芳纶及其合成加工与应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芳纶及其合成、加工与应用

摘要:本文对芳纶的品种、合成及加工方法、应用做了一个简要的介绍,并对不同品种的芳纶、及芳纶的不同合成及加工方法做了一个简单的对比。对芳纶的加工类型提出一种分级的方法,并通过这种方法对芳纶的加工及应用进行描述及分析。

关键词:芳纶、液晶、合成、加工、分级理论、应用

Aramid and its Synthesis、Process、Application

Abstract:This paper introduces several kind of aramids,and their synthesis and processing methods. To study process of aramid better, A theory of classification is put forward.Process type of aramid is divided three kinds.By this method,we also introduce the application of aramid.

Keyword:Aramid、Liquid Crystal、Synthesis、Process、A Theory of Classification、Application

前言

芳纶是一种新型高科技合成材料,是芳香族聚酰胺的统称。相对于尼龙6、尼龙66等普通聚酰胺材料,因为分子链上相对较为柔软的碳链为刚性的苯环结构所代替。芳香族聚酰材料其结构的特性,呈现溶致液晶性,是一种重要的主链型高分子液晶,因此芳纶具有超高强度、高模量和耐高温等优良性能。芳纶目前已被广泛应用于国防军工、及航天航空、机电、建筑、汽车、体育用品等国民经济的各个方面。如芳纶防弹衣、头盔,宇宙飞船、飞机等基体材料等等。据估计,芳纶产品用于防弹衣、头盔等约占7~8%,航空航天材料、体育用材料大约占40%;轮胎骨架材料、传送带材料等方面大约占20%左右,还有高强绳索等方面大约占13%。

一、芳纶的命名

自20世纪60年代后期以来,已经有多种芳纶问世,并工业化生产。芳纶种类比较多,其划分的方法也有多种。

第一种命名方法根据结构划分,分为对位芳纶、间位芳纶和邻位芳纶。对位芳纶的单体是对苯二甲酸和对苯二胺,单体的上的功能团为对位,聚合得到的链段比较规整,耐高温性能好,强度、高模量。对位芳纶主要有以杜邦的Kevlar系列产品为代表。间位芳纶的单体是间苯二甲酸和间苯二胺,单体的上的功能团为间位,聚合得到的链段呈锯齿型,耐高温,但强度模量都比较低。间位芳纶主要有以杜邦的Nomex系列产品为代表。邻位芳纶的单体是邻苯二甲酸和邻苯二胺,单体的上的功能团为邻位。邻位芳纶主要有以杜邦的Korex系列产品为代表。

第二种命名方法根据结构划分,如对位就是苯环上的14位置,间位就是苯环上的13位置,如芳纶14的聚合单体就是对氨基苯甲酸,芳纶1414就是前面所说的对位芳纶,芳纶1313就是前面所说的间位芳纶。

第三种命名方法就是根据聚合单体的种类,如前面所说的芳纶14又叫芳纶I型,芳纶1414和芳纶1313又叫芳纶II型。当在对苯二甲酸和对苯二胺、间苯二甲酸和间苯二胺等常见结构加入第三单元单体如4,4’-二氨基二苯醚、5(6)-胺基-2-(4-胺基苯基)苯并咪唑等得到的芳纶可称为芳纶III型。当第三单元单体为杂环结构时,人们还常称之为杂环芳纶。

二、芳纶的制备工艺

1、芳纶树脂的合成方法

1.1、低温溶液聚合法

芳香族二胺和芳香族二酰氯在极性溶剂中反应而得,在低温(一般在0-5℃)下进行缩聚反应,同时添加碱或碱土金属盐作为助溶剂以提高树脂在溶剂中的溶解度及稳定性,经过浓度调整,这种溶液可以直接行湿法纺丝、打浆和制膜,具有耗用溶剂少、生产效率高的优点,目前在生产中温溶液缩聚被广泛的采用。

工业化的研究,可选择的已商品化的单体只有那么几种,技术人员低温溶液聚合法的研究主要几种在反应溶剂及助溶剂的选择。初期反应用得溶剂主要为酰胺类,如六甲基磷酰胺、二乙基甲酰胺、N-烷基吡咯烷酮等【1】。随着聚合度的增加,聚合物在溶剂中的溶解度降低,会从溶剂中析出,不利于产品质量和后续加工,因此需要在其中加入助溶剂。助溶剂可以选择碱或碱土金属盐如氯化钙、氯化锂等,最高加入量可以达到溶剂量的5%【2】,也可以选择季铵盐氯化物,如甲基三正丁基氯化铵【3】。因为季铵盐氯化物的价格较高,工业生产中多选用氯化钙和氯化锂,相比较而言氯化钙的增溶效果略差于氯化锂,用量较多,但价格更便宜。

