混合动力汽车发动机转速控制

混合动力汽车发动机转速控制
混合动力汽车发动机转速控制

混合动力汽车发动机转速控制

摘要:目前,汽车电子控制系统在应用控制理论方面需要解决的难题是,进一

步将已有的控制理论应用于汽车各子系统的控制,这是解决汽车各子系统控制的主要途径。并联式混合动力汽车的控制策略是混合动力汽车研究的重点,而发动机转速控制是并联式混合动力汽车发动机和电动机协调控制的重点研究问题之一。

关键字:控制系统混合动力汽车发动机转速

发动机控制系统一般包括燃油喷射控制、点火时间控制、怠速运转控制、发动机爆燃控制、废气再循环控制、故障诊断和其它相应的控制等。在现代的发动机控制系统中.通常采用闭环控制方式,利用各种传感器来测量发动机的工况,如节气门开度、空气流量、曲轴转角或废气中的氧气含量等。这些信号随后被输送到ECU控制单元、中加以分析处理,ECU的输出信号则可以分别对喷油器、火花塞、涡轮增压器等操作进行较为精确的控制,以便将发动机的油耗、排放、噪声等控制在最佳水平上。与传统的发动机相比,节能效果在15%以上,尾气排放污染得到了有效控制,还大大提高了汽车的动力性能和驾车的舒适性。下面着重介绍一下控制工程在混合动力汽车发动机转速控制上的应用。

并联式混合动力汽车的控制策略是混合动力汽车研究的重点,而发动机转速控制是并联式混合动力汽车发动机和电动机协调控制的重点研究问题之一。混合动力汽车具有续驶里程长,燃油经济性高,污染少等优点。为了充分发挥其优点,要保证发动机工作在最佳工况,此发动机必须具有转速控制系统,使之在负载变动的情况下仍然能使转速保持在最低油耗区不变,从而达到混合动力汽车节能减排的目的。

1.发动机转速控制策略的研究的重要性

1.1 转速控制问题的提出

自从汽车发明以后,发动机的转速控制问题一直是人们研究的主要课题之一,对于混合动力汽车也不例外。因为混合动力汽车发动机是一个非线性、时滞、时变的动力学系统,这给发动机转速的控制带来了很大的困难,另外由于汽车使用条件和环境的变化,将会带来汽车发动机的某些参数变化,同样给发动机的转速控制增加了难度。

1.2 转速控制的分类

发动机的转速控制主要包括怠速控制和巡航控制两个方面。

所谓怠速是指驾驶者释放加速踏板或汽车离合器分离时,发动机只维持自身以及发电机、空调压缩机等汽车附件运转的运行状态。怠速控制必须保证发动机产生的转矩与所需要的负载转矩保持平衡,在有界的外部扰动条件下维持一定的转速。在现代城市交通中,汽车在行驶过程中由于路况等原因而经常处于热机怠速工况,在此工况下汽车的燃油消耗和污染排放在总的耗油量和排放量中占有相当大的比例,而且随着未来城市交通阻塞的增加这个比例还会进一步的提高。此外,在怠速工况时由于发动机模型参数摄动、汽车负载变化和外界扰动等因素使得发动机转速出现较大的波动,不仅使发动机的油耗增大,而且导致排放质量恶

化,因此对发动机怠速控制策略研究具有及其重要的现实意义。

巡航控制实际上是一个恒速控制系统,其基本控制方式与怠速控制没有本质上的差别,所不同的是,控制器调节的不是怠速调节阀,而是控制发动机节气门。在上个世纪90年代,人们提出了自动化高速公路的概念。其基本思想是:在高速公路上建立一定的设施(如导向磁块),当汽车行驶上高速公路后,实现汽车高速、安全的无人驾驶,从而避免因驾驶员疲劳驾驶所引发的交通事故。要实现上述计划,首先要解决汽车速度跟踪的问题,尤其是在发动机的负载变化率较大时(如大功率空调设备启停,爬升坡度较大的路面)的发动机转速跟踪控制。

1.3 并联混合动力汽车的转速控制特点

典型的并联混合动力汽车是指发动机和电动机均可通过位于变速箱前端的转矩耦合器为整车提供动力,这种动力总成因结构紧凑,可实施性强,得到了广泛的应用,但这种结构也面临很多亟待解决的问题,其中最主要的就是发动机的转速控制问题。与传统汽车发动机调速不同的是,并联式混合动力汽车存在多种工况:包括混合驱动工况(发动机和电动机同时驱动整车运行)、行车发电工况(发动机同时驱动电机发电和整车运行)和驻车发电工况(即发动机带动主电机发电工况),因此对其的转速控制需做如下几点考虑:

(1)传统汽车发动机调速系统一般对突增突卸载荷的极限工况要求不高,由于混合动力汽车发动机存在各种工况,在工况切换过程中,电动机一般先切换到空载状态,这样导致发动机负载会突然部分增大或减小,甚至全负荷突增或者突减,这样的激励对转速控制系统来说是相当严厉的,因此需加强系统突增突卸载荷的适应能力;

(2)在驻车发电工况时,发动机转速稳定占主导地位,因此该工况需采用相应的转速控制方法,以减小因发动机转速振荡带来的舒适性恶化;

(3)并联式混合动力汽车由于增加主电动机,使系统惯性有比较明显的提高,换档过程中,在动力中断机动力恢复过程中需要尽快调整发动机转速,以减少换档时间,提高整车的动力性,因此需减少系统的响应时间。

综上所述,说明作为混合动力汽车控制问题的另一个重点,发动机转速控制策略的研究具有及其重要的现实意义。因此,本章对混合动力汽车发动机的转速控制问题进行了研究,研究多工况下发动机转速控制的基本策略,并通过相应的仿真试验,验证所提出的控制方法的可行性。

