网络设备冗余和链路冗余-常用技术(图文)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络设备及链路冗余部署
——基于锐捷设备
8.1 冗余技术简介
随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。
为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。
8.2设备级冗余技术
设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。
在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。
8.2.1S6806E交换机的电源冗余技术
图8-1 S6806E的电源冗余
如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同
时插入两块P6800-AC模块来实现220v交流电源的1+1备份。
电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。
注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。
8.2.2 S6806E交换机的管理板卡冗余技术
图8-2 S6806E的管理卡冗余
如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。
简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。
在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管
理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具
一定要记得保存配置,否则会造成用户配置丢失
在实际项目中,S65和S68系列的高端交换机一般都处于网络的核心或区域核心位置,承载着园区网络中关键的业务流量。为了提供更可靠的网络平台,锐捷网络推荐对于S65和S68系列交换机都配备电源和管理卡的冗余。
8.3链路级冗余技术
在大型园区网络中往往存在多条二层和三层链路,使用链路级冗余技术可以实现多条链路之间的备份,流量分担和环路避免。本章将对几种主要的链路冗余技术进行阐述。
8.3.1 二层链路冗余的实现
在二层链路中实现冗余的方式主要有两种,生成树协议和链路捆绑技术。其中生成树协议是一个纯二层协议,但是链路捆绑技术在二层接口和三层接口上都可以使用。首先介绍的是链路捆绑技术(Aggregate-port)。
8.3.1.1二层链路捆绑技术(Aggregate-port)
AP技术的基本原理
把多个二层物理链接捆绑在一起形成一个简单的逻辑链接,这个逻辑链接我们称之为一aggregate port(简称AP)。AP是链路带宽扩展的一个重要途径,符合IEEE 802.3ad标准。它可以把多个端口的带宽叠加起来使用,形成一个带宽更大的逻辑端口,同时当AP中的一条成员链路断开时,系统会将该链路的流量分配到AP中的其他有效链路上去,实现负载均衡和链路冗余。AP技术一般应用在交换机之间的骨干链路,或者是交换机到大流量的服务器之间。锐捷网络交换机支持最大8条链路组成的AP。
二层AP技术的基本应用和配置
下面来看一个简单的AP应用实例:
图8-3 二层链路AP技术
在图8-3中两台S3550交换机存在两条百兆链路形成了环路,如果要避免环路的话必须要启用生成树协议,这样会导致其中一条链路被阻塞掉,既造成了带宽的浪费,同时也违背了使用两条链路实现冗余加负载分担的设计初衷。
在这种情况下使用AP技术可以园满的解决这个问题,通过捆绑两条链路形成一个逻辑端口AggregatePort,带宽被提升至200M,同时在两条链路中的一条发生故障时,流量会被自动转往另一条链路,从而实现了带宽提升,流量分担和冗余备份的目的。
具体的设备配置以其中S3550-1为例:
配置完成后使用命令检查结果如下:
S3550-1#show aggregatePort 1 summary
AggregatePort MaxPorts SwitchPort Mode Ports
------------- -------- ---------- ------ -----------------------
Ag1 8 Enabled Access Fa0/1 , Fa0/2
可以看到Ag1已经被正确配置,F0/1和F0/2成为AP组1 的成员。
二层AP技术的负载均衡
AP技术的配置和应用环境都并不复杂,但是在实际项目使用AP的时候,很多人往往忽视了一个问题,那就是如何用好AP的负载均衡模式。
二层AP有两种负载均衡模式:基于源MAC或者是基于目的MAC进行帧转发。在实际项目中,灵活运用这两种模式才能使得AP发挥最大的功效。
图8-4 AP的负载均衡模式
在图8-4中可以看到在核心和汇聚之间存在一条由三个百兆组成的AP链路,缺省情况下二层AP基于源MAC地址进行多链路负载均衡。这样做在用户侧交换机上是没有任何问题的,因为数据来自不同的用户主机,源MAC不同;但是如果在核心交换机上也根据源MAC来投包的话,仅仅会利用上三条链路中的一条,因为核心交换机发往用户数据帧的源MAC只有一个,就是本身的SVI接口MAC。因此为了能够充分利用AP的所有成员链路,必须在核心交换机上更改成基于目的MAC的负载均衡方式。
锐捷网络推荐在使用AP技术时根据项目的情况合理选择负载均衡的方式,以免造成链路带宽的浪费。
调整二层AP负载均衡模式的配置以S3550为例:
8.3.1.2 生成树技术
本章节主要介绍如何在实际项目中运用生成树技术实现二层链路的冗余和流量分担,对于生成树技术原理不会做过多的描述,如果对生成树技术有兴趣的读者请自行查阅资料。
生成树协议802.1D STP作为一种纯二层协议,通过在交换网络中建立一个最佳的树型拓扑结构实现了两个重要功能:环路避免和冗余。但是纯粹的生成树协议IEEE 802.1D在实际应用中并不多,因为其有几个非常明显的缺陷:,收敛慢,而且浪费了冗余链路的带宽。作为STP的升级版本,IEEE 802.1W RSTP解决了收敛慢的问题,但是仍然不能有效利用冗余链路做负载分担。因此在实际工程应用中,往往会选用802.1S MSTP技术。
MSTP技术除保留了RSTP快速收敛的优点外,同时MSTP能够使用instance(实例)关联VLAN的方式来实现多链路负载分担。下面我们来看一个实例:
图8-5 MSTP原始拓扑
使用STP实现链路冗余
在图8-5是一种常见的二层组网方式,三台交换机上都拥有两个VLAN,VLAN10和VLAN20。接入层交换机到汇聚交换机有两条链路,如果使用802.1D STP技术来进行链路冗余的话,会导致图8-6中的结果: