1, w∈V2, uw-通路均包含v。 (3) 存在顶点u,w(u≠v, w≠v),使得任意的uw-通路均包含v。 – 证明: (1) (2): ∵v是割点,G-v至少存在两个连通分支,设其中一个的
– 长度为0的通路由单个顶点组成。 – 不必区分多重边时,可以用相应顶点的序列表示通路。 – 回路:起点与终点相同,长度大于0。 – 简单通路: 边不重复,即, i, j, i j ei ej
通路(举例)
a
b
c
d
e
f
• 简单通路:a, d, c, f, e。 长度为4。 • 通路:a, b, e, d, a, b。 长度为5。 • 回路:b, c, f, e, b。长度为4。 • 不是通路:d, e, c, b。
路)
• u,v VD,均存在 (u,v)-有向通路和(v,u)-有向通路,则D
称为强连通有u向图。 (见下左u 图)
u
v
v
v
强连通的充分必要条件
• 有向图D是强连通的当且仅当D中的所有顶点在同
一个有向回路上。
– 证明: 显然 设VD={v1,v2,…,vn},令 i是vi到vi+1的有向通路 (i=1,…,n-1),令 n是vn到v1的有向通路,则 1,
假设这样的公共点中距离v最近的
是x(不妨假设它在P上),则Q+wv 边以及P上的ux-段+P’上的xv-段是u
u,v之间两条中间点不相交的通路。
P
x
v
w Q
连通性的一般性质
• Menger定理(Whitney定理的推广)
– 图G是k-连通图 当且仅当 G中任意两点被至少k条除端
点外顶点不相交的路径所连接。
则称v是割
割点
(注意:只需考虑割点所在的连通分支,以下讨论不妨只 考虑连通图)
关于割点的三个等价命题
• 对于连通图,以下三个命题等价:
(1) v是割点。 (2) 存在V-{v}的划分{V1, V2}, 使 u∈V1, w∈V2, uw-通路均包含v。 (3) 存在顶点u,w(u≠v, w≠v),使得任意的uw-通路均包含v。 – 证明: (1) (2): ∵v是割点,G-v至少存在两个连通分支,设其中一个的
离散数学CH04_图论_路与连通性
4.3 连通图
证明:
⑴如果G是不连通的,由点连通度和边连通度的定义有
k(G)=(G)=0, 所以 k(G)≤(G)≤ (G)
4.3 连通图
⑵如果G是连通图。 ①先证明(G)≤ (G) 如果G是平凡图,(G)=0≤(G),即(G)≤ (G),如果 G是非平凡图,设n=(G)=mindeg(v)|vV,则存在 G的一个结点v,它关联了n条边,而其它结点关联的边 数大于等于n,将v关联的这n条边删除,G成为不连通 的。从而这n条边或这n条边中的几条边组成一个边割集 ,即存在一个边割集的基数小于等于n,所以 min{|E 1| | E 1是G的边割集}≤n=min{deg(v) | vV },即 (G)≤ (G)
的交替序列L:v0e1v1e2v2…envn叫做v0到vn的
路。其中vi-1与vi是ei的端点,i=1,…,n。
v0和vn分别叫做路L的始点和终点。
路L中边的条数叫做该路的长度。
4.2 路和回路
例如, L1:v5e8v4e5v2e6v5e7v3 是从v5到v3的路,v5 是始点,v3是终点,长度为4。 L2:v1e1v2e3v3 是从v1到v3的路,v1是始点, v3是终点,长度为2。
e=(u,v)仍是桥。此时再删除u或v,就必产生了一个不连
通图,故k(G)≤(G) 由⑴和⑵得k(G)≤(G)≤ (G)
4.3 连通图 例 请求出下图的(G), K(G), (G)
v1
v2
v5
v4
(G) = 2 K(G) = 2 (G ) = 2
4.3 连通图
画出一个<<的无向简单连通图
例 试验证下列边集合是否为割集 v
1
4.3 连通图
v5
离散数学图论路与连通PPT课件
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
图论离散数学离散数学第四版清华出版社PPT课件
12/19/2020
28
b
e1
e4
a
e2
d
e5
e3
c
e5, e1, e2, e3, e4是简单通路,不是基本通路, 因为c, a, b, c, d, b中b, c均出现了两次。但c,
d, b, c是基本通路,也是基本回路。
12/19/2020
29
[定理] 在一个n阶图中,若从顶点u到v (uv)
❖ 起始状态是“人狼羊菜”,结束状态是“空”。
❖ 问题的解:找到一条从起始状态到结束状态的 尽可能短的通路。
12/19/2020
26
“巧渡河”问题的解
❖ 注意:在“人狼羊菜”的16种组合中允 许出现的只有10种。
人羊狼菜 人狼菜 人羊狼 人羊菜 人羊
狼菜
狼
12/19/2020
菜
羊
空(成功)
27
[定义] 简单通路(Simple Path)
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。
在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
12/19/2020
30
[定义] 连通性(connectivity)
设G=<V,E>,若从vi到vj存在一条通 路,则称vi到vj连通(connective)或可达。
说明:对无向图而言,若vi到vj可达,则 vj到vi也可达。对有向图而言则未必。
图的连通性_离散数学─图论初步
( κ(G)=k: k-连通图,且存在k个顶点,删除它们就不连
通。)
图的边连通度
(注意:若G是顶点数不少于2的连通图,删除足够数量的 边使得图变成不连通。)
• 类似地,使非平凡连通图G变成不连通 需要删除的最 少边数称为图G的边连通度。记为 (G)。
连通图“连接的牢固度”不一样
• 图G1中删除任意一条边都不连通了。 • 图G2则至少删除两条边,或删除中间那个顶点,才不连通。 • 图G3删除任意一个点依然连通。 • 图G4至少要删除四条边才可能不连通,且不可能通过删除
顶点使其不连通。
G1
G2
G3
G4
图的(点)连通度
(注意:若G是顶点数不少于2的非完全图,删除足够数量的 点一定能使图变成不连通图或者平凡图。)
通路的定义(有向图)
• 定义:有向图G中从v0到vn的长度为n的通路是G的n
条边e1,…, en的序列,满足下列性质
– 存在vi V ,使得vi-1和vi分别是ei的起点和终点 (1 i n)。
• 相关点
– 长度为0的通路由单个顶点组成。 – 不必区分多重边时,可以用相应顶点的序列表示通路。 – 回路:起点与终点相同,长度大于0。 – 简单通路: 边不重复,即, i, j, i j ei ej
• 同构图的不变量:长度为k的回路的存在性。
– B=U A U-1 相等?)
