线性相关性分析在测风数据处理上的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性相关性分析在测风数据处理上的应用
发表时间:2018-11-01T16:41:20.303Z 来源:《建筑学研究前沿》2018年第16期作者:张伟平新玮
[导读] 一种是用下一年同一时段的风资源实测数据来补充,另一种就是可以用线性相关性分析的方法来进行补充和调整。
新疆新能源研究院有限责任公司
引言
根据国标GB/T18709-2002,即“风电场风能资源测量方法”,风电场现场测风应连续进行,不应少于一年;并且现场采集的数据完整率应在98%以上。补充和调整的方式一般有两种,一种是用下一年同一时段的风资源实测数据来补充,另一种就是可以用线性相关性分析的方法来进行补充和调整。
一、线性相关性分析原理
下面举例说明线性相关性分析的原理,(表1)是两个变量的两组样本值。
可以作出其散点图观察其相关性,作其散点图如下(图1)
从散点图可看出这12个点基本在一条直线附近,说明这两个变量之间存在线性相关关系,此关系可以用函数表示为:
其中:为因变量,为自变量,和为待估参数;
由于样本点并不完全在这一条直线上,它们和估计值之间有一定的差距,记:
式子描述了当用函数来模拟这些样本点的时候,实测值与用此方程估计值之间的差距,其中为实测值,为估计值,由于在此过程中可正可负,不能认为的总偏差越小或等于零时,函数就最好的反映了两个变量之间的关系,因为总偏差很小。需要对此参数进行改进,可以考虑用来代替,但是由于绝对值不易于进行微分运算,因此改用代替来度量总的偏差,因为偏差的平方和最小可以保证每个偏差都不会很大,于是最终要解决的问题就变为确定中的常数和,使得:最小,其中和的确定要用到最小二乘法。
二、最小二乘法
现在可以把展开为:
,即为关于和的函数,其极值点在关于和的偏导数为零的时候取得,即当:,成立时,取得其极值,因根据第一部分的讨论没有极大值或者说起极大值为无穷大,故在其偏导数为零时的极值必为其最小值。
根据:可以求得和,
其中:,根据此二式就可以估计出未知参数和,在此例中,,即估计的线性方程为:,而这种估计参数的方法就叫做最小二乘
法。
三、检验
显著性检验也是假设检验的一种形式,在假设检验中需要构造统计量才能进行检验,在这里构造的统计量为样本相关系数:,其中,分别为两组样本均值,并且,当时,所有样本点在一条上升或下降的直线上;当时,随的增加有线性增加的趋势,此时称正相关;当时,随的增加有线性减少的趋势,此时称负相关;时,样本点可能毫无规律,也可能成某种曲线趋势,此时称不相关。
参考文献
[1]概率与数理统计教程,茆诗松,程依明,濮小龙编著,高等教育出版社
[2]风电场工程技术手册,宫靖远主编,机械工业出版社
[3]新疆维吾尔自治区风能资源评价报告,新疆气象局