医学图像的配准与融合

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、医学图像配准的基本过程
1、根据待配准图像(浮动图像)I2与参考图像(基准图 像)I1,提取出图像的特征信息组成特征空间; 2、根据提取出的特征空间确定出一种空间变换,使待配 准图像I2经过该变换后与参考图像I1能够达到所定义的相 似性测度; 3、在确定变换的过程中,还需采取一定的搜索策略也就 是优化措施以使相似性测度更快更好地达到最优值。
二、空间变换——非线性变换
1. 二阶多项式变换
x 2 a 0 a 0 x 0 1 a 0 1 y 1 a 2 0 z 1 a 0 3 x 1 2 a 4 0 x a 5 0 x y a 0 6 y 1 2 z a 7 0 y a 8 0 z 2 z y 2 a 1 a 1 x 0 1 a 1 y 1 a 2 1 z 1 a 3 1 x 1 2 a 4 1 x a 5 1 x y a 6 1 y 1 2 z a 7 1 y a 8 1 z 2 z z 2 a 2 a 2 x 0 1 a 2 1 y 1 a 2 z 1 a 2 3 x 1 2 a 4 2 x a 5 2 x y a 2 6 y 1 2 z a 7 2 y a 8 2 z 2 z
第八章 医学图像的配准与融合
8.1 配准与融合的应用背景介绍 8.2 医学图像配准概述 8.3 图像配准的理论基础 8.4 常用的医学图像配准方法 8.5 图像配准的评估
第八章 医学图像的配准与融合
8.6 图像融合概述 8.7 常用的图像融合方法 8.8 图像融合效果的评价
8.1 应用背景介绍
随着计算机技术的高速发展,医学成像技术日新 月异,为临床医学提供了各种形态和功能的影像信 息。
y2a a2 31 1xx1 1 a a3 22 2yy1 1 a a3 23 3
a ij 是依赖于图像本身的常数。
二、空间变换——非线性变换
非线性变换是把直线变换为曲线。它反映的是图像中组织 或器官的严重变形或位移。典型的非线性变换是多项式函 数,如二次、三次函数及薄板样条函数。有时也使用指数 函数。非线性变换多用于使解剖图谱变形来拟合图像数据 或对有全局性形变的胸、腹部脏器图像的配准。
二、医学图像配准在临床上的应用
医学图像配准具有很重要的临床应用价值。对使用各 种不同或相同的成像手段所获得的医学图像进行配准不仅 可以用于医疗诊断,还可用于手术计划的制定、放射治疗 计划的制定、病理变化的跟踪和治疗效果的评价等各个方 面。
二、医学图像配准在临床上的应用
临床应用举例
1、计算机辅助手术中,外科医生根据配准的 CT/MR/DSA图像精确定位病灶及周围相关的解剖结构信 息,设计出缜密的手术计划。在手术过程中,利用三维空 间定位系统使术前计划的虚拟病人、手术台上的真实病人 和手术器械三者精确联系起来进行手术跟踪。
之对应。 这种映射关系表现为一组连续的空间变换,如整幅图像应
用相同的空间变换,则称之为全局变换(global transformation),否则,称之为局部变换(local transformation)。
二、空间变换
图像配准的基本变换
二、空间变换——刚体变换
刚体:是指物体内部任意两点间的距离保持不变。 刚体变换:使得一幅图像中任意两点间的距离在变换前
一、图像配准原理
公式表示:
S (T ) S (A (X )B ,(T (X )))
S是相似性测度,配准的过程归结为寻求最佳空间变换的过程。
T ˆarm g aS(T x)
由于空间变换包含多个参数,是一个多参数最优化问题,一 般由迭代过程实现:
TT T T λ dS(T)
dT
二、空间变换
图像A和B的配准就是寻找一种映射关系T: XA→XB,使得XA上的每一点在XB上都有唯一的点与
二、医学图像配准在临床上的应用
临床应用举例
2、在癫痫病的治疗中,一方面需要通过CT,MRI等图像 获得病人的解剖信息,另一方面又需要通过SPECT或PET 等得到病人的功能信息,这两方面的结合将有助于对病人 的精确治疗。
二、医学图像配准在临床上的应用
临床应用举例
3、放射治疗中,应用CT和MR图像的配准和融合来制定 放疗计划和进行评估,用CT图像精确计算放射剂量,用 MR图像描述肿瘤的结构,用PET和SPECT图像对肿瘤的 代谢、免疫及其他生理方面进行识别和特性化处理,整合 的图像可用于改进放射治疗计划或立体定向活检或手术。
8.1 应用背景介绍
目前这两类成像设备的研究都已取得了很大的进步,图像的 空间分辨率和图像质量有很大的提高,但由于成像原理不同所 造成的图像信息局限性,使得单独使用某一类图像的效果并不理 想。 因此,为了提高诊断正确率,需要综合利用患者的各种图像 信息。
8.1 应用背景介绍
最有效的解决方法:以医学图像配准技术为基础,利用信息 融合技术,将这两种图像结合起来,利用各自的信息优势,在 一幅图像上同时表达来自人体的多方面信息。 更加直观地提供了人体解剖、生理及病理等信息。其中配准 技术是图像融合的先决条件,必须先进行配准,才能实现准确地 融合。
三、医学图像配准的基本过程
初始变换T 参考图像I1
待配准图像I2 几何变换T
变换后的图像I*=T(I2) 相似性测度评价
更新T
N T最优?
