流体力学泵与风机分析

合集下载

流体力学中的流体泵与风机

流体力学中的流体泵与风机

流体力学中的流体泵与风机流体力学是研究流体运动及其相互作用的一门学科,广泛应用于各个工程领域。

在流体力学中,流体泵和风机是两个常见的设备,它们在工程实践中起到了至关重要的作用。

本文将围绕流体泵和风机展开讨论,从其原理、应用和发展趋势等方面进行探究。

一、流体泵1. 原理流体泵是一种能够将低压流体转变为高压流体的机械设备。

其工作原理与总量守恒和动量守恒定律密切相关。

泵将低压液体吸入,并通过施加机械力增加其动能,最终将其排出并产生高压。

常见的流体泵包括离心泵、容积泵和轴流泵等。

2. 应用流体泵在工程实践中具有广泛的应用。

它们被广泛应用于供水、石油、化工、冶金等领域,包括给排水系统、原油输送、化工生产和热能供应等。

流体泵的应用可以提高流体输送效率,满足各种工程需求。

3. 发展趋势随着科技的不断发展,流体泵也在不断演进。

目前,人们对流体泵的发展趋势主要包括以下几个方面:(1)提高效率:通过优化设计和使用新材料,提高流体泵的效率,减少能源消耗。

(2)提高可靠性:研发更耐磨、抗腐蚀的材料,提高流体泵的寿命和可靠性。

(3)智能化控制:引入先进的控制技术和传感器,实现流体泵的自动化、智能化运行,提高工作效率和安全性。

二、风机1. 原理风机是将电能、燃料能等形式能源转换为气体动能的装置。

其工作原理基于空气动力学和能量转换原理。

通过转子的旋转,风机能够将气体的动能和压力能转化为机械能,从而实现气体的输送。

2. 应用风机在工程实践中应用广泛,包括通风、空调、工业烟气处理等领域。

例如,风机可以用于排除室内空气中的污染物,保持空气新鲜;还可以用于工业烟气处理中的除尘、脱硫等工艺。

3. 发展趋势现代风机的发展也面临着一些挑战和需求:(1)高效节能:发展低能耗、高效率的风机技术,减少能源消耗。

(2)减少噪音污染:通过优化设计和采用低噪音材料,减少风机运行时的噪音污染。

(3)智能化控制:应用智能控制技术,实现风机的自动调节和远程监控,提高运行效率和管理水平。

流体力学泵与风机期末复习重点总结

流体力学泵与风机期末复习重点总结

流体力学泵与风机期末复习重点总结流体力学泵与风机期末复习重点总结一、引言流体力学泵与风机是在流体力学领域中非常常见的装置,广泛应用于工程领域,如水泵、空调风机、离心风机等。