2.转速控制问题的研究现状

转速控制的主要目标是在系统具有非线性和不确定性以及外部扰动的基础上维持期望的发动机转速。由于发动机是一个典型的非线性、时滞、时变的动力学系统,这给发动机转速控制带来了很大的困难。有关发动机的转速控制的研究已经做了大量的工作,主要集中在以下四个个方面:第一类为最优控制方法,采用Ll前馈最优控制器和LQG最优控制器,借助前馈控制器进行快速可测扰动补偿,利用后者获得良好的速度跟踪和稳态负载扰动补偿性能给出一种最优转速控制方法,该控制器在多个速度设置点都可以实现有效的转速控制。

第二类为自适应控制方法,前者采用节气阀开度作为控制输入对考虑了时延的非线性发动机模型进行怠速控制;后者设计自适应滑模怠速控制器,针对存在可测干扰噪声和模型误差的被控对象进行了转速控制。

第三类为滑模控制方法,通过非线性状态转换和局部线性化将系统模型转化为线性形式,基于可达性条件提出离散滑模控制方法应用于被控对象以获得很好的转速跟踪和抗干扰性能。将怠速控制和巡航控制看作一个问题,采用输入输出

线性化技术将非线性发动机模型转化为线性系统,然后借助滑模控制方法实现发动机的转速调节;在考虑系统参数不确定和负载转矩扰动未知的情况下,利用滑模控制方法对发动机的怠速工况进行控制,控制结果表明该方法具备一定的鲁棒性。

第四类为智能控制方法,比如基于神经网络的控制和模糊逻辑控制方法、模糊控制方法以速度误差和速度误差的变化率作为控制器的输入,以节气阀开度和点火提前角作为控制器的输出对发动机的转速进行控制。发动机转速控制问题是一种复杂的动态非线性不确定问题。上文中提出的基于线性或非线性发动机模型的各种控制方法在一定程度上实现了转速控制目标,但是它们大多数忽略了发动机模型中进气冲程到做功冲程的时延,这在实际控制应用中是必须要考虑的。同时以上的控制方法多数仅仅以节气阀的开度作为控制输入进行转速控制,在考虑时延的情况下会引起发动机转速周期性的波动、甚至会造成停车。因此本章在考虑发动机模型中时延问题的基础上,设计一种新型的滑模控制器,以节气阀开度和点火提前角两个量作为控制信号,利用节气阀开度作为主要控制输入保证发动机稳态的扰动补偿和速度跟踪性能,借助点火提前角作为辅助控制输入来补偿发动机模型中的时延和实现瞬态的扰动补偿。

3.混合动力汽车发动机非线性模型

用于发动机动态控制的数学模型主要有以下三种:基于观测器的模型、内燃机控制模型和平均值内燃机模型,其中平均值模型是一种典型的面向控制分析的发动机模型,具有既可以描述发动机动态特性,又不需很大的模型运算量的特点,因而此类模型在发动机电控系统和发动机实时模拟系统的设计中得到了广泛应用。对研究对象为四缸火花点燃式汽车发动机,针对转速控制问题进行了适当的修改简化后得到发动机均值模型如图所示:该模型主要分三个动态子模型:进气歧管内空气质量流量子模型、燃油蒸气与油膜动态特性子模型以及动力输出子模型。

混合动力汽车发动机非线性模型

4.现代控制理论在汽车领域的应用

现代控制理论发展迅速,并已在汽车电子控制系统中取得了许多成功的应用。如采用可控元件对汽车悬架系统进行控制,可获得主动悬架,这种悬架能根据车辆系统的运动状态和当前的激励大小主动作出反应,以抑制车辆的运动状态,使悬架处于最优的减振状态,以满足不同的需求。目前,汽车电子控制系统在应用控制理论方面需要解决的难题是,进一步将已有的控制理论应用于汽车各子系统的控制,这是解决汽车各子系统控制的主要途径。作为基础产业的汽车制造业,汽车电于控制技术具有举足轻重的地位,并在将来一定会取得更大的进展。

参考文献:

【1】姜久春,李景新,张欣.PHEV动力总成系统的仿真分析研究.电子测量与仪器学报.2005

【2】李国岫,李秀杰.并联式混合动力电动汽车动力总成控制策略的研究.公路交通科技.2005

【3】徐向阳,张万奎.汽车电气与电子控制技术〔M〕.北京:机械工业出版社,1999

图解常见汽车发动机结构图

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不

好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书 佛山菱电变频实业有限公司王与平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成.进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器与供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)与各种传感器组成,它控制燃油喷射时间与喷射量以及点火时刻. 汽车发动机电子控制单元(ECU)就是汽车发动机控制系统得核心,它可以根据发动机得不同工况,向发动机提供最佳空燃比得混合气与最佳点火时间,使发动机始终处在最佳工作状态,发动机得性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)得主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制 发动机控制器(ECU)将进气量与发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统得发动机,ECU除了控制喷油量外,还要根据发动机各缸得点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定得低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定得最高车速时,ECU 自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要得油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动与运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制

混合动力汽车

作业混合动力汽车的类型特点关键零部件的选型(发动机电机电池)动力匹配原理及能量控制策略 混合动力汽车类型 从能量流到混合动力系统输出轴的流经路线,可将混合动力汽车分为串联式、并联式、混联式和复合联接式四种。 1.串联式(SHEV)驱动系统的典型结构与基本组成部件如下所示,主要由发动机、发电机和电动机组成,原动机一般为高效内燃机。发动机直接驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。电池在发动机输出和电动机需求功率间起到调峰调谷的作用。为了满足汽车在起动、加速时的大功率需求,在串联式结构中还有加超级电容等功率密度较大的蓄能装置,在制动能量回收时也起到快速回收能量的作用。 图表1串联式 2.并联式(PHEV)的布置如下所示,其特点是动力系有两种动力源——发动 机和电动机。当汽车加速、爬坡时,电动机和发动机能够同时向传动系提供动力;一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。并联式HEV 能设置成用发动机在高速公路行驶模式,加速时由电动机提供额外动力。 图表2并联式 3.混联式(SPHEV)如下所示,这种布置形式包含了串联式和并联式的特点, 即功率流既可以象串联式流动,又可象并联式流动。它的动力系统包括发动机、发电机和电动机。根据助力装置不同,它又可分为发动机为主和电机为主两种。在发动机为主形式中,发动机作为主动力源,电机为辅助动力源,日产公司(Nissan)Tino属于这种情况。在电机为主形式中,发动机作为辅助动力源,电机为主动力源,Toyota Prius HEV就属于这种情况。这种结构的优点是控制灵

