烟气余热回收装置的利用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟气余热回收装置的利用
烟气余热回收装置的利用
[摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。

[关键词]烟气余热回收;低温腐蚀;节能
[作者简介]梁著文,广东省电力设计研究院,广东广州,510000
[中图分类号]TM621.2 [文献标识码]A [文章编号]1007-7723(2010)10-0111-0003
一、引言
在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。

近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。

对火力发电厂讲,锅炉热损失中最大的是排烟热损失。

对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。

一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1. 0%。

因此,锅炉排烟是一个潜力很大的余热资源。

二、烟气余热的利用方向
烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。

1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。

2.利用烟气余热干燥褐煤。

其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。

约150℃的热烟气由进料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。

3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。

4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。

加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝
结水进行热交换,然后再将热量带入主凝结水系统,图1为系统流程图。

三、烟气余热回收装置在国内外的应用情况
1.德国黑泵(Schwarze Pumpe)电厂2×800MW 褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。

2.德国科隆Nideraussem1000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。

3.日本的常陆那珂电厂采用了水媒方式的管式GGH。

烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进入低温除尘器(烟气温度在90~100℃左右)。

4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。

目前国内较多应用。

四、烟气余热回收装置设计中应考虑的问题
(一)烟气露点与低温腐蚀
在烟气冷却器的实际应用中,出口排烟温度过低会使换热器的金属壁温低于硫酸蒸汽的凝结点(称为酸露点),引起受热面金属的严重腐蚀。

因此,烟气酸露点的确定,是
避免烟气冷却器低温腐蚀、增加运行安全性的关键所在。

一般,烟气露点温度与燃煤成分中的水分含量、硫含量、氢含量、灰分含量、发热量以及炉膛燃烧温度和过量空气系数等因素有关。

下面列举几种经验公式:
前苏联73标准:
98标准推荐公式:
冯俊凯院士推荐公式:
式中,――烟气中水蒸气露点,℃;
Szs――燃料的折算硫分,%;
αfh ――飞灰占总灰分的系数;
Azs――燃料的折算灰分,%;
β――经验系数,当α=1.2时,取β=121
(二)烟气冷却器金属壁温
为避免烟气冷却器受热面发生低温酸性腐蚀,保证机组的安全可靠运行,必须确定烟气冷却器传热管的金属安全壁温Ta。

由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~10℃的温度裕量作为金属安全壁温。

如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。

(三)传热管的堵灰问题
低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。

为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。

因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。

对于干灰的清理,可采取以下几方面的措施:
1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。

2.烟气流动速度均匀,设计烟气流速高于10m/ s,使烟气在流动中具有一定的自清灰功能。

3.采用成熟可靠的蒸汽吹灰器或者压缩空气吹灰器定时吹灰,保证传热管积灰程度在允许的范围内,使烟气流动阻力的增大幅度和传热能力的降低幅度都在允许范围内。

五、工程方案及节能效果
(一)某工程基本资料
机组容量:2×600MW超临界燃煤;
煤种:烟煤;
烟气露点温度:~70℃;
引风机入口烟气温度:~120℃(THA工况)。

(二)烟气热量回收换热器加装方案
以下为该电厂加装烟气热量回收换热器的初步拟定方案。

1.烟气热量回收换热器布置位置
烟气侧:在引风机和脱硫塔烟气进口之间的水平烟道上,加装烟气热量回收换热器,烟气温度降低32℃后再进入烟气脱硫塔。

根据计算,布置烟气热量回收换热器位置处的烟道截面积需达到108m2(12m×9m),换热器长度约3m;为了与烟道配合,需要在烟气热量回收换热器进出口设计烟道过渡段。

水侧:在机组高负荷工况,#6低压加热器进水温度高于70℃,烟气热量回收换热器与#6低加并联运行;在低负荷工况,烟气热量回收换热器与#6低加串联运行。

2.烟气余热回收系统流程图(见图2)。

3.热力计算结果(见表1)。

(三)节能效果
根据上述理论计算结果,加装烟气余热回收换热器,可达到降低机组煤耗~1.5g/kWh,减少脱硫塔耗水30t/h的节能节水效果。

六、结论
根据理论研究和工程实例表明,安装烟气余热回收装置,可以提高全厂的热效率,增加发电量,降低煤耗;回收的烟气热量愈大,发电量增加愈多、节煤量愈大。

然而回收锅炉烟气的余热也不是随意的,都有一定的限制,排烟的温度不能够降得太低;过分追求低的排烟温度和凝结水的温升,容易造成低温生煤器的腐蚀或者设备的高造价,这一点必须引起充分的注意。

尽管这样,如果能够很好地利用限制之内的余热,不仅对电厂的经济效益有很大的提高,而且响应国家节能减排的政策,为社会环境作出一定贡献。

[参考文献]
[1]赵之军,冯伟忠,张玲,等. 电站锅炉排烟余热回收的理论分析与工程实践[J].动力工程,2009,(11).
[2]赵恩婵,张方炜,赵永红.火力发电厂烟气余热利用系统的研究设计[J].热力发电,2008,37(10).
[3]冯俊凯,沈幼庭.锅炉原理及计算[M].北京:科学出版社,1992.
[4]刘媛.锅炉尾部烟气余热利用[J].科技资讯,2010,(18).。

相关文档
最新文档