熟练掌握流体力学泵与风机的基本原理和性能特点,对于工程师和研究人员来说是非常重要的。

本文将对流体力学泵与风机的期末复习重点进行总结,帮助读者快速回顾和掌握相关知识。

二、流体力学泵的基本原理流体力学泵是一种能够将流体从低压区域输送到高压区域的装置。

其基本原理是利用泵的叶轮运动与流体之间的相互作用来实现流体的输送。

在泵的叶轮中,流体由低压区域进入,受到叶片的作用而增加了动能,然后被推向高压区域。

流体在泵内的流动过程中,需克服摩擦阻力和叶轮的转动阻力,从而提供功率。

三、泵的性能特点及分类1. 泵的扬程和流量特性:泵的扬程和流量是泵性能的两个重要指标。

扬程表示泵能够提供的压力能力,流量表示泵单位时间内输送流体的量。

泵的性能曲线反映了扬程和流量之间的关系,帮助人们了解泵在不同工况下的表现。

2. 泵的效率:泵的效率是指泵转换输入功率和输出功率之间的比值。

有效高效的泵可以提供更大的流量,同时减少能源的消耗。

泵的效率与流量、扬程等参数有关。

3. 泵的分类:根据其结构和工作原理不同,泵可以分为离心泵、容积泵、轴流泵等多种类型。

离心泵是最常见的类型,通过旋转叶轮产生离心力将流体推向出口。

容积泵利用容积的变化来实现流体输送。

轴流泵则是通过推力来推动流体。

四、风机的基本原理及特点风机是一种将气体(如空气)转化为动能的装置,常用于通风、循环等工程领域。

风机与泵类似,但在工作原理和性能特点上有所不同。

1. 风机的工作原理:风机通过旋转叶轮产生了气流的动能,然后将其传递给周围的空气,使空气流动起来。

在风机内部,气流具有一定的压力差,使得气体在风机内不断循环流动。

2. 风机的性能特点:与泵相比,风机的压力增加较小,但流量较大。

风机性能的评估指标主要包括气流量和压力增加。

流体力学泵与风机课件

流体力学泵与风机课件

详细描述
流量是泵在单位时间内输送的流体体积或质量,是衡量 泵输送能力的重要参数。扬程是泵所输送流体的出口压 力与入口压力之差,反映了泵对流体所做的功。功率是 泵在单位时间内所做的功或消耗的能量,反映了泵的工 作效率。效率是泵的实际输出功率与输入功率之比,反 映了泵的工作效率。转速是泵轴的旋转速度,反映了泵 的工作速度。这些性能参数是选择和使用泵的重要依据 。
详细描述
风机的工作原理主要是通过叶轮旋转产生的离心力或升力,使气体获得能量,如 压力和速度等。当叶轮旋转时,气体被吸入并随叶轮一起旋转,在离心力的作用 下,气体被甩向叶轮的外部,并获得能量,然后通过导流器将气体排出。
风机的性能参数
总结词
风机的性能参数
详细描述
风机的性能参数主要包括流量、压力、功率和效率等。流量表示单位时间内通过风机的气体体积或质 量,压力表示气体通过风机时所受到的压力,功率表示风机所消耗的功率,效率表示风机输出功率与 输入功率之比。这些性能参数是衡量风机性能的重要指标。
具有流动性、连续性和不 可压缩性,对流体的作用 力可以分解为法向应力和 切向应力。
流体静力学
静压力
静压力计算
流体在平衡状态下作用在单位面积上 的力,与重力加速度和高度有关。
通过压强计或压力传感器测量流体中 的静压力。
静压力特性
静压力沿重力方向递增,垂直方向上 静压力相等。
流体动力学
流量与速
流量是单位时间内流过某 一截面的流体体积,流速 是单位时间内流过某一截 面的距离。
05
CATALOGUE
泵与风机的应用场景
泵的应用场景
工业用水处理
泵在工业用水处理中用 于输送水、悬浮物和化
学药剂等。
农业灌溉

流体力学泵与风机[总结]

流体力学泵与风机[总结]

流体力学泵与风机方程式(Z+p/γ)=C 从物理学:Z项是单位重量液体质点相对于基准面的位置势能,p/γ项是单位重量液体质点的压力势能,Z+p/γ项是单位重量液体的总势能,(Z+p/γ)=C表明在静止液体中,各液体质点单位重量的总势能均相等。

从水力学:Z为该点的位置相对于基准面的高度,称位置水头,p/γ是该点在压强作用下沿测压管所能上升的高度,称压强水头,Z+p/γ称测压管水头,它表示测压管液面相对于基准面的高度,(Z+p/γ)=C表示同一容器的静止液体中,所有各点的测压管液头均相等。

——————————————等压面:①在连通的同种静止液体中,水平面必然是等压面②静止液体的自由液面是水平面,该自由液面上各点压强均为大气压钱,所以自由液面是等压面③两种不同液体的分界面是水平面,故该面也是等压面——————————————绝对压强=相对压强+真空压强——————————————压强的量度单位:①用单位面积上所受的压力来表示,单位N/m2,或Pa②用液柱的高度来表示,mH2O、mmHg、mmH2O,h=p/γ③用大气压的倍数来表示,单位为工程大气压和标准大气压,1atm=101.325kPa。

——————————————流线:同一时刻流场中一系列流体质点的流动方向线,即在流场中画出的一条曲线,在某一瞬时,该曲线上的任意一点的流速矢量总是在该点与曲线相切。

迹线:某一流体质点在连续时间内的运动轨迹。

——————————————能量方程式的意义(物理意义):z表示单位重量流体的位置势能,简称位能,简称位能,p/γ表示单位重量流体的压力势能,简称压能,av2/2g表示单位重量流体的平均势能,简称动能,hw表示克服阻力所引起的单位能量损失,简称能量损失,z+p/γ表示单位势能,z+p/γ+av2/2g表示单位总机械能。

(几何意义)方程式中各项的单位都是米,具有长度量纲[L]表示某种高度,可以用几何线段来表示,流体力学上称为水头,z称为位置水头,p/γ称为压强水头,av2/2g 称为流速水头,hw称为水头损失,z+p/γ称为测压管水头(Hp),z+p/γ+av2/2g称为总水头(H)——————————————沿程水头损失:在管路中单位水流的沿程能量损失。

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字流体力学泵与风机课程总结报告流体力学泵与风机课程是机械工程专业的重要课程之一,通过该课程的学习,我们对流体力学泵与风机的基本原理、结构设计、性能分析等方面有了更深入的了解。