活方便,缺点是结构相对复杂。 图表3混联式 4.复合联接式(CHEV)的布置形式的混合动力汽车结构相对复杂,主要出现在双轴驱动的HEV中。在这种联结形式中,HEV前轴和后轴之间没有传动轴连接,它们分别由动力部件驱动,从而实现四轮驱动,如图卜5所示,。它的动力系统由一个完整的前述混合动力系统和独立的轮毂电机组成。根据布置位置不同,复合式分为两种。一种是前轴由混动系统驱动,后轴由电机驱动型,丰田公司的Prius THS-C采用的就是这种形式;另一种是前轴由电机驱动,后轴由混动系统驱动,通用公司的Precept HEV采用这种形式。这种四轮驱动的缺点是结构复杂,成本较高;优点是动力性和越野性能好,尤其在制动时,前后轴电机都可同时作为发电机回收制动能量给蓄电池充电。这种双轴驱动系统的特有的特点是轴平衡能力,在混合驱动端车轮滑动时,该端的电机能作为发电机来吸收发动机过剩的输出功率。 图表4复合联结式 混合动力汽车特点 混合动力汽车同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。通过在混合动力汽车上使用电机,使得动力系统可以按照整车的实际运行工况要求灵活调控,而发动机保持在综合性能最佳的区域内工作,从而降低油耗与排放。

详解汽车档位.牵引力.行驶速度和发动机转速

浅谈汽车档位.牵引力.行驶速度和发动机转速 各类高中物理练习册在《机械能》一章中都要涉及到有关汽车功率、牵引力、行驶速度的问题,笔者查阅了有关资料并向汽车驾驶员请教后,就下列几个问题谈一些肤浅认识,望能起到抛砖引玉的作用。 一、汽车发动机发动机是一般汽车总体构造四大部分(发动机、底盘、车身和电气设备)的核心部分。发动机是汽车的动力装置,其作用是将所供入的燃料燃烧,使热能转变为机械能而发出动力,并通过汽车的传动系统驱动汽车行驶。发动机的技术指标主要有动力性指标(有效扭矩、有效功率、转速等)、经济性指标(燃油消耗率)以及运转性能指标(冷起动性能、噪声和排气品质等)。下面谈谈与本文有关的技术指标。 (1)有效扭矩发动机通过飞轮对外输出的扭矩称为有效扭矩,用Me表示,单位为N?m.发动机的扭矩是由于燃烧气体作用在活塞上的力通过连杆椎动曲柄而产生的。 (2)有效功率发动机通过飞轮对外输出的功率称为有效功率,用Pe表示,单位为kW。它是发动机克服了各部分摩擦阻力和驱动各种辅助装置(如水泵、机油泵等)所消耗的功率后所得到的净功率。有效功率的计算公式为: (3)转速发动机的转速影响其结构形式与性能,提高发动机的转速可以使功率提高,但转速的提高受到许多条件的限制。 (4)燃油消耗率(比油耗)发动机要发出1KW有效功率,在1小时内所消耗的燃油质量(g),称燃油消耗率,用ge表示,单位为g/kW?h。ge越小,经济性越好。 发动机的速度特性是指发动机的功率、扭矩和燃油消耗率随曲轴转速变化的规律。当油门开到最大时,所得到的速度特性称为发动机外特性,如图1所示。发

动机外特性代表了发动机在使用中允许达到的最高性能,因此最为重要。一般发动机的铭牌上标明的功率Pe,扭矩Me及其相应的转速n,最低燃油消耗率ge 等都是以外特性为依据的。发动机功率的大小,均标明产生该功率时曲轴的相应转速。如解放CA-10B型载重汽车,最大功率/转速为70千瓦/2800转/分,东风EQ-240型越野汽车最大功率/转速为99千瓦/3000转/分。一般习题中所说的汽车额定功率就是指的最大有效功率。由图1可知,在n1~n2范围内,因Me和n 都是逐渐增加的,故Pe是随n的增加而增加的。在n2~n3范围内,n虽然继续增加,但Me却逐渐降低,故Pe是缓慢地增加,到n3时Pe达最大值。转速超过n3时,虽然n是增加的,但由于Me下降很快,故Pe也逐渐下降。发动机最小燃油消耗率的相应转速为n5,它的数值一般介于n2和n3之间。因此,一般发动机工作时所使用的范围应尽可能在最大功率转速与最大扭矩转速之间,即提倡所谓的中速行车”,这样方可保证发动机在最佳动力性与经济性情况下工作。车速过高和过低,都将增加燃油的消耗。 二、变速器变速器是实现变速、传递和改变扭力的大小、改变汽车进退方向及使驱动车轮脱离发动机影响的传动装置。变速器一般由变速传动机构和变速操纵机构组成。变速传动机构的作用是改变转速及扭矩的数值和方向;操纵机构的作用是实现变速器传动比的变换——换档。发动机与变速器之间是离合器,离合器保证发动机的动力与传动机构可靠接合和彻底分离。 变速器传动速度改变的大小,用传动速比i来表示。传动速比等于主动齿轮的转速n主与从动齿轮的转速n从之比;也等于从动轮的齿数Z从与主动轮的齿数Z主之比,即 i=n主/n从=Z从/Z主(2) 变速器扭矩的改变:在略去变速器传动摩擦损失的情况下,输入功率P入应