Bk=U Ak U-1(对角线元素之和
通路与同构
u1
u6
u2
v1
v6
v2
u5
u3
v5
u4
u2
u1 u5
u3 u4
v1 v5
v3 v4 v2
v3 v4
无向图的连通性
通。)
图的边连通度
(注意:若G是顶点数不少于2的连通图,删除足够数量的 边使得图变成不连通。)
• 类似地,使非平凡连通图G变成不连通 需要删除的最 少边数称为图G的边连通度。记为 (G)。
连通图“连接的牢固度”不一样
• 图G1中删除任意一条边都不连通了。 • 图G2则至少删除两条边,或删除中间那个顶点,才不连通。 • 图G3删除任意一个点依然连通。 • 图G4至少要删除四条边才可能不连通,且不可能通过删除
顶点使其不连通。
G1
G2
G3
G4
图的(点)连通度
(注意:若G是顶点数不少于2的非完全图,删除足够数量的 点一定能使图变成不连通图或者平凡图。)
通路的定义(有向图)
• 定义:有向图G中从v0到vn的长度为n的通路是G的n
条边e1,…, en的序列,满足下列性质
– 存在vi V ,使得vi-1和vi分别是ei的起点和终点 (1 i n)。
• 相关点
– 长度为0的通路由单个顶点组成。 – 不必区分多重边时,可以用相应顶点的序列表示通路。 – 回路:起点与终点相同,长度大于0。 – 简单通路: 边不重复,即, i, j, i j ei ej
• 同构图的不变量:长度为k的回路的存在性。
– B=U A U-1 相等?)
Bk=U Ak U-1(对角线元素之和
通路与同构
u1
u6
u2
v1
v6
v2
u5
u3
v5
u4
u2
u1 u5
u3 u4
v1 v5
v3 v4 v2
v3 v4
无向图的连通性
离散数学CH04图论基本概念
4.1 图的基本概念
定义9 给每条边或弧都赋予权的图G=<V,E>,称为加权 图,记为G=<V,E,W>,其中W表示各边之权的集合。
加权图在实际中有许多应用,如在输油管系统图中权表示 单位时间流经管中的石油数量;在城市街道中,权表示表 示通行车辆密度;在航空交通图中,权表示两城市的距离 等等。
有趣的图论问题
解 这是通路问题的一个典型实例。用f表示人,w表示狼 ,s表示羊,h表示草。
集合{f,w,s,h}中能平安在一起的子集有:{f,w,s ,h},{f,w,s},{f,s,h},{f,w,h},{f,w},{f,s}, {f,h},{w,h},{f},{w},{s},{h}。用顶点表示渡河过程 中的状态,状态是二元组:第一元素是集合{f,w,s,h} 在渡河过程中留在原岸的子集,第二元素是在彼岸的子集 ,将一次渡河后代表状态变化的顶点间连边,得图。容易 看出,一条路径就是一种渡河方案。
4.1 图的基本概念
由定义可知,图G中的每条边都与图中的无序或有序结 点对相联系的。若边e∈E与无序结点对(vi,vj)相联系 ,则φ(e)=(vi,vj),这时边e称为无向边,有时简称为 边;若边e∈E与有序结点对<vi,vj>相联系,则φ(e)=<vi ,vj>,此时边e称为有向边或弧,vi称为弧e的始结点,vj 称为弧e的终结点。
4.1 图的基本概念
例如,在图 (a)中结点a和b之间有两条平行边,结点b和c之间有 三条平行边,结点b上有两条平行边,这两条平行边都是环。图 (a)不是简单图。
在图 (b)中结点v1和v2之间有两条平行边。v2和v3之间的两条边 ,因为方向不同,所以不是平行边。图 (b)不是简单图。