在这篇报告中,我将对该课程进行总结,并谈谈我的收获与体会。

首先,在课程中,我们学习了流体力学泵与风机的基本原理。

通过学习流体力学基本方程、流体静力学、动力学等内容,我们了解了流体力学泵与风机的工作原理与基本参数。

我们学习了泵与风机的分类、结构与工作原理,并深入学习了各种泵和风机的特点、优缺点以及适用范围。

这为我们后续的学习和实践操作打下了坚实的基础。

其次,在课程的实验环节中,我们通过实际操作泵和风机进行了性能分析实验。

通过实验,我们了解了泵和风机的性能参数如水头、流量、效率等的测量方法,学习了如何绘制性能曲线和研究泵和风机的运行规律。

实验中,我们还学会了如何调整泵和风机的运行状态,以达到最佳性能。

这些实验让我们不仅理论联系实际,更锻炼了我们的动手能力和实验操作技巧。

最后,在课程的学习过程中,我深刻体会到了流体力学泵与风机的重要性和广泛应用。

泵和风机作为常见的流体输送装置,广泛应用于工农业生产、城市供水、环境保护等领域。

学习了泵和风机后,我们对其性能有了更深入的了解,能够合理选择和设计泵和风机,并研究其在不同工农业生产中的应用。

同时,我们也认识到了泵与风机在实际运行中的问题和挑战,如流量控制、噪音与振动、能耗等。

这些问题需要我们在以后的工作中不断研究和解决。

综上所述,流体力学泵与风机课程的学习让我对泵与风机有了更深入的认识和理解,掌握了其基本原理与性能分析方法。

通过实验操作,我也提高了动手能力和实验技巧。

在今后的工作中,我将运用所学知识,结合实际应用需求,不断研究和改进泵与风机的设计和运行,为工农业生产提供更优质的流体输送装置。

流体力学泵与风机

流体力学泵与风机

流体力学泵与风机引言流体力学泵与风机是现代工程中常见的设备,它们都是用于传递流体能量的机械装置。

流体力学泵用于将流体从一个位置输送到另一个位置,而风机则可以产生气流或风力。

本文将对流体力学泵和风机进行介绍,并对它们的工作原理和应用进行分析。

流体力学泵工作原理流体力学泵利用叶轮的旋转来增加流体的压力和能量,并将流体从低压区域输送到高压区域。

其工作原理可以简单描述为以下几个步骤:1.流体进入泵的吸入口并经过进口管道。

2.进入泵体后,流体会接触到旋转的叶轮。

3.叶轮的旋转会使流体产生离心力,从而增加流体的压力和能量。

4.增压后的流体会经过出口管道被输送到目标位置。

应用领域流体力学泵广泛应用于各个工程领域,包括工业生产、供水系统、空调系统等。

以下是一些常见的应用领域:1.工业生产:流体力学泵在石油、化工、制药等行业中被大量使用,用于输送原料、提供冷却或加热等功能。

2.供水系统:流体力学泵在市政供水系统中发挥关键作用,将水从水源输送到居民家中。

3.空调系统:空调系统中的循环泵利用流体力学泵的原理,将冷却剂从蒸发器输送到冷凝器,实现空调制冷效果。

风机工作原理风机是一种将电能或机械能转换为气流或风力的设备。

它的工作原理与流体力学泵类似,但有些细微差别。

以下是风机的基本工作方式:1.风机通过电机或其他动力装置产生旋转的叶轮。

2.进入风机的气体或气流会被叶轮的旋转加速。

3.叶轮的旋转会使气体产生动能,形成气流或风力。

4.产生的气流或风力可以用于各种应用,例如通风、排气、空气循环等。

应用领域风机在多个领域中被广泛应用,以下是一些常见的应用领域:1.通风系统:风机用于建筑物、地下车库、厂房等场所的通风,保证室内空气的新鲜和循环。

2.工业排气:工业生产中产生的废气需要通过风机排出,以维护良好的工作环境。

3.热交换器:一些设备上的热交换器需要通过风机来强制空气对流,实现热量的交换。

4.供暖系统:某些供暖系统中使用风机将温暖的空气输送到各个房间,实现室内的加热效果。

工程流体力学及泵与风机

工程流体力学及泵与风机

工程流体力学及泵与风机引言工程流体力学是研究涉及液体和气体在运动中的力学和热力学性质的学科。

它是工程领域中一个重要的分支,涉及到许多关键性的应用,如流体流动、流体阻力、泵与风机的设计与应用等等。

本文将对工程流体力学以及泵与风机进行介绍和探讨。

工程流体力学工程流体力学是研究液体和气体运动的力学学科,是研究流体力学在各种工程问题中的应用的科学。

它涉及到流体的流动、流体的阻力、流体的压力和速度分布等等。

在工程流体力学中,一些重要的概念和定律如下:流体静力学流体静力学是研究静止流体的力学性质,即在静止状态下的流体行为。

在流体静力学中,布劳伊定律是一个重要的定律,它描述了流体内部各处的静压力相等。

流体动力学流体动力学是研究流体在运动中的力学性质。

流体动力学可以进一步分为两个方面:流体运动的基本方程和流体力学的应用。

流体运动的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

这些方程描述了流体在运动中质量、动量和能量的变化规律。

流体力学的应用涉及到各种工程问题,如流体的管道输送、飞机的气动力学、河流的水力学等等。

泵与风机泵和风机是工程领域中常见的设备,用于输送流体或气体。

它们在工业生产和生活中起着重要的作用。

泵泵是一种将液体或气体从低压区域输送至高压区域的设备。

泵的工作原理基于压力差的产生,通过旋转或往复运动的机械装置产生液体或气体的流动。

泵一般分为离心泵和容积泵两种类型。

离心泵通过离心力将液体或气体从中心向外推送,而容积泵则通过容积变化来输送介质。

泵的选择与应用需要考虑许多因素,如流量、扬程、压力损失、效率等等。

风机风机是一种将气体从一个区域输送到另一个区域的设备。

它由旋转的叶片和驱动装置组成,通过转动叶片产生气流。

风机一般分为轴流风机和离心风机两种类型。

轴流风机的气流方向与机轴平行,而离心风机的气流方向与机轴垂直。

风机的选择与应用也需要考虑类似于泵的因素,如风量、静压、效率等等。

结论工程流体力学及泵与风机是工程领域中的重要概念和设备。

工程流体力学第7章泵与风机讲解

工程流体力学第7章泵与风机讲解
➢ 若将几个叶轮按一定的距离装在同一根转轴上,来提 高液体的能量,这样的泵称为多级泵。
➢ 为了把液体送到较远或较高的地方,常采用多级离心 泵。
7.1.2 泵的扬程
一般离心式泵的装置如图7.2所示。
➢ 1-1断面为泵的进口,装有真空表3; 2-2断面为泵出口,装有压力表4。
➢ 单位重量液体在泵出口处的能量 e2 与 在泵入口处的能量 e1 之差,即单位重 量液体在泵中实际获得的能量,就是 泵的扬程或总扬程,也是泵的总水头 或称总输水高度,以 H 表示。
9800
2 9.8
7.1.2 泵的扬程
再按图9.2,以O-O面为基准,列吸液池液面与1-1断面的能量方程:
p0
v02 2g
hs
p1
v12 2g
hls
(7.3)