Y 最优T
图像配准的流程图
8.3 图像配准的理论基础
一、图像配准原理 二、空间变换 三、参数的优化搜索 四、插值方法 五、相似性测度
一、图像配准原理
对于在不同时间或/和不同条件下获取的两幅图像A(x) 和B(x)的配准,就是要定义一个相似性测度并寻找一个 空间变换关系,使得经过该空间变换后两幅图像间的相 似性达到最大(或者差异性最小)。即使图像A上的每 一个点在图像B上都有唯一的点与之对应,并且这两点 应对应同一解剖位置。
二、医学图像配准方法的分类
(七)根据主体分类
1、同一患者(Intrasubject)的 配准:指将来自同一个病人 的待配准图像,用于任何种类的诊断中;
2、不同患者(Intersubject) 的配准:指待配准图像来自不 同病人,主要用在三维头部图像(MR、CT)的配准中
3、 患者与图谱的(Atlas)图像配准。是指待配准图像一幅 来自病人,一幅来自图谱。
8.2 医学图像配准概述
一、医学图像配准的概念 二、医学图像配准方法的分类 三、医学图像配准的基本过程
一、医学图像配准的概念
医学图像配准是指对于一幅医学图像寻求一种(或一 系列)空间变换,使它与另一幅医学图像上的对应点达到 空间上的一致。这种一致是指人体上的同一解剖点在两张 匹配图像上有相同的空间位置(位置一致,角度一致、大 小一致)。
二、空间变换——非线性变换
2. 薄板样条变换
可以表示为仿射变换与径向基函数的线性组合:
n
f(X)AX B W iU(|PiX|) i1
其中:X是坐标向量, A与B定义一个仿射变换, U是径向基函数。
二、空间变换——非线性变换
在二维图像配准中:
U(r)r2lorg2 r x2 y2
在三维图像配准中: U(r)|r|
r x2y2z2
三、参数的优化搜索
配准的几何变换参数根据求解方式可分成两类: 一、根据获得的数据用联立方程组直接计算得到的,这一
类完全限制在基于特征信息的配准应用中。 二、根据参数空间的能量函数最优化搜索得到。在这一类
中所有的配准都变成一个能量函数的极值求解问题。 因此图像配准问题本质上是多参数优化问题,优化算法的 选择至关重要。
后保持不变。 例如:人体的头部由坚硬的颅骨支撑,在处理时通常忽
略头部皮肤的微小变形,将整个人脑看作是一个 刚体。
二、空间变换——刚体变换
两幅图像之间的刚体变换可由一个刚体模型描述:
VsR T U
s是比例变换因子。 T(tx,ty,tz) ' 是图像之间沿x,y,z方向上的平移量。 R是3×3的旋转矩阵,满足约束条件:
基于内部特征的配准:主要包括三个方面:基于标记的 配准方法、基于分割的配准方法、基于像素特 性的配准。
二、医学图像配准方法的分类
(六)根据配准过程中变换参数确定的方式分类
1、通过直接计算公式得到变换参数的配准:限制在基于特征信息(例 如小数目的特征点集、二维曲线、三维表面)的配准应用中。
2、通过在参数空间中寻求某个函数的最优解得到变换参数的配准: 所有的配准都变成一个能量函数的极值求解问题。
R'
m21
m3 0
1
m22 m32
0
ຫໍສະໝຸດ Baidu
m23 m33
0
m24
m3 1
4
二、空间变换——投影变换
投影变换:将直线映射为直线,但不保持平行性质。 投影变换主要用于二维投影图像与三维体积图像的配准。
二维投影变换按照下式将图像 A(x1, y1) 映射至图像 B(x2, y2)

x2aa3 11 1xx1 1 a a1 32 2yy1 1 a a1333