汽车构造原理图解

汽车构造(发动机,底盘,车身,电气设备) 1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。 4. 电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。 性能参数 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。 4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。 5. 车长(mm):汽车长度方向两极端点间的距离。 6. 车宽(mm):汽车宽度方向两极端点间的距离。 7. 车高(mm):汽车最高点至地面间的距离。 8. 轴距(mm):汽车前轴中心至后轴中心的距离。 9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。 10. 前悬(mm):汽车最前端至前轴中心的距离。 11. 后悬(mm):汽车最后端至后轴中心的距离。 12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。 13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。 14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。 15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。 16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。 17. 最大爬坡度(%):汽车满载时的最大爬坡能力。 18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。 19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

汽车发动机电子控制系统开发现状及趋势

汽车发动机电子控制系统开发现状及趋势 丁志盛叶挺宁 摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。 关键词:EECS,ECU汽车发动机电喷 一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括: - 燃油喷射控制; - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; - 后备系统; - 诊断系统等功能。 另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感

混合动力汽车概述

混合动力汽车概述:三种动力总成模式 HEV(Hybrid-ElectrICVehicel)—混合动力装置。混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在最佳工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。 混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。 串联式动力:串联式动力由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。当车辆处于启动、加速、爬坡工况况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。但是它的缺点是能量几经转换,机械效率较低。 并联式动力:并联式装置的发动机和电动机共同驱动汽车,发动机与电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩,在不同的路面上既可以共同驱动又可以单独驱动。当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。电动机既可以作电动机又可以作发电机使用,又称为电动-发电机组。由于没有单独的发电机,发动机可以直接通过传动机构驱动车轮,这种装置更接近传统的汽车驱动系统,机械效率损耗与普通汽车差不多,得到比较广泛的应用。 混联式动力:混联式装置包含了串联式和并联式的特点。动力系统包括发动机、发电机和电动机,根据助力装置不同,它又分为发动机为主和电机为主两种。以发动机为主的形式

并联式式混合动力汽车的全速控制策略

并联式式混合动力汽车的全速控制策略 摘要:并联式混合动力汽车综合了传统汽车和电动汽车的优点,不仅具有低油耗、低排放等优点,而且续驶里程不受限制,是目前最有希望替代传统汽车的方案。因此,对混合动力汽车关键技术的研究具有非常重要的应用价值。利用瞬态优化控制策略,通过对发动机、电动机、电动机在不同功率进行分配组合,来确定混合动力系统最佳工作模式和工作点切换。本文利用混合动力汽车的数学模型,在MATLAB/Simulink环境中建立了前向仿真模型,进行整车控制策略的研究,并对全速范围的运行控制策略进行了验证。 关键词:并联式混合动力汽车 MATLAB/Simulink 全速范围1 引言 并联式混合动力电动汽车主要由发动机、电动/发电机、电池组、能量管理系统等部件组成,与串联式混合动力电动汽车不同的是,发动机和电动/发电机以机械能叠加的方式来驱动汽车,可以组合成不同的功率输出模式。发动机功率和电动/发电机功率约为电动汽车所需最大驱动功率的50%~100%,其能量利用率高。因此,可以采用小功率的发动机与电动/发电机,使得整个动力系统的装配尺寸、质量都较小,造价也更低,行程也可以比串联式混合动力电动汽车的长些,但布置结构相对复杂,实现形式也多样化,其特

点更加接近内燃机汽车。并联式式混合动力驱动系统通常应用在小型混合动力电动汽车上。 因此,并联式驱动系统最适合在城市间道路和高速公路上行驶,工况稳定,发动机经济性和排放性都会有所改善,和混联式混合动力电动汽车相比较而言结构简单,价格也容易被广大消费者接受,因此,在电池技术问题没有得到很好的解决的情况下,它有望在不久的将来成为汽车商业的主流产品。 2 并联式式混合动力汽车的关键技术 混合动力汽车兼具传统燃油汽车和纯电动汽车的优点,是二者的完美结合,这个结合的纽带就是混合动力汽车的整车控制系统,整车控制系统的主要功能是进行整车能量管理和混合动力系统的控制。整车控制系统如同混合动力汽车的大脑,指挥各个系统的协调工作,以达到效率、排放和动力性的最优,同时兼顾行驶的平稳性。整车控制系统根据驾驶员的操作,如加速踏板、制动踏板、变速杆的操作等,判断驾驶员的意图,在满足驾驶需求的前提下,最优的分配电机、发动机、电池等动力部件的功率输出,实现能量的最优管理,使有限的燃油发挥最大的功效。 目前的混合动力汽车都不需要外部充电,因此,与传统汽车一样,混合动力汽车的能量全部来自于发动机的燃料燃烧所释放的热能,电机驱动所需的电能是燃料的热能在车