e1
hs
p1
v12 2g
p0
v02 2g
hls
列2-2断面与排液池液面d-d的能量方程:
hs
z2
p2
v22 2g
hs
hd
❖ 设大气的压强为Pa,真空表的读数为Pv,压力表的读数为PM,则
p1 pa pv zv
于是 即
p2 pa pM zM
H e2 e1
hs
z2hs
pa
pv
zv
v22 v12 2g
H
(z2
zm ) zv
pM
pv
v22 v12 2g
(7.1)
上式中,(z2+zm)-zv=Δz表示压力表与真空表位置的高度差。
第7章 泵与风机
7.1 离心式泵 7.2 离心式通风机 7.3轴流式风机
第7章 泵与风机

流体力学泵与风机——叶片式泵与风机的理论

流体力学泵与风机——叶片式泵与风机的理论
改变转速时各参数的变化 比例定律
改变几何尺寸时 各参数的变化
改变密度时 各参数的变化
第四节 比 转 数
➢ 比转数:在相似定律的基础上推导的一个包括转速、流量、 扬程 在内的综合相似特征数,用符号ns表示。
泵的比转数
风机的比转数
比转数公式的说明
比转数应用
比转数对性能曲线的影响
比转数公式的说明
➢ (1)同一台泵或风机,在不同工况下有不同的比转数,一般是用 最高效率点的比转数作为相似准则的比转数。
a:陡降的曲线: 这种曲线有25%~30
%的斜度,当流量变动很小时,
H
扬程变化很大,适用于扬程变化
大而流量变化小的情况,如电厂
循环水泵;
b:平坦的曲线,这种曲线具有8%一 12%的斜度;当流量变化很大时,
K
扬程变化很小,适用于流量变化
b
大而要求扬程变化小的情况,如
电厂的汽包锅炉给水泵 C:有驼峰的曲线,其扬程随流量的
➢ 图中a所表示的qv—H曲线的变 化情况可见,在低比转数时, 扬程随流量的增加,下降较为 缓和。当比转数增大时,扬程 曲线逐渐变陡,因此轴流泵的 扬程随流量减小而变得最陡。
翼型及叶栅的空气动力特性
(1)骨架线 通过翼型内切圆圆心的连线,是构成翼型的基础,其形状决定了 翼型的空气动力特性。
(2)前缘点、后缘点: 骨架线与型线的交点, (3)弦长b : 前缘点与后缘点连接的直线称弦长或翼弦 (4)翼展l: 垂直于纸面方向叶片的长度(机翼的长度)称翼展 (5)展弦比:σ翼展l与弦长b之比称展弦比 (6)挠度f : 弦长到骨架线的距离, (7)厚度c: 翼型上下表面之间的距离,称翼型厚度 8)冲角口 : 翼型前来流速度的方向与弦长的夹角称冲角,冲角在翼弦以下