三、参数的优化搜索
常用的优化算法: Powell法、梯度下降法、 遗传算法、模拟退火法、 下山单纯形法、Levenberg-Marquadrt法等。
三、参数的优化搜索
(一) Powell法
二、医学图像配准方法的分类
(一)按图像维数分类
按图像维数分为2D/2D,2D/3D,以及3D/3D配准。 2D/2D配准通常指两个断层面间的配准;2D/3D配准 通常指空间图像和投影图像(或者是单独的一个层面) 间的直接配准;3D/3D配准指2幅三维空间图像间的配 准。
二、医学图像配准方法的分类
(二)根据医学图像的模态分类
单模态医学图像配准:是指待配准的两幅图像是用同一 种成像设备获取的。一般用在生长监控、减影成像等。 多模态图像配准:是指待配准的两幅图像来源于不同的成 像设备,主要应用于神经外科的诊断、手术定位及放疗 计划设计等。
二、医学图像配准方法的分类
(三)根据变换性质分类
刚性变换:只包括平移和旋转。 仿射变换:将平行线变换为平行线。 投影变换:将直线映射为直线。 曲线变换:将直线映射为曲线。
R tRRtR I deRt)(1
二、空间变换——刚体变换
相对笛卡尔坐标系的三个坐标轴,R有三种不同的形式:
1 Rx 0 0
0
c o s x sinx
0
sinx cosx
cosz sinz 0
Rz sinz cosz 0
0
0 1
cosy
Ry 0
siny
0 siny
1 0
0
cosy
θ x θ y θ z 分别表示围绕
二、医学图像配准方法的分类
(四)根据用户交互性的多少分类
自动配准:用户只需提供相应的算法和图像数据。 半自动配准:用户需初始化算法或指导算法(如拒绝或接
受配准假设); 交互配准:用户在软件的帮助下进行配准
二、医学图像配准方法的分类
(五)根据配准所基于的图像特征分类
基于外部特征的图像配准:是指在研究对象上设置一些 标志点,使这些标记点能在不同的影像模式中 显示,然后再用自动、半自动或交互式的方法 用标记将图像配准。
配准的结果应使两幅图像上所有的解剖点,或至少是 所有具有诊断意义的点及手术感兴趣的点都达到匹配。
一、医学图像配准的概念
医学图像配准示意图
二、医学图像配准方法的分类
到目前为止,图像配准方法的分类始终没有一个统 一的说法。目前比较流行的是1993年Van den Elsen等 人对医学图像配准进行的分类,归纳了七种分类标准。
但是各种成像技术和检查方法都有它的优势与不 足,并非一种成像技术可以适用于人体所有器官的 检查和疾病诊断,也不是一种成像技术能取代另一 种成像技术,而是相辅相成、相互补充。
8.1 应用背景介绍
根据医学图像所提供的信息内涵,分为两大类: 解剖结构图像(CT、MRI、B超等) 功能图像(SPECT、PET等) 解剖图像以较高的分辨率提供了脏器的解剖形态信息(功能 图像无法提供脏器或病灶的解剖细节),但无法反映脏器的 功能情况。 功能图像分辨率较差,但它提供的脏器功能代谢信息是解剖 图像所不能替代的;
X Y Z坐标轴的旋转角度
二、空间变换-仿射变换
仿射变换:将直线映射为直线,并保持平行性。
不满足:
VsR T U R tRRtR I
deRt)(1
二、空间变换-仿射变换
在笛卡儿坐标系下,二维仿射变换的旋转矩阵R’表示为:
m11 m12 m13
R' m21 m22 m23
0
0
1
三维:
m11 m12 m13 m14
相关文档
最新文档