硅片的清洗与制绒

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅片的清洗与制绒

导语:硅片在经过一系列的加工程序之后需要进行清洗,清洗的目的是要消除吸附在硅片表面的各类污染物,并制做能够减少表面太阳光反射的绒面结构(制绒),且清洗的洁净程度直接影响着电池片的成品率和可靠率。制绒是制造晶硅电池的第一道工艺,又称“表面织构化”。有效的绒面结构使得入射光在硅片表面多次反射和折射,增加了光的吸收,降低了反射率,有助于提高电池的性能。

一.清洗

1.清洗的目的

经切片、研磨、倒角、抛光等多道工序加工成的硅片,其表面已吸附了各种杂质,如颗粒、金属粒子、硅粉粉尘及有机杂质,在进行扩散前需要进行清洗,消除各类污染物,且清洗的洁净程度直接影响着电池片的成品率和可靠率。清洗主要是利用NaOH、HF、HCL等化学液对硅片进行腐蚀处理,完成如下的工艺:

①去除硅片表面的机械损伤层。

②对硅片的表面进行凹凸面(金字塔绒面)处理,增加光在太阳电池片表面的折射次数,利于太阳电池片对光的吸收,以达到电池片对太阳能价值的最大利用率。

③清除表面硅酸钠、氧化物、油污以及金属离子杂质。

图1 金属杂质对电池性能的影响2.清洗的原理

①HF去除硅片表面氧化层。

②HCl去除硅片表面金属杂质:盐酸具有酸和络合剂的双重作用,氯离子能与溶解片子表面可能沾污的杂质,铝、镁等活泼金属及其它氧化物。但不能溶解铜、银、金等不活泼的金属以及二氧化硅等难溶物质。

3.安全提示

NaOH、HCl、HF都是强腐蚀性的化学药品,其固体颗粒、溶液、蒸汽会伤害到人的皮肤、眼睛、呼吸道,所以操作人员要按照规定穿戴防护服、防护面具、防护眼镜、长袖胶皮手套。一旦有化学试剂伤害了员工的身体,马上用纯水冲洗30分钟,送医院就医。

二.制绒

1.制绒的目的和原理

目的:减少光的反射率,提高短路电流(Isc),最终提高电池的光电转换效

率。

原理:①单晶硅:制绒是晶硅电池的第一道工艺,又称“表面织构化”。对于单晶硅来说,制绒是利用碱对单晶硅表面的各向异性腐蚀,在硅表面形成无数的四面方锥体。目前工业化生产中通常是根据单晶硅片的各项异性特点采用碱与醇的混合溶液对<100>晶面进行腐蚀,从而在单晶硅片表面形成类似“金字塔”

状的绒面,

如图2所示。②多晶硅:利用硝酸的强氧化性和氢氟酸的络合性,对硅进行氧化和络合剥离,导致硅表面发生各向同性非均匀性腐蚀,从而形成类似“凹陷坑”状的绒面,如图3所示。

图2 电子显微镜下的多晶硅表面绒面效果图3 电子显微镜下的多晶硅表面绒面效果

以单晶硅绒面为例,金字塔形角锥体的表面积S等于四个边长为a的正三角形面积之和,可计算得表面积s为:即绒面表面积比平面提高了1.732倍。如图4所示,光线在表面的多次反射,有效增强了入射太阳光的利用率,从而提高光生电流密度。既可获得低的表面反射率,又有利于太阳能电池的后续制作工艺。

图4 光线在绒面中的多次反射

图5 单晶硅片制绒前后的表面反射率对比2.制绒工艺

目前在大工业生产中一般采用成本较低的氢氧化钠或氢氧化钾稀溶液(浓度为

1%~2%)来制备绒面,腐蚀温度为80℃±5℃。另外,为了有效地控制反应速

度和绒面的大小,会添加一定量的IPA作为缓释剂和络合剂。

理想的绒面效果,应该是金字塔大小均匀,覆盖整个表面。金子塔的高度在3~

5μm之间,相邻金字塔之间没有空隙,具有较低的表面反射率,如图6所示。

有效的绒面结构,有助于提高电池的性能。由于入射光在硅片表面的多次反射

和折射,增加了光的吸收,其反射率很低,主要体现在短路电流的提高。

图6 较为理想的绒面效果图

3.影响绒面质量的关键因素

(1) 无水乙醇或异丙醇浓度

气泡的直径、密度和腐蚀反应的速率限定了硅片表面织构的几何特征。气泡的大小以及在硅片表面停留的时间,与溶液的粘度、表面张力有关系。所以需要乙醇或异丙醇来调节溶液的粘滞特性。

乙醇的含量在3 vol%至20 vol%的范围内变化时,制绒反应的变化不大,都可以得到比较理想的绒面,而5 vol%至10 vol%的环境最佳。

图7 乙醇浓度3vol%(左)和10 vol%(右)时的绒面形貌

(2) 制绒槽内硅酸钠的累计量

硅酸钠在溶液中呈胶体状态,大大的增加了溶液的粘稠度。对腐蚀液中OH 离子从腐蚀液向反应界面的输运过程具有缓冲作用,使得大批量腐蚀加工单晶硅绒面时,溶液中NaOH 含量具有较宽的工艺容差范围,提高了产品工艺加工质量的稳定性和溶液的可重复性。

硅酸钠在制绒溶液中的含量从%~30%wt 的情况下,溶液都具有良好的择向性,同时硅片表面上能生成完全覆盖角锥体的绒面。

随着硅酸钠含量的增加,溶液粘度会增加,结果在硅片与片匣边框接触部位会产生“花篮印”, 一般浓度在30%以下不会发生这种变化(NaOH 浓度达到一定程度的基础上)。

硅酸钠来源大多是反应的生成物,要调整它的浓度只能通过排放溶液。若要调整溶液的粘稠度,则采用加入添加剂乙醇或异丙醇来调节。

(3) NaOH 浓度 制绒液中的乙醇或异丙醇、NaOH 、硅酸纳三者浓度比例决定着溶液的腐蚀速率(4)制绒腐蚀时间的长短

经热的浓碱去除损伤层后,硅片表面留下了许多肤浅的准方形的腐蚀坑。1分钟

和角锥体形成情况。

溶液温度恒定在80℃时发现腐蚀液NaOH浓度在~4%范围之外将会破坏角锥体的几何形状。

当NaOH处于合适范围内时,乙醇或异丙醇的浓度的上升会使腐蚀速率大幅度下降。

图8 绒面的平均反射率随NaOH浓度的变化后,金字塔如雨后春笋,零星的冒出了头;5分钟后,硅片表面基本上被小金字塔覆盖,少数已开始长大。我们称绒面形成初期的这种变化为金字塔“成核”。10分钟后,金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到了比较低的水平。随着时间的延长,金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等。

图9 不同时间制绒后,硅片的反射谱

(5)制绒腐蚀的温度

根据阿伦尼乌斯方程(k=Aexp(-Ea/RT)),温度升高,反应速度常数会成指数增大。液体的粘度也与温度成指数关系,液体的粘度和密度随温度的升高而(6)槽体密封程度、乙醇或异丙醇的挥发程度制绒过程中乙醇的主要作用有以下几点:

相关文档
最新文档