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字在流体力学课程中,泵和风机是两个非常重要的概念。

泵和风机都是能够将能量转化为流体运动能力的机械设备。

本文将对流体力学泵与风机课程进行总结报告。

首先,我们学习了泵的基本原理和工作原理。

泵是一种能够提供压力能的机械设备,它通过旋转叶片或活塞运动将液体从低压区域输送到高压区域。

泵的种类很多,包括离心泵、容积泵、混流泵等。

每种泵都有其适用的工作条件和性能指标,我们需要根据具体需求选择适当的泵型。

其次,我们学习了风机的基本原理和工作原理。

风机是一种将能量转化为气流运动能力的机械设备,它通过旋转叶片产生气流。

风机的种类也很多,包括轴流风机、离心风机、混流风机等。

不同类型的风机适用于不同的场合,我们需要根据具体需求选择合适的风机。

在课程中,我们还学习了泵和风机的性能参数和性能曲线分析。

性能参数包括流量、扬程、功率等。

性能曲线则是通过实验测得的泵和风机的性能数据所绘制的图形。

通过分析性能曲线,我们可以了解泵和风机的特性和工作状态,从而优化泵和风机的选择和运行。

此外,我们还学习了泵和风机的安装和维护方法。

正确的安装和维护对于泵和风机的性能和寿命至关重要。

我们需要注意安装位置、排泥、润滑、紧固等细节,确保泵和风机的正常运行。

通过学习流体力学泵与风机课程,我对泵和风机的工作原理和性能分析有了更深入的了解。

我了解了不同类型的泵和风机的特点和适用范围,能够根据具体需求做出正确的选择。

我也学会了如何通过分析性能曲线来评估泵和风机的工作状态,并掌握了正确的安装和维护方法。

这些知识对我今后的工作和学习都非常有帮助。

总之,流体力学泵与风机课程的学习使我对泵和风机有了更深入的了解。

我相信这些知识将对我的工作和学习产生积极的影响。

我将继续学习和探索流体力学领域的知识,不断提升自己的专业水平。

流体力学下篇 泵与风机

流体力学下篇 泵与风机

射流泵示意图 1-喷嘴;2-吸入室;3-混合管;4-扩散管
2020年6月9日
5
按流体的压力大小不同,泵与风机通常又可分为低压、中 压和高压三类:
(一) 泵的分类: 低压泵 低压泵的总压头小于2.0MPa; 中压泵 中压泵的总压头在2.0~6.0MPa之间; 高压泵 高压泵的总压头大于6.0MPa。 (二) 风机分类: 低压通风机 低压通风机的全风压小于1.0KPa; 中压通风机 中压通风机的全风压在1.0~3.0KPa之间; 高压通风机 高压通风机的全风压大于3.0 ~ 15KPa。 鼓风机 鼓风机的全风压一般在15~340KPa之间; 压气机(压缩机) 压气机的全风压在340KPa以上。
所谓“气蚀”是指侵蚀破坏材料之意,它是“空(气)泡”现象所产 生的后果。气蚀发生时产生噪音和震动,液体流量明显下降,同时压 头、效率也大幅度降低,严重时会输不出液体。
• 产生气蚀的具体原因有
1)泵的几何安装高度Hg过大。 2)泵安装地点的大气压较低,如在高海拔地区。 3)泵所输送的液体温度过高等。
2020年6月9日
28
2020年6月9日
29
2、对效率的影响 通常离心式泵与风机叶轮的进口截面积与出口截面积相差 不大,因此进口和出口的径向分速度可以近似看作相等,即
v1 vr1 vr2
H Td
v22 v12 2g
v22 vr22 2g
vu22 2g
2020年6月9日
30
其他条件相同时,尽管前向叶型的泵和风机总的扬程 较大,但能量损失也大,效率较低。
(2) 叶轮的叶片为无限多而又无限薄,液体的流动与叶片完全一致。流 体进入和流出时无冲击。
(3) 液体为理想不可压缩流体,即不考虑叶轮内液体运动的能量损失。

流体力学泵与风机研究

流体力学泵与风机研究

2019/9/28
19
2、几何意义
理想流体微元流束的伯努利方程式(3-41)中,左端 前两项的几何意义,同样在静力学中已有阐述,即第一项 z表示单位重量流体的位置水头,第二项p/(ρg)表示单位重 量流体的压强水头,第三项V2/(2g)与前两项一样也具有长 度的量纲。它表示所研究流体由于具有速度V,在无阻力 的情况下,单位重量流体所能垂直上升的最大高度,称之 为速度水头。位置水头、压强水头和速度水头之和称为总 水头。由于它们都表示某一高度,所以可用几何图形表示 它们之间的关系,如图3-16所示。
2019/9/28
3
不相同。这时从管道中流出的射流形状也不随时间而变。 这种运动流体中任一点的流体质点的流动参数(压强和速 度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。现将阀门A关小,则流入水箱的水 量小于从阀门B流出的水量,水箱中的水位就逐渐下降, 于是水箱和管道任一点流体质点的压强和速度都逐渐减小, 射流的形状也逐渐向下弯曲。
2019/9/28
26
二、空蚀(气蚀)
空化产生的气泡被液流带走。当液流流到下游高压区 时,气泡内的蒸汽迅速凝结,气泡突然溃灭。气泡溃灭的 时间很短,只有几百分之一秒,而产生的冲击力却很大, 气泡溃灭处的局部压强高达几个甚至几十兆帕,局部温度 也急剧上升。大量气泡的连续溃灭将产生强烈的噪声和振 动,严重影响液体的正常流动和流体机械的正常工作;气 泡连续溃灭处的固体壁面也将在这种局部压强和局部温度 的反复作用下发生剥蚀,这种现象称为空蚀(气蚀)。剥 蚀严重的流体机械将无法继续工作。空蚀机理是尚在研究 中的问题。主要说法有二:①认为气泡突然溃灭时,周围
2019/9/28
27
的流体快速冲向气泡空间,它们的动量在极短的时间内变 为零,因而产生很大的冲击力,该冲击力反复作用在壁面 上,形成剥蚀;②认为气泡在高压区突然溃灭时,将产生 压强冲击波,此冲击波反复作用在壁面上,形成剥蚀。很 可能这两种情况都存在。

