表面质量检测系统分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于机器视觉技术的产品表面质量检测系统
王岩松1章春娥2
(1北京凌云光子集团北京100089 2北京交通大学信息科学研究所北京100044)
摘要:介绍了基于机器视觉技术的表面检测系统的设计方案和系统构成原理,并且针对表面检测系统中广泛应用的高精度定位配准算法以及Blob分析算法从原理上进行了阐述,同时给出了当前通用的表面检测系统的处理单元构成特点。基于本文所介绍的机器视觉技术的表面检测系统已经在工业现场得到了批量推广应用,对于以后开展类似的表面检测系统具有一定的参考价值和指导意义。
关键字:机器视觉表面检测斑点分析(Blob分析)
A Surface Inspecting System Based on
Machine Vision Technology
Wang Yansong Zhang Chun-e
A LUSTER LightTech Group Company,100089
Institute of Information Science, Beijing Jiaotong University, Beijing, 100044
Abstract:An introduction to some general design schemes and constructing principles about surface inspecting system based on machine vision technology. Some algorithms widely used in surface inspecting system such as high resolution Search-alighment algorithm and Blob analysis algorighm are desrcibed in detail theoretically.The constructing way of processing uint in general surface inspecting system is also presented in this paper. Up to now, a great deal of surface inspecting systems based on the technology introduced in this paper have been successfully used in some industrial factory。
KayWords:Machine Vision Surface Inspection Blob Analysis
1.机器视觉及系统
机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品,如CCD、CMOS 和光电管等,将被摄取的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,再根据判别的结果控制现场的设备。典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像采集卡),图像处理软件,监视器,通讯/输入输出单元等[1]。
机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。其中图像处理软件中的图像处理算法是整个机器视觉的核心部分。图像处理技术包含数字图像处理学、计算机图形学中的大量内容,涉及图像分割、图像测量、图像融合、图像匹配、模式识别、计算机神经网络等大量前沿技术。图像处理算法选择的合理性、算法的适用性、算法的处理速度和处理精度等均将直接绝对最终机器视觉质量检测系统的检测结果。
本文设计的表面检测系统使用了上述多项机器视觉技术,特别在图像处理方面使用了高精度子像素定位
配准、斑点(Blob)分析等算法,对于提高检测准确性以及多种类产品自适应检测起到了决定性作用[2]。2.表面质量检测系统设计方案与构成
图1 系统组成原理框图
由于表面质量检测系统所涉及到的行业多,每个系统的设计方案都有着自己的特点,从通用型表面质量检测系统设计角度看,系统可由吹风展平机构、照明光源、CCD相机、镜头、机箱、图像采集、图像处理、控制单元、监视单元、执行机构和报警单元等组成,如图1所示。不同的系统在组成上稍有区别。
图像照明光源采取了线性光源以产生照明能量集中的、光强分布均匀的一条光带;同时吹风展平机构可以使检测对象运动到CCD扫描线附近时保证不产生任何畸变;当产品高速运动时,CCD线扫描相机通过消杂光光路对当前扫描线进行逐行采集,采集到的数据送入图像采集单元进行存储。在经过图像处理单元进行复杂的表面检测运算后,如果发现表面质量缺陷,则控制报警单元进行声光报警,同时执行单元向生产线发送相应的控制指令将质量次品与好品分仓处理。监视器可以醒目的汇报缺陷产生位置、缺陷面积大小等信息,便于用于可以迅速获取信息。
以印刷行业的产品表面质量检测系统为例,系统包含了图像采集卡、I/O输入输出卡、D/A转换卡,PLC 控制系统等部件,以微机系统作为处理和控制的中心单元。这种组成结果可以满足大部分表面检测系统的应用需求。结构组成如图2所示。
图2 印刷质量检测系统结构示意图
3.高精度定位配准算法
高精度定位配准算法在表面检测系统的机器视觉技术中占有重要的地位,是图像与标准模板进行缺陷检测的必要条件。论文中所设计的高精度定位配准算法将金字塔分层思想和互相关计算想结合,定位配准精度可以达到1/64像素。同时算法采用了MMX 方式进行优化,定位时间大大缩短。
该定位配准算法中的金字塔分层思想是:用不同带宽的低通滤波器对原始图像进行低通滤波,得到一组不同“分辨率”的图像;然后从最高级(最粗的“分辨率”)开始,将模板和目标图像进行匹配,将结果作为预测值,对下一级(较高的“分辨率”)的图像进行匹配,在子像素匹配时使用双线性插值算法,最后可以达到要求的定位速度和定位精度。从理论上讲,若每层的收敛范围是m 个像素,则第n 层的收敛范围可达到m ×n 个像素。
在图像定位核与图像坐标中心),(00y x 选取以后,根据初始定位信息可以计算得到实际图像与模板图像的夹角θ信息,然后将实际图像根据),(00y x 进行旋转,此过程可以利用双线性插值实现。设实际图像上某一点),(y x ,经过θ旋转以后为)','(y x ,则
⎩
⎨⎧+⨯-⨯=+---=+⨯+⨯=+-+-=d d y x y y x x y y y x y x x y y x x x θθθθθθθθsin cos sin )(cos )('sin cos sin )(cos )('000000 (1) 旋转以后两幅图像之间就只存在X 方向和Y 方向上的偏移差异d x 和d y 。定位配准算法采用分层逐步匹配方式可以得到最佳的d x 和d y 。
分层定位配准的过程可以用图3来说明,图3示意了1/4个像素的定位精度,±1个像素范围内的搜索定位过程。如图3(a )所示,首次匹配在9个点中找到相关程度最好的点,结果如图3(a )中的黑点。然后将搜索步长与搜索范围缩小一半,进行第二层搜索,此时搜索精度为1/2像素,在15个点中(最多25个点)找到相关程度最好的匹配点,如图3(b )中黑点;接下来在第三层中找到匹配最好的点,判断此时搜索精度为1/4个象素,已经达到要求的匹配精度,则搜索结束,最后定位到的匹配点为图3(c )中的黑点所示
(a )表面层搜索
(b )第二层搜索 (c )第三层搜索 图3 金字塔思想的定位配准算法示意图
经过大量实验数据测试,仅仅对于求定位偏移距离这一项,采用了金字塔分解及网格扩散方式与普通的全遍历方式相比,搜索区域大大减小,并且能够迅速收敛,同时还能够解决图像互相关搜索中存在的错误相关峰。设搜索步长为S ,搜索范围为W ,找到最佳定位匹配点需要遍历的点数为
S W N S W N 2222
1log *25)1*2()1/*2(-+=+= (2)