因为酰胺类化合物自身的一些缺点:如六甲基磷酰胺具有致癌性;常用的N-烷基吡咯烷酮热稳定性较差,回收工艺复杂以防止分解,另外溶解性还不是太好,助溶剂的量过大影响产品质量。深圳市中晟创新科技股份有限公司的侯庆华等人,利用环丁砜作为溶剂,以氯化钙为助溶剂,对苯二胺与部分对苯二甲酰氯在此溶剂中20℃以下进行预聚合,然后预聚合和剩下的对苯二甲酰氯泵入混合器在-5-0℃混合,并进入双螺杆挤出机在60-80℃,控制停留10分钟,进行聚合,水洗后得到芳纶树脂。此树脂可溶于发烟硫酸进行干-湿法纺丝。【4】

1.2、直接溶液聚合法

用三苯基磷等做催化剂,在卤代烃/吡啶溶剂中芳香族二酸与芳香族二胺在室温下直接缩聚得到聚合物。催化剂活性较高,在反应过程中可能与二酸的羧基反应生成酸酐,这样就会破坏单体的功能基间的等当量配比,降低聚合物的聚合度,不易得到高分子量的聚合物。【5】

1.3、界面缩聚

把芳香族二酸制成酰氯溶于有机溶剂中,把芳香族二胺溶于水并加入硫酸钠或氢氧化钠作为缚酸剂,然后两种溶液混合。在混合过程中,两种液体的界面上发生缩聚反应得到聚合物树脂。该方法具有一定的理论意义,但聚合物后处理工序多,配制纺丝溶液时还需再次溶解,设备复杂,且无法连续化生产,不易得到分子量较高产品,因此在工业几乎没有什么应用。【6】

1.4、酯交换反应

芳香族二酸先制成酯,然后和芳香族二胺在加热下进行高温缩聚反应,加入催化剂可以加速反应。反应前期在常压下进行预聚合,然后减压蒸出副产物。日本帝人公司采取酯交换反应这种方法得到高性能的纤维。【7】

1.5、气相聚合

将芳香族二胺和芳香族二酰氯汽化,并和惰性气氛、叔胺类蒸汽混合,在管式反应器中加热进行气相缩聚反应。此法制得的芳纶,可以利用干法纺丝或干-湿法纺丝。【8】

1.6、钯催化的酰胺化缩聚

1988年Imai用芳香二卤代物、CO和芳香族二胺在钯催化下合成聚酰胺化合物,后来Perry 将其发展成为可充分碳资源合成高分子材料的可行路线。【9】此法原料来源充足且CO价格低廉等优点,引起了化学家们的极大关注。如果合成技术上再能取得突破,使其适合商业化生产,那么必将引起芳纶行业大的飞跃。

三、芳纶的加工

1、芳纶加工的液晶态基础

因为芳香族聚酰胺结构特点,芳纶的热稳定性很高,这也导致了芳纶无法用常规的加热熔融的加工方法。但芳纶的酰胺结构使它可以溶于强质子酸类如浓硫酸、氯磺酸等,或非质子性的酰胺类溶剂,但用酰胺类溶剂时需有氯化钙或氯化锂等作为助溶剂,以提高芳纶的溶解性。利用这种特性,芳纶可以溶解在硫酸或酰胺类化合物中进行加工。而芳香族聚酰胺特有的刚性结构,使芳纶溶液在一定条件下,可以出现各向异性,即液晶相,在这种液晶相的条件下加工的芳纶产品的性能可大为提高。而要出现各向异性的液晶态溶液,芳纶产品的分子量必须达到一定的值、溶液的浓度达到临界值、温度在一定范围之内。

Stephaine Kwolek在上世纪60年代就通过光学、力学等方法研究了聚苯甲酰胺(芳纶14,即PBA)、聚对苯二甲酰对苯二胺(芳纶1414,即PPTA)在硫酸中的液晶相行为:当硫酸的浓度超过98%时,芳纶的浓溶液(大于8%)就会呈现各向异性,即液晶态[10]。管宝琼也利用类似方法研究了聚对苯二甲酰对苯二胺的硫酸溶液在不同浓度、温度下的相行为,发现PPTA/硫酸溶液不仅随着浓度的增加由各向同性溶液转变为各向异性溶液、然后进一步转变为各向异性固体;而且在某一特定浓度的体系有一个温度范围,在此温度区间内是各向异性液体,低于这个温度范围为各向异性固体,高于这个范围就变成各向同性溶液[11]。

Stephaine Kwolek也利用类似方法,研究了芳纶产品在酰胺类溶剂+助溶剂体系中的相行为。以PBA/DMAc、LiCl体系为例,在添加一定量的LiCl作为助溶剂的情况下,随着溶液浓度的增加溶液从各向同性溶液、先转变为既有各向同性又有各向异性的溶液、再转变为各向异性溶液、最后变为各向异性固体。某一特定的浓度PBA/DMAc、LiCl体系溶液在温度改变时,其相变的趋势和浓硫酸溶液中的相变趋势类似。[12]

相关文档
最新文档