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字

流体力学泵与风机课程总结报告800字流体力学是机械工程中的一门重要课程,涉及到流体的运动、力学和能量转换等方面的知识。

其中,泵和风机是流体力学的重要应用,本文将对流体力学泵与风机课程进行总结报告。

首先,泵和风机是流体力学课程的重要内容。

泵是将机械能转化为流体能的装置,用于输送流体或增加流体的压力。

风机则是将电能或机械能转化为气体的能量,用于输送气体或增加气体的压力。

在实际工程中,泵和风机的应用非常广泛,涉及到水泵站、空调系统、风力发电等领域。

其次,泵和风机的工作原理和性能特点是学习流体力学泵与风机课程的重要内容。

泵的工作原理是通过叶片受力,使得流体获得机械能,从而实现流体的输送或增压。

而风机则是利用叶片旋转产生气流,从而实现气体的输送或增压。

在学习过程中,我们深入学习了泵和风机的各种性能参数,如流量、扬程、效率等,以及它们与流体的关系。

此外,泵和风机的选型和运行维护也是课程的重要内容。

泵和风机的选型需要考虑流体的性质、工况要求和经济性等因素,以确保其工作效果和经济性。

而泵和风机的运行维护包括定期检查、润滑和维修等,以确保其正常运行和延长使用寿命。

最后,本课程还通过实验和案例分析等方式加深了我们对泵和风机的理解。

通过实验,我们亲自操作泵和风机,并观察其工作过程和性能特点,从而更加直观地理解泵和风机的工作原理。

而通过案例分析,我们学习了实际工程中泵和风机的应用案例,了解了泵和风机在工程实践中的重要性和挑战。

总之,流体力学泵与风机课程是一门非常实用和重要的课程。

通过学习泵和风机的工作原理、性能特点和运行维护等知识,我们能够更好地应用泵和风机于实际工程中,并提高工程的效率和质量。

同时,通过实验和案例分析的学习方式,我们也能够更深入地理解泵和风机的工作原理和应用。

流体力学泵与风机

流体力学泵与风机

流体力学泵与风机
流体力学泵与风机都是用来输送流体的设备,但两者的原
理和工作方式有所不同。

流体力学泵是通过机械能的转化来增加流体的能量,从而
使流体具有一定的压力能够被输送。

流体力学泵主要由一
个或多个旋转的叶轮组成,通过旋转产生的离心力将流体
吸入并向出口处推送。

泵的转子通过电动机或其他动力源
进行驱动,使其旋转从而产生压力差。

风机是利用风力的动能来进行输送流体的设备。

风机一般
由旋转的叶片和驱动装置组成。

叶片通过空气的冲击力来
转动,从而产生风力推动空气或气流的运动。

风机可以用
来输送空气或气体,常见的应用包括通风系统、空调系统等。

流体力学泵和风机的主要区别在于其工作介质和工作原理。

流体力学泵主要用于输送液体介质,而风机主要用于输送
气体介质。

此外,流体力学泵通过机械能的转化来增加液体的能量,而风机则利用风力的动能来推动气流的运动。

因此,在设计和选择时需要根据具体的应用需要来决定使用哪种设备。

大学流体力学课件46——第九章泵与风机

大学流体力学课件46——第九章泵与风机
第九章 泵与风机
第九章 泵与风机
例:对矿井通风排水设备的要求:安全可靠,合理经济
安全可靠: 如通风机如停15分钟以上就要上报上级主管部门作为一级 事故处理。水泵如在关键时刻不能用,将会淹没整个矿井。 合理经济: 通风和排水设备均为大型设备, 长时工作,耗电量大,应 提高其运行效率。
第九章 泵与风机
( 风镐,凿岩台车)
§9-1 离心式泵
一、概述 二、泵的扬程 三、叶轮
四、泵内的能量损失
五、泵的吸上扬程与汽蚀现象
六、离心泵的性能曲线 比例定律
七、泵在管路中的工况点,工况的调节 八、泵的并联运转与串联运转 九、离心泵的比转速及型号
§9-1 离心式泵
一、概述 1. 离心泵基本结构
§9-1 离心式泵
例: 离心式或轴流式泵与风械又常称为涡轮机械 (turbiner) (透平机械)
叶轮式机械是本课程的主要研究内容。
第九章 泵与风机
容积式(静力式)机械特点: 利用容积变化或位移,改变流体的压力,传递能量。
(由位移所提供的静压强大于由速度或动能的变化而提高的 静压强)

理想叶轮的欧拉方程
四、泵内的能量损失
四、泵内的能量损失
四、泵内的能量损失
四、泵内的能量损失
小结:
离心泵的基本结构 离心泵的基本工作原理 泵和风机的主要特性参数 泵的扬程 理想叶轮的欧拉方程 泵内的能量损失
例:往复泵、活塞式空压机、 齿轮泵、叶片泵等
容积式机械主要是液压传动课程所讲述的内容
第八章 泵与风机
※5 通风机和压气机 通风机:气体经过风机后,压力能增加不大,气体的密度 变化很小。为了简化计算,在通风机中的气体, 可视为不可压缩流体。
压气机 :气体的密度有明显变化,应考虑其压缩性。

流体力学在机械设计中的泵与风扇研究

流体力学在机械设计中的泵与风扇研究

流体力学在机械设计中的泵与风扇研究流体力学是研究流体力学规律及其应用的学科,它在许多领域都有重要的应用,特别是在机械设计中。

本文将讨论流体力学在泵与风扇研究中的应用。

一、泵的设计与研究1. 泵的基本原理泵是一种将机械能转化为流体能的装置,其工作原理基于流体力学的定律和现象。

泵的主要组成部分包括叶轮、流道和驱动装置等。

通过旋转叶轮带动流体运动并增加其能量,从而实现流体的输送和升压。

2. 流体力学在泵设计中的应用流体力学的理论和方法对泵的设计、性能分析和优化起着重要作用。

在泵的设计过程中,需要考虑流体的流动特性、压力变化、阻力损失等问题。

通过使用流体力学的基本方程和流动模型,可以预测泵的性能并进行参数优化,提高泵的效率和输送能力。

3. 泵的分类与应用根据工作原理和流体性质的不同,泵可以分为离心泵、容积泵、轴流泵等多种类型。

它们在各种领域都有广泛的应用,包括水力工程、石油化工、供水供暖等。

通过对泵的流体力学特性研究,可以更好地满足不同领域的需求。

二、风扇的设计与研究1. 风扇的基本原理风扇是一种利用旋转叶片产生气流的装置,其工作原理同样基于流体力学的定律。

风扇通过旋转叶片产生气流,从而实现空气的对流和通风。

2. 流体力学在风扇设计中的应用风扇的设计和性能分析需要考虑气体的流动特性、压力变化、速度分布等问题。

流体力学的理论和方法可以帮助分析和优化风扇的气流特性,提高风扇的效率和通风性能。

通过对风扇的流体力学特性进行研究,可以改进叶片的形状、角度等参数,提高风扇的风量和压力。

3. 风扇的分类与应用根据叶片形状和工作原理的不同,风扇可以分为轴流风扇、离心风扇、斜流风扇等多种类型。

它们在空调、通风、散热等领域都有广泛的应用。

通过对风扇的流体力学特性研究,可以设计出更高效、更节能的风扇产品,满足人们对于舒适环境的需求。

结论:流体力学在机械设计中的泵与风扇研究中起着至关重要的作用。

通过对泵和风扇的流体力学特性进行研究和优化,可以提高其性能和工作效率,满足不同领域的需求。

流体力学:泵与风机

流体力学:泵与风机
(6)允许吸上真空高度Hs及汽蚀余量Hsv。允许吸上 真空高度是指水泵在标准状况下(即水温为20℃、水泵 工作环境压力为一个标准大气压101.325KPa)运转时, 水泵吸入口处(一般指真空表连接处)所允许的最大吸 上真空高度。单位为mH2O。水泵样本中提供了Hs值, 是水泵生产厂按国家规定通过汽蚀试验得到的,它反 映了离心泵的吸水能力。
轴端密封装置分为填料密封、机械密封、浮动环密封
和机械密封等几种形式。
8
离心式风机的主要部件 离心式泵与风机的主要部件由叶轮、蜗壳、集流器 与进气箱组成。 轴流式泵与风机的主要部件 轴流式泵与风机主要部件基本一致,主要部件有叶 轮、导叶、吸入室(集流器)和扩压筒组成
9
二 泵与风机的基本性能参数
※ 泵与风机的基本性能参数※
程度,有效功率Ne与轴功率N的比值称为效率η,即
Ne 100%
(式10.2)
效率是衡量泵与风机性能好N坏的一项技术经济指标。
轴功率的计算公式为: N

Ne
QH

QP

(式10.3) 11
泵与风机的基本性能参数
(5)转速。是指泵与风机叶轮每分钟旋转的圈数, 用 符号n表示,单位是r/min(rpm)。转速是影响泵与风机 性能参数的一个重要因素,泵与风机是按一定的转速 设计的,当泵与风机的实际转速不同于设计转速时, 泵与风机的其它性能参数将按一定的规律变化。
图10.3 轴向涡流对流速 分布的影响
22
离心式泵与风机的基本理论
23
离心式泵与风机的基本理论
图10.4 叶轮出口处流体速度的偏移
24
离心式泵与风机的基本理论
25
离心式泵与风机的基本理论
26

工程流体力学中的泵和风机的流体动力学分析

工程流体力学中的泵和风机的流体动力学分析

工程流体力学中的泵和风机的流体动力学分析工程流体力学是研究液体和气体在各种流动情况下的力学行为及其应用的学科。

泵和风机在工程中广泛应用于输送液体和气体,因此对泵和风机进行流体动力学分析非常重要。

本文将从泵和风机的工作原理、性能参数以及流体动力学分析方法等方面进行详细介绍。

一、泵的流体动力学分析1. 泵的工作原理泵是将功率能源转化为流体能量的装置。

泵的工作原理主要是通过旋转叶轮或转动密封体来增加流体的动能,从而使流体产生压力。

泵的工作过程可分为吸入、压缩和排出三个阶段。

2. 泵的性能参数泵的性能参数包括流量、扬程、效率和功率等。

流量是指泵单位时间内输送的流体体积,通常用升/秒或立方米/小时表示;扬程是流体在泵中被增压的高度,通常用米表示;效率是指泵将输入的功率转化为流体能量的比例,通常以百分比表示;功率则是泵驱动所需的功率大小。

3. 泵的流体动力学分析方法泵的流体动力学分析方法包括定性分析、定量分析和模型试验。

定性分析通过力学和能量原理来分析泵的工作过程,比如动量原理和能量守恒原理;定量分析则主要是通过数值计算和计算机模拟等方法来求解泵的性能参数;模型试验则是将泵放入实验设备中进行实际测试,得到泵的性能曲线。

二、风机的流体动力学分析1. 风机的工作原理风机是将机械能转化为风能的装置,主要用于输送气体。

风机的工作原理是通过叶轮的旋转来产生气流,并产生压力差。

气流从高压区域到低压区域流动,从而达到输送气体的目的。

2. 风机的性能参数风机的性能参数包括风量、风压、效率和功率等。

风量是指单位时间内通过风机的气体体积,通常用立方米/秒或立方米/小时表示;风压是风机产生的气体压力,通常用帕斯卡表示;效率是指风机将输入的机械能转化为气体能量的比例,通常以百分比表示;功率则是驱动风机所需的功率大小。

