八年级第十三章《轴对称》知识点及典型例题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章《轴对称》
考点一、关于“轴对称图形”与“轴对称”的认识
⑴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图
形,这条直线叫做____________。
⑵对称:对于____ 个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这
条直线就是对称轴。两个图形中的对应点叫做__________
典例1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有()A.1个 B.2个 C.3个D.4个
2.图9-19中,轴对称图形的个数是()
A.4个 B.3个 C.2个 D.1个
3.正n边形有___________条对称轴,圆有_____________条对称轴
考点二、轴对称变换及用坐标表示轴对称
(1)经过轴对称变换得到的图形与原图形的________、________完全一样
(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于_________的对称点.
(3)连接任意一对对应点的线段被对称轴______________.
[关于坐标轴对称]
点P(x,y)关于x轴对称的点的坐标是(x,-y)
点P(x,y)关于y轴对称的点的坐标是(-x,y)
[关于原点对称]
点P(x,y)关于原点对称的点的坐标是(-x,-y)
[关于坐标轴夹角平分线对称]
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)
[关于平行于坐标轴的直线对称]
点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);
点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);
考点三、作一个图形关于某条直线的轴对称图形
(1)作出一些关键点或特殊点的对称点.
(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形
D
典例:1、如图,Rt△ABC,∠C=90°,∠B=30°,BC=8,D为AB中点,
P为BC上一动点,连接AP、DP,则AP+DP的最小值是
第1题图
图(2)
B
2、已知等边ABC ,E 在BC 的延长线上,CF 平分∠DCE ,P 为射线BC 上一点,Q 为CF 上一点,连接AP 、PQ. 若AP=PQ ,求证∠APQ 是多少度
考点四、线段垂直平分线的性质
⑴线段是轴对称图形,它的对称轴是__________________
⑵线段的垂直平分线上的点到______________________相等归类回忆角平分线的性质 ⑴角是轴对称图形,其对称轴是_______________
⑵角平分线上的点到______________________________相等
典例1、如图,△ABC 中,∠A=90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
2、 如图,△ABC 中,AB=AC ,PB=PC ,连AP 并延长交BC 于D ,求证:AD 垂直平分BC
3、如图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC
的周长为( )
A.16厘米
B.18厘米
C.26厘米
D.28厘米 4、 如图,∠BAC=30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD=28 , 则
AM=
5、如图,在Rt △ABC 中,∠ACB = 90°,∠BA C 的平分线交 BC 于D. 过C 点作
CG⊥AB 于G ,交AD 于E. 过D 点作DF⊥AB 于F.下列结论: ①∠CED=∠CDE;②AEC S ∆︰AC S AEG =∆︰AG ;③∠AD F =2∠ECD ; ④DFB CED S S ∆∆=;⑤CE=DF. 其中正确结论的序号是( ) A .①③④ B .①②⑤ C .③④⑤ D .①③⑤
考点五、等腰三角形的特征和识别
⑴等腰三角形的两个_____________相等(简写成“________________”)
⑵等腰三角形的_________________、_________________、_________________互相重合(简称
为
C
E
B D
A
F E
D
C
B
A
G
F C
D
B E
A
“________________”)
特别的:(1)等腰三角形是___________图形.
(2)等腰三角形两腰上的中线、角平分线、高线对应__________.
⑶如果一个三角形有两个角相等,那么这两个角所对的________也相等(简称为“____________________”)特别的:
(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形. (3)有两边上的中线对应相等的三角形是等腰三角形. (4)有两边上的高线对应相等的三角形是等腰三角形.
典例1、如图,△ABC 中,AB=AC=8,D 在BC 上,过D 作DE ∥AB 交AC 于E ,DF∥AC
交AB 于F ,则四边形AFDE 的周长为______ 。
2、 如图,△ABC 中,BD 、CD 分别平分∠ABC 与∠ACB ,EF 过D
且EF ∥BC ,若AB = 7,BC = 8,AC = 6,则△AEF 周长为( ) A. 15 B . 14 C. 13 D. 18
3、已知等腰三角形一腰上的高与另一腰的夹角为40°,则它的一个底角的度数是_____________
4、已知,在△ABC 中,∠ACB=90°,点D 、E 在直线AB 上,且AD=AC ,BE=BC ,则∠DCE = 度.
5、如图:在△ABC 中,AB=AC ,AD ⊥BC , DE ⊥AB 于点E, DF ⊥AC 于点F 。试说明DE=DF 。
6、如图,E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE.求证:△ABC 是等腰三角形.
考点六、等边三角形的特征和识别
⑴等边三角形的各____相等,各____相等并且每一个角都等于________ ⑵三个角相等的三角形是__________三角形
⑶有一个角是60°的____________三角形是等边三角形
特别的:等边三角形的中线、高线、角平分线_________________________________________
F E D
A
B
C
F E
D
C B A