监控视频中道路车流量检测系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东建筑大学
课程设计说明书
题目:监控视频中道路车流量检测系统设计课程:数字图像处理课程设计
院(部):信息与电气工程学院
专业:电子信息工程
班级:电信
学生姓名:
学号:
指导教师:
完成日期:2013年6月
目录
摘要································································································II
1 设计目的 (1)
2 设计要求 (1)
3 设计内容 (2)
3.1运动车辆检测算法比较 (2)
3.2形态学滤波 (5)
3.3车辆检测 (6)
3.4车辆计数 (9)
3.5软件设计 (9)
总结与致谢 (10)
参考文献 (11)
附录 (12)
摘要
获得实时的交通信息是当前各种检测方式的前提,但是现有的信息采集方式并不能满足交通管理与控制的需求。随着计算机技术的快速发展,基于视频的检测技术在交通中得到了广泛的应用,同其它检测方式相比,它具有检测范围大、设置灵活、安装维护方便、检测参数多等优点。基于图像处理的视频检测方式近年来发展很快,已成为当今智能交通系统的一个研究热点。本论文对视频交通流运动车辆检测的内容进行了深入地研究。结合视频图像详细的介绍了视频检测中的背景更新、阴影去除、车辆分割等关键技术和算法,介绍了视频检测的方法。最后在MATLAB的平台上进行了系统实现设计。实验结果表明,该算法具有一定的可行性,能够快速的将目标参数检测出来关键词:MATLAB;帧间差法;车辆检测
随着经济的发展,人民生活水平的提高,汽车保有量大幅增加,怎样安全高效地对交通进行管理,就显得非常重要.解决这一问题的关键是建立智能交通系统(ITS),其中车辆检测系统是智能交通系统的基础.它为智能控制提供重要的数据来源
作为ITS的基础部分,车辆检测系统在ITS中占有很重要的地位,目前基于视频的检测法是最有前途的一种方法,它是通过图像数字的方法获得交通流量信息,主要有以下优点:(1)能够提供高质量的图像信息,能高效、准确、安全可靠地完成道路交通的监视和控制工作.(2)安装视频摄像机破坏性低、方便、经济.现在我国许多城市已经安装了视频摄像机,用于交通监视和控制.(3)由计算机视觉得到的交通信息便于联网工作,有利于实现道路交通网的监视和控制.(4)随着计算机技术和图像处理技术的发展,满足了系统实时性、安全性和可靠性的要求
2 设计要求
通过对视频流中的车辆进行检测和跟踪,准确地统计每个车道流量、平均车速、平均车道占有率、车队长度、平均车间距等信息为交通规划,交通疏导和车辆动态导航领域提供一系列指导。
设计车辆检测与识别方法和车流量统计方法,实现监控视频中道路车流量检测。通过实验验证检测精度。
3.1运动车辆检测算法比较
目前,大多数的运动目标检测的方法或是基于图像序列中时间信息的,或是基于图像序列中空间信息的。常见的方法有如下3种:
(1)光流法
当目标运动时,图像上对应目标的亮度信息(光流)也相应的运动。这样,根据时间上相邻的几帧图像可以计算出各像素点运动的大小和方向,从而利用运动场来区分背景和运动目标。其主要优点在于能检测出独立的运动目标,而不需预知场景的任何信息,对变化的复杂背景情况有较好的适应。但其缺点也很明显,由于要依赖光流估计的准确程度,大多数计算方法相当复杂并且计算量特别大,所以除非有特殊的硬件支持,否则很难实现实时检测。
(2)背景减法
将实时视频流中的图像像素点灰度值与事先已存储或实时得到的视频背景模型中的相应值比较,不符合要求的像素点被认为是运动像素。这是视频监控中最常用的运动检测方法。这种方法虽然能较完整的提取运动目标,但对光照和外部条件造成的环境变化过于敏感,常常会将运动目标的阴影错误的检测为其自身的一部分。同时由于时间流逝,实际场景的多种因素都会发生变化,比如停留物的出现、光线等的变化、运动目标对背景的遮挡等等,背景需要得到实时地更新,这是影响其检测效果的一个重要因素。
背景差分算法的实质是:实时输入的场景图像与背景图像进行差分,可以较准确的分割出运动目标。但是背景差分算法也有其天然的缺陷,随着时间的推移,场景的光线、树叶的遮挡、或者运动物体滞留都会很大程度的破坏已经建立好的背景图像。为了解决这些问题,最好的方法便是使用背景建模和背景更新算法来弥补。前面已经讨论过相关问题,因此,本文假设背景处于理想情况下进行背景差分算法的研究。基于背景减法的MATLAB仿真,如图
Surendra算法计算出背景图像,左图为原始输入图像,中图为背景图像,右图为背景差分法得出的二值化图像。实验结果表明:背景差分算法也可以有效地检测出运动目标。由于背景建模算法的引入,使得背景对噪声有一定的抑制作用,在差分图像中“雪花”较帧间差分算法有所减少。同时,使用背景差分算法检测出的运动物体轮廓,比帧间差分法的检测结果更清晰。因此,在背景建模与背景更新处于比较理想的状态下,背景差分算法得到的结果略好于帧间差分的结果。
(3)帧间差法
帧间差法是根据当前图像与参考图像的差别来获得运动目标轮廓的方法。这种方法对于场景中的光线渐变不敏感,适于动态变化的环境,且运算量相对较小。但一般不能完整的提取运动目标,且在运动实体内易产生空洞现象,从而不利于下一步的分析和处理。
2.2.1 帧间差法运动目标检测
基于帧间差分的运动检测即帧差法,它根据相邻帧或隔帧图像间亮度变化的大小来检测运动目标,选取T=20,仿真结果如下图:
由上面的仿真实验可以得出:运用帧间差分方法进行运动目标的检测,可以有效的检测出运动物体。右子图中,可以比较清晰地得到运动物体的轮廓。但是,这种算法虽然可以使背景像素不随时间积累,迅速更新,因此这种算法有比较强的适应场景变化能力。但是帧差法表示的是相邻两帧同位置的变化量,因此很有可能将比较大的运动目标,或者运动目标内部颜色差异不大的像素判断错误,在实体内部产生拉伸、空洞现象。而且当前景运动很慢且时间间隔选择不合适时,容易出现根本检测不到物体的情况。在差分图像中,有很多“雪花”般的噪声,这些是由于图像局部的干扰造成的。使用帧间差分法,需要考虑如何选择合理的时间间隔,这一般取决于运动目标的速度。对于快速运动的目标,需要选择较短的时间间隔,如果选择不当,最坏情况下目标在前后两帧中没有重叠,被检测为两个分开的目标;对于慢速运动的目标,应该选择较长的时间间隔,如果选择不当,最坏情况下目标在前后两帧中几乎完全重叠,根本检测不到目标。此外,在场景中由于多个运动目标的速度不一致也给时间间隔的选取带来很大麻烦。