IEEE754转换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IEEE754规定如下的计算方法,
计算公式:
V=(-1)^s*2^E*M
当e(各位)为全'0'时,E=1-(2^(e(位数)-1)-1),;M=m。
如:real*4是8位,E=1-(2^(8-1)-1)=1-127=-126
即,
在real*4时:
V=(-1)^s*2^(-126)*m
在real*8时:
V=(-1)^s*2^(-1022)*m
当e(各位)不为全'0'且不为全'1'时,E=e(值)-(2^(e(位数)-1)-1);M=1+m。即,
在real*4时:
V=(-1)^s*2^(e(值)-127)*(1+m)
在real*8时:
V=(-1)^s*2^(e(值)-1023)*(1+m)
三:将浮点格式转换成十进制数
[例3.1]:
0x00280000(real*4)
转换成二进制
00000000001010000000000000000000
符号位指数部分(8位)尾数部分
0 00000000 01010000000000000000000
符号位=0;因指数部分=0,则:尾数部分M为m:
0.01010000000000000000000=0.3125
该浮点数的十进制为:
(-1)^0*2^(-126)*0.3125
=3.6734198463196484624023016788195e-39
[例3.2]:
0xC04E000000000000(real*8)
转换成二进制
1100000001001110000000000000000000000000000000000000000000000000
符号位指数部分(11位)尾数部分
1 10000000100 1110000000000000000000000000000000000000000000000000
符号位=1;指数=1028,因指数部分不为全'0'且不为全'1',则:尾数部分M为1+m: 1.1110000000000000000000000000000000000000000000000000=1.875
该浮点数的十进制为:
(-1)^1*2^(1028-1023)*1.875
=-60
四:将十进制数转换成浮点格式(real*4)
[例4.1]:
26.0
十进制26.0转换成二进制
11010.0
规格化二进制数
1.10100*2^4
计算指数
4+127=131
符号位指数部分尾数部分
0 10000011 10100000000000000000000
以单精度(real*4)浮点格式存储该数
0100 0001 1101 0000 0000 0000 0000 0000
0x41D0 0000
[例4.2]:
0.75
十进制0.75转换成二进制
0.11
规格化二进制数
1.1*2^-1
计算指数
-1+127=126
符号位指数部分尾数部分
0 01111110 10000000000000000000000
以单精度(real*4)浮点格式存储该数
0011 1111 0100 0000 0000 0000 0000 0000
0x3F40 0000
[例4.3]:
-2.5
十进制-2.5转换成二进制
-10.1
规格化二进制数
-1.01*2^1
计算指数
1+127=128
符号位指数部分尾数部分
1 10000000 01000000000000000000000
以单精度(real*4)浮点格式存储该数
1100 0000 0010 0000 0000 0000 0000 0000
0xC020 0000
例5
176.0652
转换成二进制:10110000.0001
规格化二进制数:1.01100000001*2^7 (小数点移了7位)
计算指数:7+127=134 (127是个标准数值)
符号位指数部分(在本题中由134转换成8位二进制的指数)尾数部分
0 10000110 01100000001 000000000000 (不足32位,后面补0,直到补足32位)
二进制结果:0100 0011 0011 0000 0001 0000 0000 0000
十六进制结果:0x43301000
还有不明白的地方再问!
32位(0到31bit)分配:
符号位在最高位,[31bit],
指数位[30-23]
尾数位[22-0]