汽车档位与车速是怎样一个关系

汽车档位与车速是怎样一个关系? 一般是: 一档~10--20KM 二档~20--30km 三档~30--40km 四档~40--60km 五档~60--...安全km 转速一般是1500--2500左右换,主要还是看车型,如低扭矩的就需要高转速,如富康,它需要3000转换档~~ 合理加档,配合发动机转速,提高工作效率 1. 关于发动机的功率: 汽车发动机的最高功率是在某一转速下发挥出来的,所以汽车的说明书或宣传资料里关于功率的说明都是与转速相提并论的。当汽车在发动机较低转速时行驶(比如1500RPM),发动机的功率可能只发挥出10%-15%(具体参数你研究一下你发动机的“转速/功率曲线”就能确定,如果你有的话。而且这个函数的导数曲线并不平滑,hehe)。交通台的JC当时说:“就好象汽车原来需要70匹马拉着(发动机最高功率70马力),你现在只让15匹马拉,能不费力吗?” 2. 关于燃烧: 发动机长时间处于低转速状态工作,会造成燃烧的不充分,有些部位会有积碳,有些部位会被粘粘乎乎的没有完全燃烧的油渍糊住,进一步造成燃烧的不充分,恶性循环。到那时,你的爱车就想不肉也难了。交通台的JC那天举例子说:“改革开放初期,我国某大部委买了一辆世界知名品牌的高级轿车(JC没点名,我估计是大奔),交给专业司机开了没一年,就油耗上升,运行状态下降等等不良现象先后出现。部委领导忿忿然叫来该公司驻北京办事处的老德,责问其产品质量。老德来了以后,先自己开着车在院子里转了2圈,又问了问司机平时如何驾驶、如何保养和加减档时机等等,并打开车的机器盖子大概看了看。然后老德对领导说:星期天(当时还没有双休日)早上6:00,请你们司机把车加满油,在京顺路起点等我,我亲自给你们修车。星期天早上司机早早来到约定地点,心里还直纳闷,这老德怎么在这儿修车?6:00整老德来了,也开一大奔,他下车对专业司机说:你跟着我,别拉下。说完转身上车狂奔,车速很快达到了200KM/H,一直开到密云水库的大坝上才停住(行程约200KM)。德国老头下了车笑眯眯地对中国司机说:车已经修好了。司机原地慢慢开着试了试,确实好多了。老德解释说:你原来开这个车的习惯是你们中国习惯,开我们公司的车要按我们的习惯和说明书上的规定,你长期低转速加档,使得燃烧不充分,粘粘乎乎的油把喷油嘴等部位都糊住了。今天咱们开这么快,转速会在4500-5000以上,油的流量也会很大,把原来的粘粘乎乎的东西都冲刷走了。所以车又好开了。”我听了以后,觉得可能有北京人侃大山的因素(JC说是真事)有没有这么邪乎不知道,但是道理是很清楚的。 3. 关于如何省油: 长期发动机低转速行驶,会使发动机工作状态下降,燃烧不充分。油耗自然会上升。咱们国家的司机,原来就是这么学的(我也是这么学的,我的教练还是海驾的金牌教练,驾龄在40年以上,他对我谆谆教诲:车一动就加二档!),低转速加档,是为了省油和省车。也确实省油,为什么?我看和当时的司机都会修车有关系,他闲得没事就会把发动机全拆开,

汽车发动机的额定功率额定转速最大扭矩的概念

汽车发动机的额定功率/额定转速/最大扭矩的概念 扭矩:扭矩是使物体产生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率稳定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反应了汽车在一定范畴内的负载能力。 发动机通过飞轮对外输出的扭矩称为有效扭矩,用Te体现,单位为N?m。有效扭矩与外界施加于发动机曲轴上的阻力矩相平衡。发动机通过飞轮对外输出的功率称为有效率,用Pe体现,单位为kW。它即是有效转矩与曲轴角速度的乘积。 发动机的有效功率可以用台架试验要领测定,即用测功器测定有效转矩和曲轴角速度,然后运用以下的公式便可计算出发动机的有效功率。 Pe=Te?(2∏?n/60)/1000=Te?n/9550(kW) 其中:Te——有效转矩,N?m n——发动机转速,r/min 有效扭矩的最大值称为最大转矩,有效功率的最大值称为最大功率。 报刊上在介绍某一车型时,其技术参数中的扭矩和功率通常就是最大扭矩和最大功率。而发动机铭牌上标明的功率及相应转速则称为额定功率和额定转速,额定功率一般要小于最大功率,凭据汽车发动机可靠性试验要领的规定,汽车发动机应能在额定工况下能连续运行300—1000h。 关于扭矩和功率的含义,通俗一点讲,扭矩好比百米赛跑选手在起跑点蹲撑,蓄势待发,准备冲向前那一刹那的冲劲;而功率就是维持这股劲可以越跑越快,一直跑到终点的能力。增大发动机的排量,就能提高Te

和Pe。为了增大发动机排量,可增加气缸数(如3缸变4缸),或者增加单位气缸的容积(如增大气缸内径)。 简单的说:发动机的扭矩象征其气缸一口气所能吸进的油气量,这个吸气量是会随油门开度的加大和发动机转速的逐渐升高而增加的,但是它不会一直变大上去,到了某一转速它就会到达顶峰,这就是平时人们所说的最大扭矩。发动机的转速再上升,它就会逐渐下降,这是汽油发动机等内燃机在扭矩上的特色,也是最不睬想的地方。功率即是扭矩乘以转速,它象征在单位时间里发动机可吸进的油气量。所以,当发动机转速逐渐上升到最大扭矩点时,每口气吸进的油气量和单位时间里的吸气次数都在增加,因此功率一直上升;当转速超出最大扭矩点后,尽管每口气吸进的油气量减少,但由于降幅不大且吸气次数在增加,所以一直增加到最大功率点为止;当转速超出最大功率点后,每口气吸进的油气量减少幅度要大于吸气次数的增加幅度,所以功率开始减少。汽车所要求的发动机动力性指标Te和Pe是在一定转速下得到的。差别汽车的使用要求不一样,车速也不一样(如载货汽车和轿车使用的车速就不一样),所对应的发动机转速就不一样,因此差别用途的发动机,即便在有效功率相等的情况下,它们所对应的转速也是不一样的,反言之即功率相等的发动机并不克相符所有车型的要求,还务必在考虑功率和扭矩的同时看其所对应的转速,这样才华全面看出发动机的动力性能指标Te和Pe是否相符要求。 而Te和Pe这两项动力性指标并不克直接用来评价差别排量发动机的优劣或强化水平,即不是功率和扭矩大的发动机就好或强化水平就高,而是要看单位气缸劳动容积所发出的功率和扭矩。