3. 风机的流体动力学分析方法风机的流体动力学分析方法与泵类似,包括定性分析、定量分析和模型试验。

定性分析主要包括动量原理和能量守恒原理的应用,以及通过流体力学方程求解风机的性能参数;定量分析则通过数值计算和计算机模拟来求解风机的性能参数;模型试验则是将风机放入实验设备中进行测试,得到风机的性能曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
• 第一章:流体力学 • §1–1 流体运动的一些基本概念 • §1–2 流体运动的连续性方程 • §1–3伯努利(Bernoulli)方程 • §1–4 液体的空化和空蚀现象 • 第二章:泵与风机
2020/5/5
1
流体运动学研究流体的运动规律,如速度、加速度等 运动参数的变化规律,而流体动力学则研究流体在外力作 用下的运动规律,即流体的运动参数与所受力之间的关系。 本部分主要介绍流体运动学和流体动力学的基本知识,学 习流体力学中的几个重要的基本方程:连续性方程、动量 方程和能量方程,这些方程是分析流体流动问题的基础。
2020/5/5
9
图 3-9 均匀流
2020/5/5
10
图 3-10 非均匀流
2020/5/5
11
缓变流 急变流
缓变流
急变流 缓变流 急变流
急变流 缓变流 急变流
图 3-11 缓变流和急变流
2020/5/5
12
第二节 流体流动的连续性方程
连续性方程是质量守恒定律在流体力学中的应用。我 们认为流体是连续介质,它在流动时连续地充满整个流场。 在这个前提下,当研究流体经过流场中某一任意指定的空 间封闭曲面时,可以断定:若在某一定时间内,流出的流 体质量和流入的流体质量不相等时,则这封闭曲面内一定 会有流体密度的变化,以便使流体仍然充满整个封闭曲面 内的空间;如果流体是不可压缩的,则流出的流体质量必 然等于流入的流体质量。
dqm分别为: dqv=VdA
(3-16)
dqm=ρVdA
(3-17)
2020/5/5
7
图 3-6 管内流动速度分布
2020/5/5
8
六、均匀流和非均匀流
根据流场中同一条流线各空间点上的流速是否相同,
可将总流分为均匀流和非均匀流。若相同则称为均匀流,
V u(x, y) i v(x, x) j
2020/5/5
2
第一节 流体运动的一些基本概念
在讨论流体运动的基本规律和基本方程之前,为了便 于分析、研究问题,先介绍一些有关流体运动的基本概念。
一、定常流动和非定常流动
根据流体的流动参数是否随时间而变化,可将流体的 流动分为定常流动和非定常流动,现举例说明如下:如图 3-2所示装置,将阀门A和B的开度调节到使水箱中的水位 保持不变,则水箱和管道中任一点(如1点、2点和3点等) 的流体质点的压强和速度都不随时间而变化,但由于1、2、 3各点所处的空间位置不同,故其压强和速度值也就各
2020/5/5
4
图 3-2 流体的出流
2020/5/5
5
二、流体流动分类
可以把流体流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束,即 流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
(3)射流 总流的全部边界均无固体边界约束,如喷嘴 出口的流动。
2020/5/5
2020多数都是在某些周界所限定的空 间内沿某一方向流动,即一维流动的问题,所谓一维流动是指流动参 数仅在一个方向上有显著的变化,而在其它两个方向上的变化非常微 小,可忽略不计。例如在管道中流动的流体就符合这个条件。
2020/5/5
14
。 对不可压缩均质流体常数,
1-1流向截面2-2。测得截面1-1的水流平均流速V 2m/s,
已知d1=0.5m,
d2=1m,试求截面2-2处的平均流速
V

2
多少?
【解】 由式(3-33)得
V1
4
d
2 1
V2
4
d
2 2
V2
V1
d1 d2
2
2 0.5 2 1
0.5(m/s)
2020/5/5
16
图 3-14 输水管道
2020/5/5
17
第三节伯努利(Bernoulli)方程
z p V 2 常数
g 2g
(3-42)
在特殊情况下,绝对静止流体V=0,由式(3-41)可以得到静力学基本 方程
一、方程的物理意义和几何意义
为了进一步理解理想流体微元流束的伯努利方程,现来叙述该方 程的物理意义和几何意义。
1、物理意义
2020/5/5
3
不相同。这时从管道中流出的射流形状也不随时间而变。 这种运动流体中任一点的流体质点的流动参数(压强和速 度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。现将阀门A关小,则流入水箱的水 量小于从阀门B流出的水量,水箱中的水位就逐渐下降, 于是水箱和管道任一点流体质点的压强和速度都逐渐减小, 射流的形状也逐渐向下弯曲。
2020/5/5
6
三、流量和平均流速
单位时间内通过有效截面的流体体积称为体积流量,
以qv表示。其单位为m3/s、m3/h等。
单位时间内通过有效截面的流体质量称为质量流量,以
qm表示,其单位为kg/s、t/h等。
由于微元流束有效截面上各点的流速V是相等的,所
以通过微元流束有效截面积为的体积流量dqv和质量流量
V1 A1 V2 A2
上式为不可压缩流体一维定常流动的总流连续性方程。该 式说明一维总流在定常流动条件下,沿流动方向的体积流 量为一个常数,平均流速与有效截面面积成反比,即有效 截面面积大的地方平均流速小,有效截面面积小的地方平 均流速就大。
2020/5/5
15
【例3-6】 有一输水管道,如图3-14所示。水自截面
理想流体微元流束的伯努利方程式(3-41)中,左端
2020/5/5
18
前两项的物理意义,在静力学中已有阐述,即第一项z表 示单位重量流体所具有的位势能;第二项p/(ρg)表示单位 重量流体的压强势能;第三项V2/(2g)理解如下:由物理学 可知,质量为m的物体以速度V运动时,所具有的动能为 Mv2/2,则单位重量流体所具有的动能为V2/(2g)即 (mV2/2)/(mg)= V2/(2g) 。所以该项的物理意义为单位重量 流体具有的动能。位势能、压强势能和动能之和称为机械 能。因此,伯努利方程可叙述为:理想不可压缩流体在重 力作用下作定常流动时,沿同一流线(或微元流束)上各 点的单位重量流体所具有的位势能、压强势能和动能之和 保持不变,即机械能是一常数,但位势能、压强势能和动 能三种能量之间可以相互转换,所以伯努利方程是能量守 恒定律在流体力学中的一种特殊表现形式。
相关文档
最新文档