发动机电子控制系统

摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。关键词: EECS,ECU汽车发动机电喷一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括:中国发动机论坛(XHEPPo!G - 燃油喷射控制; |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试| - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; e - 后备系统; - 诊断系统等功能。 |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术内容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、氧传感器等。- 执行器 主要包括喷油器、点火控制模块、怠速空气控制阀以及各种电磁阀等。 - 电控单元ECU(Electronic Control Unit) 和控制算法程序软件 其作用是通过采集各种传感器输入信号并将信号进行调理,根据发动机管理控制算法进行运算,然后输出控制信号并进行功率放大给执行器。同时检测传感器信号正常状态,出现故障时报警。 另外,为了应对汽车产业产品作为多种产品链状集成开发的特点以及快速更新的市场需求,高性能的发动机试验台架、集成开发环境工具以及测试产品耐环境性能的设备为快速开发高质量面向不同汽车发动机的管理系统产品提供保障: - 发动机试验台架 主要包括不同种类的发动机以及工况装置、测功仪、废气测量仪以及各种传感器和测量装置。 - 集成开发环境IDE(Integrated Development Environment)系统 主要包括用于开发电控单元ECU 和控制算法程序软件的集成开发环境。目前,基于模型设计(Model Based Design)、快速原型(Rapid Prototyping)技术以及符合OSEK标准的实时操作系统得到了越来越广泛的应用。 - 耐环境实验设备 用于元器件、产品的耐温、振动、抗干扰、防漏水、耐久性等环境试验设备。上述设施的联合使用,为开发汽车发动机电子控制系统提供必要的联调、参数标定、性能试验、环境试验等必要条件。另外,为了适应不同区域的气候条件,在不同海拔地区、不同季节的车载试验需要脱离发动机试验台架并借助车载标定系统在特定环境及试验地完成,以确定相对不同区域和气候的控制参数。 二、汽车发动机电子控制系统应用市场现状 汽车发动机电子控制系统技术属于汽车电子领域的关键技术并占据汽车电子市场的主要份

浅谈混合动力汽车控制策略

浅谈混合动力汽车工作模式和控制策略 王志杰 (福建信息职业技术学院福州,350003) 摘要:依据混合动力电动汽车发展现状,介绍串联式、并联式和混联式的混合动力电动汽车的概况,探讨三种结构方式下的工作模式及其能量流动和几种典型控制策略。 关键词:混合动力汽车;HEV;控制策略; 0 前言 近几十年来,世界各国汽车工业都一直面对能源安全与环境保护两大挑战,为此,各国政府纷纷制定相应的对策,力图开发新一代的清洁节能型汽车。从上世纪90年代开始,全球各大汽公司首先把目光投放到电动汽车研究上,但由于车用蓄电池的能量密度低、质量较大,使得纯电动汽车的续驶里程短且成本较高,很难实现市场化,而混合动力汽车的出现正好解决了这一难题。 混合动力汽车(Hybrid-Electric Vehicel,缩写HEV)是将电动机与辅助动力单元组合在一辆汽车上做驱动力,辅助动力单元实际上是一台小型燃料发动机或动力发电机组。混合动力汽车结合了传统和电动驱动系统的特点,即明显减少汽车排放和降低油耗,又有大的行程。 控制策略是混合动力汽车的核心,它根据驾驶员意图和行驶工况,协调各部件间的能量流动合理进行动力分配,优化车载能源,提高整车经济性,适当降低排放,并在不牺牲整车性能的况下,实现两者之间的折中优化。 本文就混合动力汽车工作模式、能量流动和控制策略作了初步的论述,使人们对混合动力汽车技术有一定了解。 1 混合动力汽车技术 1.1串联式混合动力汽车 串联式混合动力电动汽车由发动机、发电机和电动机三大主要部件总成组成。发动机仅仅用于发电,发电机所发出的电能供给电动机,电动机驱动汽车行驶。发电机发出的部分电能向电池充电,来延长混合动力电动汽车的行驶里程。另外电池还可以单独向电动机提供电能驱动电动汽车,使混合动力电动汽车在零污染状态下行驶。 1.1.1工作模式及其能量流动 1.1.1.1纯蓄电池模式 当混合动力汽车负荷小(空载)时,由电池驱动电动机带动车轮转动,此时的能量流 动如图1所示。 1.1.1.2纯发动机模式 载荷比较大时,则由发动机带动发电机发电驱动电动机带动车轮转动。此时的能量流动如图2所示。 1.1.1.3混合驱动模式 当车处于启动、加速、爬坡的工况时,发动机-发电机和蓄电池共同向电动机提供电能。能量流动图如图3所示。

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书

佛山菱电变频实业有限公司王和平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成。进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器和供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)和各种传感器组成,它控制燃油喷射时间和喷射量以及点火时刻。 汽车发动机电子控制单元(ECU)是汽车发动机控制系统的核心,它可以根据发动机的不同工况,向发动机提供最佳空燃比的混合气和最佳点火时间,使发动机始终处在最佳工作状态,发动机的性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)的主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制

发动机控制器(ECU)将进气量和发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统的发动机,ECU除了控制喷油量外,还要根据发动机各 缸的点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定的低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定的最高车速时,ECU自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要的油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动和运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制 发动机运转时,ECU根据发动机的转速和负荷信号,计算相应工况下的点火提前角,并根据发动机的水温、进气温度、节气门位置、爆震信号等修正点火提前角,最

发动机功率、转速、扭矩的关系

打开汽车类杂志或网站,对每款新车型的介绍都少不了马力,扭力,转速这些参数。他们是衡量汽车性能最重要的参数。那么这些参数到底说明了什么意义呢? 其实这些参数都是用来衡量发动机性能的。我们常说的“这个车真有劲”其实就是因为发动机的扭力强大;还有我们常说“这车跑得很快!可以上200KM/H”,这就需要较大的输出功率(也就是马力)。马力,扭力和转速,实质上是相互关联的三个参数。从下面的关系式就可以看出这三个参数之间的关系: 扭力*转速*n=功率 n为一个常数。功率,用来描述发动机做功的多少。如果功率越大,就证明发动机在单位时间内做功能力越强,那么能给汽车提供的动能也越大。汽车自然也就跑得更快了。扭力是用来描述发动机曲轴转动的力度。打个比方就好像我们用扳手拧螺丝,如果我们对扳手用力越大,那么螺丝受到的扭力也就越大,反之受到的扭力就越小。所以扭力是用来描述一个旋转轴的转动力矩的。我们从扭力的单位(牛*米)也可以很容易理解出它的意义。所谓XX牛米的扭力,就是相当于给一个长度为1米的扳手施加XX牛的力去拧螺丝,此时螺丝就是受到了XX 牛米的扭力开始转动。这就意味着,扭力越大,给汽车提供的牵引力就越大,根据牛顿定律就很容易得出,发动机扭力越大汽车加速越快,而且拖拽能力也越强。 转速,我们平常描述它的单位是XX转/分钟。意思就是每分钟曲轴转XX 圈。所以在档位不变的情况下,发动机转速提高,汽车速度也就随之提高了。

了解了扭力和转速以后,我们再通过上式来分析扭力,转速,功率三者的相互关系吧。从上式可以看出功率是扭力和转速的乘积。而发动机的功率是由能量决定的。在相同发动机条件下汽缸内燃烧的汽油放出的能量越多,那么功率也就越大。所以说大排量的发动机功率都很大,因为发动机排量越大,吸入汽缸的汽油和空气就越多,那么燃烧释放出来的能量也就越大了。所以一台发动机的功率取决于排量的大小和发动机把燃烧产生热能转换成机械能的能力的大小。从上式可以分析出,在功率一定的情况下,扭力越大转速就越低;扭力越小转速就越高。有了这个特性,我们就可以根据汽车的用途来调校汽车发动机了。 如果我需要这台汽车跑得快,那么我就可以在设计调校的时候让发动机的额定转速提高,但此时扭力就会下降,所以加速能力也会减弱。如果我要汽车拉得多,我们就可以把额定转速降低,这样扭力就更大,牵引力也就更强,加速也更快。但由于转速有限,所以速度加到一定程度就达到了额定转速,极速并不见得很快。 这样我们就很容易理解,为什么货车发动机的转速那么低(3000转/分钟左右)轿车的转速那么高(6000转/分钟左右)的原因了吧。而即便同是轿车,根据用户的需求,其扭力和转速调校也有不同。大家都知道,美国车起步加速很有劲,可速度超过120KM/H再加速就有点困难了。但相同排量的欧洲车或者日本车,起步可能疲软一点,但到了100KM/H甚至150KM/H的速度还能感觉到车速在加快。所以很明显,美国车的发动机偏向于低转速,大扭力,因为美国车车身大,重量也大,必须要有很强的扭力才能牵引汽车灵活的运动;而日本车,本身车体小巧,所以可以使用高转速发动机,让汽车加速的时间能持续更长跑得更快。更深一点了解的话,不同的发动机在不同的转速情况下,扭力也是不一样的,这

我国混合动力汽车发展现状和建议

更多电动汽车相关资料论文可联系jijimaoioy@https://www.360docs.net/doc/e515659582.html,,与同行共同探讨 动力汽车发展现状和建议 周鹤良 (中国电工技术学会电动车辆专业委员会) 孙立清 (北京理工大学电动车辆工程技术中心、中国电工技术学会电动车辆专业委员会) 魏峰 (中国电工技术学会电动车辆专业委员会) 摘要:近年来,混合动力电动汽车在世界上获得了快速的发展。它不但开始产业化,也在一些国家快速开始商业化。我国的混合动力汽车得到了国家和各级地方政府的高度重视,获得了长足进步。与此同时,丰田与一汽、GM与上汽在混合动力汽车领域的合作,也给我国地混合动力汽车技术和产业地发展提出了前所未有的挑战。国内多家的开发经验值得总结和借鉴。尤其是如何应对国际竞争方面,我们很有必要总结和探讨。中国汽车工业的发展特点,我们在混合动力汽车方面的优势和劣势,我们的最终目标和现阶段的可能目标,发展的速度和质量要求等一系列问题都值得探讨。尤其是我国是一个汽车产品结构复杂的国家,而且随着社会经济的发展,这些也在变化。面对明显的趋势是公路客运和货运的突飞猛进以及家庭轿车的迅速发展,城市公共交通的迫切需求,在混合动力汽车方面该如何应对?本文依据有关资料,对我国混合动力汽车发展的现状加以分析并提出建议供业界参考。 关键词:混合动力汽车;现状;建议 一、背景 自从2001年起我国科技部开始设立“三纵三横”电动汽车专项以来,我国已经按照汽车产品开发规律,在电动汽车关键单元技术、系统集成技术及整车技术上取得了重要进展,建立了国家研发技术标准平台、测试检验平台、政策法规平台以及示范应用平台。到去年底,已经起草完成整车13项新标准、修订5项标准,制定6项关键零部件产品测试规范。在北京、天津、上海、大连已分别建立起包括电动汽车动力蓄电池、驱动电机、燃料电池发动机在内的6个检测基地和试验平台;在北京、武汉、天津、威海等几个城市开展电动汽车商业化试验示范运营,试验运行电动汽车超过60辆。目前,我国电动汽车研发正值热潮,已形成200多家企业、高校和科研院所,2000多名以中青年技术骨干为主组成的稳定研发队伍,申请了超过520项国内外专利。我国在电动汽车领域的核心 1

3种类型混合动力汽车控制策略的分析

万方数据

万方数据

万方数据

万方数据

100福建工程学院学报第6卷 电扭矩和电池系统的充电状态来决定。当制动回收充电力,机械制动系统开始工作,以确矩不能满足要求时保车辆的制动安全性。当车速低于设定值或者电机转速低于设定值时,此时电机充电效率较低,能量回收系统不启动,直接采用机械制动,其基本控制策略如下: a.Mb>帆,若SDC<S0c一,则帆=膨。;若舳c≥sOC一,则电机停止工作肘b=M。。 b.帆>肘。,若SDC<s0C一,则帆=^f。+肘。;若SDC≥SDc一,则电机停止工作肘h=M。。式中,帆为整车需求的制动转距;肘。为机械摩擦制动转距。 3.2.4故障工况 当电机分总成出现故障时,采用纯发动机模式驱动;当发动机出现故障时,采用纯电动模式运行。3.3模型仿真简介 利用美国A呻ne国家实验室为响应美国政府的新—代车辆合作计划而开发的电动汽车仿真软件PsAT,根据需要对肘函数和Si枷1ink模块进行修改,可建立自己需要的整车仿真模型[43(图6)。 图6混联式肛V仿真结构模型 矾g.6Simlllink舳mctu弛modelfors盯ial-paraIlelI皿VsysteIm 从仿真性能及结果可以看出,在基础起步阶段混合动力汽车混联式与串联式和混联式相比,由于都由电机驱动,因此性能相近;在高速行驶时,由于串联式只是依靠电机驱动,动力性不如混联式,且油耗方面混联车也优于串联车。同时,串联车发电机的发电功率与驱动电机的驱动功率必须相当,才能保证整车的动力性;混联车可以避免这种情况,可选用更小的发电机与驱动电机,但是在机械与功率控制实现方面要复杂得多,实现多个能源的最优匹配难度更大。 4混合汽车应用前景和需要解决的问题 4.1混合汽车应用前景 串联式动力总成要求选择发动机的功率大,并且对电池要求很高,容量大,增加了电池和汽车的制造成本及重量,电机是唯一的动力源,能量转换效率低,所以比较适合大型公交车。并联式动力总成由发动机和电机2部分组成。因为发动机的变化受到车子工况变化的影响大,所以排放性较差,使用的范围较小,仅限于小型汽车,更适合在高速公路上行驶。混联式发动机功率选择较小,排放性能较好,对电池依赖比较小,基本上不需外来充电系统,发动机工作不受车辆行驶工况的影响,不要求像传统发动机那样具有良好的响应特性及宽广的转速运行范围。另外,可以充分利用串联式和并联式的优点,确保发动机和电动机基本上工作在经济区,大大提高了车辆的经济性。并且动力源传递效率高,使用车型范围广。但结构和控制复杂,从而成本也较高,目前主要应用于轿车。 4.2需要解决的关键技术问题 混合动力汽车要进入实用化,需要具备高比能量和高比功率的能量存储装置,低成本、高效率的功率电子设备和燃料经济性高、排放低的发动机,所面临的关键性技术和需要解决的问题包括以下几个方面: 1)内燃机与电机藕合功率分配比的最优控制。混合动力汽车发动机和电动机要相互配合工作,而根据运行工况控制它们适时启动和关闭,并使发动机始终工作在低油耗区的整个控制过程十分复杂,因此需要用成熟可靠的动力藕合装置以及先进的检测系统和控制策略实现功率的合理分配,以达到低油耗和良好的动力性目标。因此,可发展多种动力耦合装置,有传统的行星齿轮耦合器等,也可尝试集离合、动力合成、变速功能于一体的双离合自动变速动力偶合器等[5。;在控制策略上,可建立更优的模型,比如瞬时优化算法与逻辑门限判断相结合的白适应控制策略阳]。 2)能量存储装置(电池)要具有较高的比功率,以满足汽车加速和爬坡时对大功率的需要。 电池还要具有快速充电能力,以保证制动时能量 万方数据

油电混合动力汽车详解 (1)

油电混合动力汽车详解 【汽车探索详解】如今节能减排已经成为一件很热门的事同时也是一件很重要的事,大到胡爷爷和奥巴马碰面都要谈。而对于汽车领域来说,同样也很热门,各个厂家都在竭尽所能的推出各种环保汽车。为汽车寻找代替能源,降低油耗甚至实现零油耗零排放,已经成为每一家车企的目标。 但在这乊前,油电混合动力系统显然更有实际意义。下面我们将为大家简单介绍混合动力系统的分类和简单工作原理,以及如今各个厂家的混合动力代表车型。 1.目前兲于油电混合动力汽车有很的说法,微混合、轻度混合动力、重混合动力、插入式混合动力等等,汽车探索为您解读它们分别是什么意思。 2.为您介绍混合动力汽车的发动机有什么特色,所用的电池有哪几种。 混合动力汽车由来已久,可能您会觉得难以置信,混合动力汽车已经有了上百年的历史。大名鼎鼎的费迪南德·保时捷在上世纪末就为一家名为Jacob Lohner的公司开发出一款油电混合动力汽车,甚至造出了四驱版本。 Lohner-Porsche的四驱车型

Lohner-Porsche的赛车型号 美国专利局兲于“Mixed Drive for Autovehicles”的专利 如果您有机会查一查美国专利局那些被尘封的资料,会惊奇的发现今年的3月2日距美国的第一个混合动力汽车专利已经过去了整整一个世纪!1909年,身在比利时的德国人Henri Pieper取得了一项名为“Mixed Drive for Autovehicles”的专利。 分类:目前主要以并联、混联为主,按混合度分类的说法也很常见 现代的混合动力汽车是仍上世纪90年代末才开始逐渐发展起来的。按照其工作斱式,大体上可以分为串联、并联和混联三种。 串联式:已经被淘汰 简单地说,串联式混合动力汽车的工作斱式就是用传统发动机直接通过发电机为电池充电,然后完全由电动机提供的动力驱动汽车。其目的在于使发动机长时间保持在最佳工作状态,仍而达到减排的效果。这种斱式的好处是发动机可以不受行驶状态的影响,一直处于最佳工作状态,对于改善排放大有好处,但转换效率偏低。这种斱式由于局限比较多,目前已不多见。丰田曾经将这种斱式应用在考斯特上,并迚行了批量生产。

相关文档
最新文档